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The 4th International Conference on Image Formation in X-Ray Computed Tomography

The 4th International Conference on Image Formation in

X-Ray Computed Tomography is supported by:

Deutsche Forschungsgemeinschaft

GE Healthcare

Siemens Healthineers

Toshiba Medical Systems

Varian Medical Systems

Ziehm Imaging

We thank our sponsors for their

important and valuable contributions!
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Tuesday, July 19

Oral Session : General

Time : 07:55 – 09:40

Chairs : Günter Lauritsch and Katsuyuki Taguchi

Time Author Title Page

07:55 – 08:00 Marc Kachelrieß Opening Remarks

08:00 – 08:20 Tao Sun, Jung-Ha Kim, Roger Fulton,
Johan Nuyts

Data-driven Correction for Head Motion In
Helical X-ray CT

17

08:20 – 08:40 Jiabei Zheng, Jeffrey A. Fessler,
Heang-Ping Chan

Digital Breast Tomosynthesis Reconstruction
with Detector Blur and Correlated Noise

21

08:40 – 09:00 Matthias Wieczorek, Christoph Jud,
Florian Schaff, Franz Pfeiffer,
and Tobias Lasser

X-Ray Tensor Tomography – A Linear System
Approach to Reconstruction

25

09:00 – 09:20 Aswin John Mathews, Steven Tilley II, Grace
Gang, Satomi Kawamoto, Wojciech
Zbijewski, Jeffrey H. Siewerdsen, Reuven
Levinson, J. Webster Stayman

Design of Dual Multiple Aperture Devices for
Dynamical Fluence Field Modulated CT

29

09:20 – 09:40 P. Trueb, P. Zambon, and C. Broennimann Hybrid Photon Counting Detectors for Spec-
tral X-ray Imaging

33

Coffee Break

Oral Session : Spectral

Time : 10:00 – 11:40

Chairs : Bernhard Brendel and Norbert Pelc

10:00 – 10:20 Emil Y. Sidky, Taly Gilat-Schmidt,
Rina Foygel Barber, Wooseok Ha, and
Xiaochuan Pan

Simultaneous spectral scaling and basis ma-
terial map reconstruction for spectral CT
with photon-counting detectors

37

10:20 – 10:40 Bernhard Brendel, Frank Bergner,
Kevin Brown, and Thomas Koehler

Penalized Likelihood Decomposition for Dual
Layer Spectral CT

41

10:40 – 11:00 Martin Sjölin and Mats Danielsson Angular Oversampling and Built-In Anti-
Aliasing Filtration in CT with ultra-fast ASIC
on Photon Counting Detector

45

11:00 – 11:20 Nicolas Ducros, Simon Rit, Bruno Sixou, and
Françoise Peyrin

Non-Linear Regularized Decomposition of
Spectral X-ray Projection Images

49

11:20 – 11:40 George S.K. Fung, Karl Stierstorfer,
Matthew Fuld, Satomi Kawamoto,
Elliot K. Fishman, Benjamin M.W. Tsui, and
Katsuyuki Taguchi

Spectrum Optimization in Split-Filter Dual-
Energy CT for Iodine Quantification and
Virtual-Non-Contrast Imaging

53

Lunch Break
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Poster Session : Poster Session 1

Time : 13:20 – 15:00

Chairs : Hengyong Yu and Larry Zeng

Time Author Title Page

13:20 – 13:40 Poster fast forward (all authors)

13:40 – 15:00 Jiulong Liu, Xue Zhang, Hongkai Zhao,
Yu Gao, David Thomas, Daniel A Low, and
Hao Gao

5D Respiratory Motion Model Based Image
Reconstruction algorithm for 4D cone-beam
computed tomography

57

13:40 – 15:00 Jingwen Zhuang, Junzheng Zheng, and Mei
Bai

Study on geometric efficiency for MDCT 61

13:40 – 15:00 Meili Yang, Yong Long, and Tianye Niu Statistical Image-Domain Multi-Material
Decomposition for Dual-Energy CT

65

13:40 – 15:00 Jonas Dittmann, Michael Trapp, and Kilian
Dremel

Fast Quantitative Evaluation of the Resolu-
tion of Compressed Sensing Tomographic Re-
constructions

69

13:40 – 15:00 Sathish Ramani, and Bruno De Man Selection of Monochromatic Energy-Pair for
Hybrid Decomposition in Dual-Energy CT

73

13:40 – 15:00 Damien Racine, Pascal Monnin,
François O. Bochud, Anaïs Viry, Alexander
Schegerer Sue Edyvean, and Francis R. Ver-
dun

Characterization CT unit using a dose effi-
ciency index concept

77

13:40 – 15:00 Jiulong Liu, Huanjun Ding, Sabee Molloi,
Xiaoqun Zhang, and Hao Gao

TICMR: Total Image Constrained Material
Reconstruction via Nonlocal Total Variation
Regularization for Spectral CT

81

13:40 – 15:00 Gengsheng L. Zeng and Wenli Wang On Approximation of Compound Poisson by
Poisson

85

13:40 – 15:00 Mathias Unberath, André Aichert,
Stephan Achenbach, and Andreas Maier

Virtual Single-frame Subtraction Imaging 89

13:40 – 15:00 Francesco Pisana, Thomas Henzler, Stefan
Schönberg, Bernhard Schmidt, Ernst Klotz,
and Marc Kachelrieß

Adaptive Multi Band Frequency Filter
(aMBF) for Noise Reduction in Dynamic CT
Perfusion Dataset

93

13:40 – 15:00 Serge A. Soloviev A Highly Adaptable X-ray Imaging System
Simulator

97

13:40 – 15:00 Buxin Chen, Yan Liu, Zheng Zhang,
Zhou Yu, Richard Thompson, Emil Sidky,
and Xiaochuan Pan

Algorithm-Enabled Half-Rotation Data Re-
construction in Spectral CT

101
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13:40 – 15:00 Moiz Ahmad, Rebecca Fahrig, Martin Spahn,
Jang-Hwan Choi, Niko Köster, Silke Reitz,
Waldo Hinshaw, Leland Pung, Teri Moore,
Andreas Maier, and Kerstin Müller

First in-vivo Experiments with a Large field-
of-view Flat Panel Photon-Counting Detector

105

13:40 – 15:00 Yuanke Zhang, Hongbing Lu, Jing Meng,
Junliang Shang, Junying Zhang, and
Pinghong Ren

Noise Reduction in Low-dose CT by Non-
local Means on Local Principle Components

109

13:40 – 15:00 Hao Zhang, Jianhua Ma, William Moore, and
Zhengrong Liang

Characterization of the previous normal-dose
CT scan induced nonlocal means regulariza-
tion method for low-dose CT image recon-
struction

113

13:40 – 15:00 Shanghai Jiang, Biao Wei, Peng Feng, and
Peng He

Monte Carlo Simulation for Polychromatic X-
ray Fluorescence Computed Tomography with
Sheet-Beam Geometry

117

13:40 – 15:00 Miaoshi Wang, Yanbo Zhang, Rui Liu,
Shuxu Guo, and Hengyong Yu

An Adaptive Reconstruction Algorithm for
Spectral CT Regularized by a Reference Im-
age

121

13:40 – 15:00 Haewon Nam and Jongduk Baek Metal artifact reduction algorithm based on
the data-adapted moving least squares using
minimum estimated sinogram

125

13:40 – 15:00 Andreas Fehringer, Korbinian Mechlem,
Michael Epple, Sebastian Allner,
Lorenz Hehn, Franz Pfeiffer, and Peter B.
Noël

Ultra-fast cone-beam SIR on 2k-cubed data 129

13:40 – 15:00 Seung Ho Kim, Dae Cheon Kim, Hanbean
Youn, Seungryong Cho, and Ho Kyung Kim

Bone-Enhanced Small-Animal Microtomog-
raphy with Single-Shot Dual-Energy Sand-
wich Detectors

133

13:40 – 15:00 Kilian Dremel, Daniel Althoff, and
Simon Zabler

CT Alignment Correction in Iterative Recon-
struction Methods

137

13:40 – 15:00 Sunhee Wi, Hoyeon Lee,
and Seungryong Cho

Feasibility study on many-view under-
sampling(MVUS) using spiral beam filter

141

13:40 – 15:00 Maik Stille and Thorsten M. Buzug Augmented Likelihood Image Reconstruction
with Non-local Prior Image Regularization

145

13:40 – 15:00 Yixing Huang, Oliver Taubmann,
Xiaolin Huang, Viktor Haase, Günter Lau-
ritsch, and Andreas Maier

A New Scale Space Total Variation Algorithm
for Limited Angle Tomography

149

13:40 – 15:00 Sanghoon Cho and Seungryong Cho CNR Improvement in a Sparse-View Cone-
Beam Computed Tomography using an Anti-
Scatter Grid

153

13:40 – 15:00 Mingye Wu, Bruno De Man, and Zhye Yin Model-Based Dose Reconstruction for CT
Dose Estimation

157

13:40 – 15:00 Jeroen Cant, Gert Behiels, and Jan Sijbers Automatic Geometric Calibration of Chest
Tomosynthesis using Data Consistency Con-
ditions

161

13:40 – 15:00 Ti Bai, Xuanqin Mou, Hao Yan,
Hengyong Yu, and Ge Wang

A Unified X-ray Computed Tomographic Re-
construction Framework

165
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13:40 – 15:00 Julia Mascolo-Fortin, Dmitri Matenine, and
Philippe Després

Adaptation of the OSC-TV Reconstruction
Algorithm for 4D Cone Beam Computed To-
mography

169

13:40 – 15:00 Pei Han, Xin Jin and Yuxiang Xing Helical CT Reconstruction with Real-time
Focal-Spot-Shift Correction

173

13:40 – 15:00 Michael Reiter and Johann Kastner Investigation Towards Simulation-Based De-
termination of Measurement Uncertainties
for X-Ray Computed Tomography

177

13:40 – 15:00 Shouping Zhu, Zhipeng Guo, Cuiping Bao,
Jianxun Wang, Gaoqi Lv, Xu Cao, Jimin
Liang, and Jie Tian

Micro-CT Resolution Promotion Based on
Coupled Dictionary Training in Sinogram

181

Coffee Break

Oral Session : Cardiac

Time : 15:20 – 17:00

Chairs : Zhye Yin and Zhou Yu

Time Author Title Page

15:20 – 15:40 Stephan Achenbach Plenary lecture: Coronary CT Angiography

15:40 – 16:00 Stephan Achenbach Plenary lecture: Coronary CT Angiography

16:00 – 16:20 Juliane Hahn, Herbert Bruder, Thomas All-
mendinger, Karl Stierstorfer, Thomas Flohr,
and Marc Kachelrieß

Cardiac Motion Compensation from Short
Scan CT Data: A Comparison of Three Al-
gorithms

185

16:20 – 16:40 George S. K. Fung, Luisa Ciuffo, Hiroshi
Ashikaga, and Katsuyuki Taguchi

Motion Estimation for Cardiac Functional
Analysis using Low Dose X-ray Computed
Tomography

189

16:40 – 17:00 Alexander Katsevich, Michael Frenkel, Mar-
cus Chen, Michael Bungo, and Alan Cohen

Hybrid Local Tomography Image Recon-
struction Algorithm and Its Diagnostic Accu-
racy for Evaluating Coronary Arteries with
Calcified Plaque and Stents

193
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Wednesday, July 20

Oral Session: Image Reconstruction

Time : 08:00 – 09:40

Chairs : Jeffrey Fessler and Emil Sidky

Time Author Title Page

08:00 – 08:2 Emil Sidky Basic short course: Image Reconstruction

08:20 – 08:40 Emil Sidky Basic short course: Image Reconstruction

08:40 – 09:00 Jens Gregor, Philip Bingham, and Lloyd F.
Arrowood

Total Variation Constrained Weighted Least
Squares Using SIRT and Proximal Mappings

197

09:00 – 09:20 Dimple Modgil, David S. Rigie, Michael D.
Bindschadler, Adam M. Alessio, and Patrick
J. La Rivière

Image-Domain Denoising for Myocardial
Blood Flow Estimation in Dynamic CT

201

09:20 – 09:40 Thibault Notargiacomo, Dominique Houzet,
Guillaume Bernard, and Vincent Fristot

Sparse Regularization of CBCT Reconstruc-
tion Using 3D Dual-Tree Complex Wavelet
Transform and Dictionary Learning Tech-
niques

205

Coffee Break

Oral Session : Security and NDT

Time : 10:00 – 11:40

Chairs : Michael Knaup and Harry Martz

10:00 – 10:20 Andre Mouton and Toby P. Breckon Object Classification in Baggage-CT Imagery
using Randomised Clustering Forests

209

10:20 – 10:40 Kyle Champley, Jerel Smith, Jeff Kallman,
and Philip Top

Automatic Threat Detection for a Dual-
Energy Four-View X-ray Carryon Luggage
Scanner

213

10:40 – 11:00 Joscha Maier, Carsten Leinweber, Stefan
Sawall, Henning Stoschus, Frederic Bal-
lach, Tobias Müller, Michael Hammer, Ralf
Christoph, and Marc Kachelrieß

Simulation-Based Artifact Correction for
Computed Tomography in Metrology

217

11:00 – 11:20 Navnina Bhatia, David Tisseur, and Jean
Michel Létang

Scattering Correction for Industrial CBCT us-
ing Continuously Thickness-Adapted Kernels
at MeV Energy Range

221

11:20 – 11:40 Corinne B. Brunelle, Mathieu Des Roches,
Louis-Frederic Daigle, Pierre Francus,
Bernard Long, and Philippe Després

Combining CT Scan and Particle Imaging
Techniques: Applications in Geosciences

225

Lunch Break
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Poster Session : Poster Session 2

Time : 13:20 – 15:00

Chairs : Klaus Müller and Zhou Yu

Time Author Title Page

13:20 – 13:40 Poster fast forward (all authors)

13:40 – 15:00 Rui Liu, Lin Fu, Bruno De Man, and
Hengyong Yu

GPU Acceleration of Branchless Distance
Driven Projection and Backprojection

229

13:40 – 15:00 Manuel Viermetz, Lorenz Birnbacher, Mar-
ian Willner, Peter B. Noël, Franz Pfeiffer, and
Julia Herzen

High Resolution Laboratory Grating-Based
X-Ray Phase-Contrast CT

233

13:40 – 15:00 Wenying Wang, Liuyuan Zhou, Xucheng
Zhu, and Yuxiang Xing

Image Reconstruction for Few-View and
Limited-Angle MECT Based on Group-Wise
Low Rank Constraint

237

13:40 – 15:00 Andreas Fieselmann and Ludwig Ritschl Isocenter Determination for Arbitrary Pla-
nar Cone-Beam CT Scan Trajectories

241

13:40 – 15:00 Jiulong Liu and Hao Gao Material Reconstruction for Spectral Com-
puted Tomography with Detector Response
Function

245

13:40 – 15:00 Shouping Zhu, Yu Fan, Lei Xiong, Zhipeng
Guo, Gaoqi Lv, Xu Cao, and Jimin Liang

Fast Scanning Imaging of Micro-CT for
Small Animals

249

13:40 – 15:00 Sarah E. Divel, W. Paul Segars, Soren Chris-
tensen, Max Wintermark, Maarten G. Lans-
berg, and Norbert J. Pelc

Use of Synthetic CT to Reduce Simulation
Time of Complex Phantoms and Systems

253

13:40 – 15:00 Natalia Dadivanyan, Detlev J. Götz, and
Detlef Beckers

Applying Soft Radiation in Computed To-
mography Experiments on a Multipurpose
Diffractometer

257

13:40 – 15:00 André Aichert, Katharina Breininger,
Thomas Köhler, and Andreas Maier

Efficient Epipolar Consistency 259

13:40 – 15:00 Qiulin Tang, Satoru Nakanishi, Zhou Yu, and
Wenli Wang

Fully Iterative Reconstruction for Cardiac
CT

263

13:40 – 15:00 Gengsheng L. Zeng and Wenli Wang Noise Weighting with an Exponent for Trans-
mission CT

267

13:40 – 15:00 Hussein Banjak, Marius Costin, Caroline Vi-
enne, Ronan Guillamet, and Valérie Kaftand-
jian

Reconstruction Algorithms for Reverse Heli-
cal Super-Short-Scan Mode

271

13:40 – 15:00 Richard Sampson, Madison G. McGaffin,
Thomas F. Wenisch, and Jeffrey A. Fessler

Investigating Multi-threaded SIMD for Heli-
cal CT Reconstruction on a CPU

275

13:40 – 15:00 Jakob S. Jørgensen, Sophia B. Coban,
William R. B. Lionheart, and Philip J. With-
ers

Effect of Sparsity and Exposure on Total Vari-
ation Regularized X-ray Tomography from
few Projections

279
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13:40 – 15:00 Mats Persson and Fredrik Grönberg Spatial-Frequency-Domain Study of Anticor-
related Noise Reduction in Spectral CT

283

13:40 – 15:00 Sean D. Rose, Emil Y. Sidky, Adrian A.
Sanchez, and Xiaochuan Pan

Investigating Pixel Size and Resolution in
Optimization-Based CT Image Reconstruc-
tion

287

13:40 – 15:00 Srinivasan Vedantham, Souleymane Konate,
Linxi Shi, Suman Shrestha, Gopal R. Vija-
yaraghavan, and Andrew Karellas

Dedicated Cone-Beam Breast CT with Later-
ally shifted CMOS Detector

291

13:40 – 15:00 You Zhang, Jianhua Ma, and Jing Wang A New CT Reconstruction Technique Using
Adaptive Deformation Recovery and Intensity
Correction (ADRIC)

295

13:40 – 15:00 Minghao Guo and Hao Gao Shift-Invariant Projection and Backprojection
for Helical CT based on A Self-Consistent Co-
ordinate

299

13:40 – 15:00 Yaoshen Yuan, Brian Tracey, and Eric Miller Performance Bounds for Sinogram Decompo-
sition and Potential Benefits of Multi-energy
Data

303

13:40 – 15:00 Hongyan Liu Noise Model-Based CT Image Denoising by
3D Transform-Domain Collaborative Filter-
ing

307

13:40 – 15:00 Hewei Gao, Adam Cohen, and Priti Madhav Material Decomposition for Wide-Cone
Dual-Energy CT Using Fast kV Switching

311

13:40 – 15:00 Adrian A. Sanchez, Emil Y. Sidky, Sean D.
Rose, and Xiaochuan Pan

Optimizing Iterative Image Reconstruction
in Digital Breast Tomosynthesis via the
Hotelling Observer

315

13:40 – 15:00 William M. Thompson Lattice Sampling Data Acquisition Scheme as
an Alternative to Helical Scanning for X-ray
Micro-CT

319

13:40 – 15:00 Álvaro Martínez, Alba García-Santos, Inés
García, Estefanía Serrano, Javier García,
Claudia de Molina, Manuel Desco, and
Mónica Abella

A Software Tool for the Design and Simula-
tion of X-ray Acquisition Protocols

323

13:40 – 15:00 Paurakh L. Rajbhandary and Norbert J. Pelc Comparison Weighted Energy Bin vs.
Weighted Basis Material CT Images

327

13:40 – 15:00 Yash Sharma, Matthias Wieczorek, Christoph
Jud, Florian Schaff, Franz Pfeiffer, and Tobias
Lasser

X-ray tensor tomography: How much to mea-
sure?

331

13:40 – 15:00 Carsten Leinweber, Joscha Maier, Stefan
Sawall, Henning Stoschus, Frederic Bal-
lach, Tobias Müller, Michael Hammer, Ralf
Christoph, and Marc Kachelrieß

Attenuation-Based Reconstruction of Low
and High Frequency Components of Detected
X-Ray Spectra

335

13:40 – 15:00 Okkyun Lee, Steffen Kappler, and Katsuyuki
Taguchi

Spectral Response Effect-Compensated Esti-
mator in Photon Counting CT using Low-
Order Gram Polynomials

339

13:40 – 15:00 Huiqiao Xie, Tianye Niu, Huipeng Deng and
Xiangyang Tang

Texture Enhanced Optimization-Based Image
Reconstruction (TxE-OBIR) Algorithm

343
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13:40 – 15:00 Tzu-Cheng Lee, Ruoqiao Zhang, Adam M.
Alessio, Lin Fu, Bruno De Man, and Paul E.
Kinahan

Statistical Distributions of Ultra-Low Dose
CT Sinograms in the Data Processing Stream

347

13:40 – 15:00 Andrew M. Davis, Xiaochuan Pan, and
Charles A. Pelizzari

Image Quality Comparison of a CBCT
Virtual-Isocenter Imaging Trajectory to a
Clinical Circular Scan

351

13:40 – 15:00 Saeed Seyyedi, Matthias Wieczorek,
Christoph Jud, Franz Pfeiffer, and Tobias
Lasser

A Regularized X-ray Tensor Tomography Re-
construction Technique

355

Coffee Break

Oral Session : Phase-Contrast

Time : 15:20 – 17:00

Chairs : Bruno De Man and Web Stayman

Time Author Title Page

15:20 – 15:40 F. Pfeiffer, A. Velroyen, A. Yaroshenko, A.
Tapfer, S.D. Auweter, K. Hellbach, F.G.
Meinel, T.Koehler, M. Bech, P.B. Noël, A.Ö.
Yıldırım, O. Eickelberg

Pre-clinical Dark-Field CT Imaging of
Small-Animal Lung Disease Models

359

15:40 – 16:00 Charlotte Klara Hagen, Anna Zamir, Paul
Claude Diemoz, Marco Endrizzi, Fabio
Alessio Vittoria, Panagiotis Magshoudlou,
Paolo Coan, Alberto Bravin, Paolo De Coppi,
and Alessandro Olivo

Opportunities for Phase-Based Computed
Tomography in the Laboratory

363

16:00 – 16:20 Maximilian von Teuffenbach, Bernhard
Brendel, Andreas Fehringer, Peter B. Noël,
Franz Pfeiffer, and Thomas Köhler

Iterative Reconstruction of Grating-based
PCCT Without Phase-Stepping

367

16:20 – 16:40 Christian Gusenbauer, Stefan Hunger, Sascha
Senck and Johann Kastner

Characterization of Tooth Samples with a
Talbot-Lau Grating Interferometer μXCT
Desktop Device

371

16:40 – 17:00 Thomas Koenig, Marcus Zuber, Barbara
Trimborn, Tomas Farago, Pascal Meyer,
Danays Kunka, Frederic Albrecht, Sascha
Kreuer, Thomas Volk, Michael Fiederle, and
Tilo Baumbach

The Grating-Based Dark-Field Image:
Degradation of Quantitive Contrast by
System-Specific Sampling Artifacts

375
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Thursday, July 21

Oral Session : Image Quality

Time : 08:00 – 09:40

Chairs : Michel Defrise and Yuxiang Xing

Time Author Title Page

08:00 – 08:20 Frédéric Noo Basic short course: Image Quality Assess-
ment

08:20 – 08:40 Frédéric Noo Basic short course: Image Quality Assess-
ment

08:40 – 09:00 Harald Schöndube and Frédéric Noo Statistically-Efficient Estimation of Hotelling
Observer Performance with Unknown Means

379

09:00 – 09:20 Bastian Bier, Kerstin Müller, Martin Berger,
Jang-Hwan Choi, Ludwig Ritschl, Marc
Kachelrieß, Rebecca Fahrig, and Andreas
Maier

Scatter Correction for C-Arm CT Using Pri-
mary Modulation

383

09:20 – 09:40 Scott S. Hsieh and Norbert J. Pelc Pixel Size Tradeoffs for CdTe Spectral Pho-
ton Counting Detectors

387

Coffee Break

Oral Session : Iterative Reconstruction

Time : 10:00 – 11:40

Chairs : Alexander Katsevich and Johan Nuyts

10:00 – 10:20 Pengwei Wu, Tingyu Mao, Shutao Gong, Jing
Wang, Ke Sheng, Yaoqin Xie, and Tianye Niu

Shading Correction Assisted Iterative
Conebeam CT Reconstruction

391

10:20 – 10:40 Sathish Ramani, Xin Wang, Lin Fu, and
Michael Lexa

Denoising-Based Accelerated Statistical Iter-
ative Reconstruction for X-ray CT

395

10:40 – 11:00 Qiaoqiao Ding, Yong Long, Xiaoqun Zhang,
and Jeffrey A. Fessler

Modeling Mixed Poisson-Gaussian Noise in
Statistical Image Reconstruction for X-Ray
CT

399

11:00 – 11:20 Meng Wu, Andreas Maier, Yan Xia, and Re-
becca Fahrig

Auto-tuned Path-based Iterative Reconstruc-
tion (aPBIR) for X-ray Computed Tomogra-
phy

403

11:20 – 11:40 Grace J. Gang, Jeffrey H. Siewerdsen, and J.
Webster Stayman

Task-Based Design of Fluence Field Modula-
tion in CT for Model-Based Iterative Recon-
struction

407

Lunch Break
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Poster Session : Poster Session 3

Time : 13:20 – 15:00

Chairs : Timo Berkus and Jing Wang

Time Author Title Page

13:20 – 13:40 Poster fast forward (all authors)

13:40 – 15:00 Miran Park, Ho Kyung Kim, and Seungryong
Cho

Computed Laminography System with Vari-
ous Scanning Configurations for Nondestruc-
tive Testing

411

13:40 – 15:00 Dan Xia, Pascal Paysan, Zheng Zhang, Di-
eter Seghers, Marcus Brehm, Peter Munro,
Andrew M. Davis, Mathias Lehmann, Emil
Y. Sidky, Charles Pelizzari, and Xiaochuan
Pan

Optimization-based Reconstruction from
Megavoltage Cone-beam CT Data in Image
Guided Radiation Therapy

415

13:40 – 15:00 Malte Vassholz, Benno Koberstein-Schwarz,
Aike Ruhlandt, Martin Krenkel, and Tim
Salditt

X-Ray Tomography Based on 3D Radon
Transform Compatible with Anisotropic
Sources

419

13:40 – 15:00 Estefania Serrano, Javier Garcia Blas, Clau-
dia Molina, Ines Garcia, Jesus Carretero,
Manuel Desco, and Monica Abella

Design and Evaluation of a Parallel and
Multi-Platform Cone-Beam X-Ray Simula-
tion Framework

423

13:40 – 15:00 Aymeric Reshef, Cyril Riddell, Yves Trous-
set, Saïd Ladjal, and Isabelle Bloch

Dual-Rotation C-arm Cone-Beam Computed
Tomography to Increase Low Contrast Reso-
lution

427

13:40 – 15:00 Jérôme Lesaint, Rolf Clackdoyle, Simon Rit,
and Laurent Desbat

Two Cone-Beam Consistency Conditions for
a Circular Trajectory

431

13:40 – 15:00 Charlotte Delmas, Cyril Riddell, Yves Trous-
set, Erwan Kerrien, Marie-Odile Berger,
René Anxionnat, and Serge Bracard

Intra-Operative 3D Micro-Coil Imaging Us-
ing Subsampled Tomographic Acquisition
Patterns on a Biplane C-arm System

435

13:40 – 15:00 Seungeon Kim, Yongjin Chang, and Jong
Beom Ra

Reduction of Cone Angle Effect in Cardiac
Motion Correction Based on Partial Angle
Reconstructed Images in CT

439

13:40 – 15:00 T. Funk, D. Badali, S. Hsieh, and T.G.
Schmidt

PRISM: A New Software Tool for Simulating
Realistic CT Data with CAD Model Based
Objects

443

13:40 – 15:00 Lucretiu M. Popescu A Reformulation of the X-Ray Transmission
Image Reconstruction Problem for more Ac-
curate Modeling of the Polychromatic and
Spatial Resolution Effects

447

13:40 – 15:00 Meng Wu, Jared Dunnmon, Yan Xia, Waldo
Hinshaw, Norbert Pelc, Andreas Maier, Re-
becca Fahrig, and Matthias Ihme

X-ray Computed Tomography of Flame
Structure in Porous Media Burners

451

13:40 – 15:00 Ilmar Hein, Zhou Yu, and Satoru Nakanishi Three-Dimensional Two Material Based
Beam Hardening Correction for Iterative Re-
construction

455

13



The 4th International Conference on Image Formation in X-Ray Computed Tomography

13:40 – 15:00 Wei Xu and Dake Feng Studying Performance of A Penalized Maxi-
mum Likelihood Method for PET Reconstruc-
tion on Nvidia GPU and Intel Xeon Phi Co-
processor

459

13:40 – 15:00 Steven Tilley II, Wojciech Zbijewski, Jeffrey
H. Siewerdsen, and J. Webster Stayman

Modeling Shift-Variant X-Ray Focal Spot Blur
for High-Resolution Flat-Panel Cone-Beam
CT

463

13:40 – 15:00 Picha Shunhavanich and Norbert J. Pelc Lossy Compression of Projection Data from
Photon Counting Detectors

467

13:40 – 15:00 Zhiqian Chang, Ken Sauer, Debashish Pal,
Somesh Srivastava, Jean-Baptiste Thibault,
and Charles Bouman

Simultaneous Gain Parameter Estimation in
Model-Based Cone-Beam CT Image Recon-
struction

471

13:40 – 15:00 Cristóbal Martinez, Claudia de Molina,
Manuel Desco, and Mónica Abella

Simple Method for Beam-Hardening Correc-
tion Based on a 2D Linearization Function

475

13:40 – 15:00 Kerstin Müller, Moiz Ahmad, Martin Spahn,
Jang-Hwan Choi, Silke Reitz, Niko Köster,
Yanye Lu, Rebecca Fahrig, and Andreas
Maier

Towards Material Decomposition on Large
Field-of-View Flat Panel Photon-Counting
Detectors — First in-vivo Results

479

13:40 – 15:00 Haewon Nam, Minghao Guo, and Hao Gao Tensor Framelet Based Iterative Image Re-
construction Algorithm for Low-Dose Multi-
slice Helical CT

483

13:40 – 15:00 Zheng Zhang, Dan Xia, Xiao Han, Emil Y.
Sidky, Charles Pelizzari, and Xiaochuan Pan

Impact of Image Constraints and Object
Structures on Optimization-Based Recon-
struction

487

13:40 – 15:00 Claudia de Molina, Juan F. P. J. Abascal,
Manuel Desco, and Mónica Abella

Study of the Possibilities of Surface-
Constrained Compressed Sensing (SCCS)
Method for Limited-View Tomography in
CBCT systems

491

13:40 – 15:00 Andrew Kingston, Thomas Heyang Li, Glenn
Myers, Shane Latham, Adrian Sheppard, and
Trond Varslot

Acquisition and Reconstruction of Optimal
Trajectories for Cone-Beam X-ray CT

495

13:40 – 15:00 William C. Barber, Huanjun Ding, Jan C.
Wessel, Nail Malakhov, Gregor Wawrzyniak,
Jan S. Iwanczyk, Eirik Næss-Ulseth, and
Sabee Molloi

Spectral Breast CT by Single Photon Count-
ing

499

13:40 – 15:00 Yo Seob Han, Minji Lee, John Paul Ward,
Michael Unser, Seungryoung Cho, and Jong
Chul Ye

Multi-scale Circular Conebeam Interior To-
mography using Bedrosian Identity: Verifica-
tion with Real Data

503

13:40 – 15:00 Sungsoo Ha, Heyi Li, and Klaus Mueller Efficient Area-Based Ray Integration Using
Summed Area Tables and Regression Models

507

13:40 – 15:00 Robert Cierniak Analytical Statistical Reconstruction Algo-
rithm with the Direct Use of Projections Per-
formed in Fan-beam Scanners

511

13:40 – 15:00 Sebastian Allner, Andreas Fehringer,
Jonathan Schock, Franz Pfeiffer, and Peter B.
Noël

Dual-Band Projection Alignment Applied in
X-ray Microscopy

515

14



The 4th International Conference on Image Formation in X-Ray Computed Tomography

13:40 – 15:00 Seokhwan Jang, Seungeon Kim, Mina Kim,
and Jong Beom Ra

Motion Compensated Reconstruction for 3D
Head Motion

519

13:40 – 15:00 Veronique Rebuffel, Emil Popa, Clarisse
Fournier, and Loick Verger

A new Linearization Method for X-ray Spec-
tral Data

523

13:40 – 15:00 Xue Rui, Yannan Jin, and Peter M. Edic Material-Based Scatter Correction for Com-
puted Tomography

527

13:40 – 15:00 Harry E. Martz, Jr., and John Beaty Explosive Detection in Aviation Security Us-
ing CT: Advanced Reconstruction Algorithms
and Publically Available Datasets

531

13:40 – 15:00 Yan Liu, Zhou Yu Whitening Transform Based Noise Reduction
for Spectral CT

533

13:40 – 15:00 Madison G. McGaffin and Jeffrey A. Fessler Accelerated Parallel and Distributed Iterative
Coordinate Descent (ICD) for X-ray CT

537

13:40 – 15:00 Jens Maisenbacher, Friedrich Prade, Jens
Gibmeier, Franz Pfeiffer, and Jürgen Mohr

X-Ray Dark Field Investigation of Friction
Contact Materials in Lamella Drive Cou-
plings

541

Coffee Break

Oral Session : CBCT

Time : 15:20 – 17:00

Chairs : Brian Nett and Frédéric Noo

Time Author Title Page

15:20 – 15:40 Oliver Taubmann, Günter Lauritsch, Gregor
Krings, and Andreas Maier

Convex Temporal Regularizers in Cardiac C-
arm CT

545

15:40 – 16:00 A. Sisniega, J. W. Stayman, Q. Cao, J. York-
ston, J. H. Siewerdsen, and W. Zbijewski

Motion Estimation Using a Penalized Image
Sharpness Criterion for Resolution Recovery
in Extremities Cone-Beam CT

549

16:00 – 16:20 Xi Chen, Luo Ouyang, Hao Yan, Xun Jia, Bin
Li, Qingwen Lyu, You Zhang, and Jing Wang

Optimization of the Geometry and Speed of a
Moving Blocker System for Cone-beam Com-
puted Tomography Scatter Correction

553

16:20 – 16:40 H. Dang, J. Webster Stayman, J. Xu, Alejan-
dro Sisniega, Wojciech Zbijewski, Xin Wang,
D. H. Foos, Nafi Aygün, Vassilis E. Koliat-
sos, and Jeffrey H. Siewerdsen

Task-Based Regularization Design for Detec-
tion of Intracranial Hemorrhage in Cone-
Beam CT

557

16:40 – 17:00 You Zhang, Joubin Nasehi Tehrani, and Jing
Wang

A Biomechanical Modeling Guided CBCT
Reconstruction Technique (Bio-recon)

561

15



The 4th International Conference on Image Formation in X-Ray Computed Tomography

Friday, July 22

Oral Session: Artifact Reduction

Time : 08:00 – 09:40

Chairs : Jakob Jørgensen and Nicole Maaß

Time Author Title Page

08:00 – 08:20 Marc Kachelrieß Basic short course: Artifact Reduction

08:20 – 08:40 Marc Kachelrieß Basic short course: Artifact Reduction

08:40 – 09:00 Brian E. Nett, Jang Hwan Cho, and Jed D.
Pack

Motion Evoked Artifact Deconvolution 565

09:00 – 09:20 Dan Xia, David A. Langan, Stephen B.
Solomon, Hao Lai, Zheng Zhang, Buxin
Chen, Emil Y. Sidky, and Xiaochuan Pan

Truncation Artifact Reduction by Exploiting
Data Derivative and Image-TV Constraints
in C-arm CBCT

569

09:20 – 09:40 Richard Bismark, Robert Frysch, and Georg
Rose

Reduction of Beam Hardening Artifacts
on Real C-Arm CT Data using Statistical
Polyenergetic Image Reconstruction

573

Coffee Break

Oral Session : General

Time : 10:00 – 11:40

Chairs : Karl Stierstorfer and Srinivasan Vedantham

10:00 – 10:20 Ivan G. Kazantsev, Ulrik L. Olsen, Henning F.
Poulsen, and Per C. Hansen

A Spectral Geometrical Model for Compton
Scatter Tomography Based on the SSS Ap-
proximation

577

10:20 – 10:40 Vicki T. Taasti, Jørgen B. B. Petersen, Jesper
Thygesen, Ludvig P. Muren, Cai Grau, and
David C. Hansen

A Robust Method for Calculation of Proton
Stopping Power Ratio using Dual Energy CT

581

10:40 – 11:00 Gloria Vilches-Freixas, Jean Michel Létang,
Nicolas Ducros, and Simon Rit

Dual-Energy CT Spectra Optimization for
Proton Treatment Planning

585

11:00 – 11:20 Jan Hoskovec, Fabien Momey, Rolf Clack-
doyle, Laurent Desbat, and Simon Rit

Fan-Beam Reconstruction under Motion and
Data Truncation: Comparing Analytic and It-
erative Approaches

589

11:20 – 11:40 X +Y Preview: Fully 3D 2017, CT-Meeting 2018

16



 
 

 

� 
Abstract— Although current CT systems can scan the head in 

a very short time, patient motion sometimes still induces 
artifacts.  If motion occurs, one has to repeat the scan; to avoid 
motion, sedation or anesthesia is sometimes applied. We propose 
a data-driven method to iteratively correct this motion together 
with the reconstruction. In every iteration, we estimate the 
motion view-by-view, which then can be used to update the 
system matrix used during reconstruction. A multi-resolution 
scheme was used to speed up the convergence of the joint 
estimation of the motion and reconstruction. The method was 
evaluated on simulations and on real patient scans. The quality 
of the reconstructed images was improved substantially after the 
correction. The proposed method eliminated motion-induced 
artifacts in head CT scans.  

Index Terms—Computer Tomography (CT), iterative reconstruction, 
rigid motion, data-driven, motion correction.  

I. INTRODUCTION 
A slight movement of the patient will lead to a reduction of 
spatial resolution in CT, in severe cases resulting in corrupted 
images unsuitable for diagnosis or further processing. To 
reduce the likelihood of motion artifacts, CT manufacturers 
have made scanners faster by increasing the number of 
detector rows and the rate of rotation of the x-ray source and 
detector. Other ways to reduce the patient motion include 
general anesthesia, sedation and the use of restraining devices 
for head and neck imaging [1]. 

Despite of the effectiveness of minimizing the motion 
beforehand, assessment of the subject motion is of 
considerable general interest in tomography. A variety of 
methods for the estimation of motion in CT exist, including 
direct motion estimation using a camera system with visual 
markers [2] or without markers [3]. Indirect estimation 
methods have been proposed where motion is estimated 
through the minimization of errors in consistency conditions 
[4], or iteratively updating the motion together with the 
reconstruction process [5]. Once motion parameters have 
been estimated, the motion can be corrected for either in the 
measured raw data or during the reconstruction process. 

 While most of the retrospective methods in CT imaging 
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addressed the problem for circular cone beam CT (CBCT),  
relatively few studies has been done for helical CT. Motion 
correction is arguably simpler in CBCT since the entire object 
will normally be in the field of view at all times. In contrast, 
in helical CT the object is always truncated in axial direction, 
which provides limited information to restore the consistency 
in projections. 
    In this study, we propose an approach to reduce or 
eliminate the motion artifacts in helical-CT reconstruction. 
The approach is based on our previous work [6]. The 
correction only needs the measured raw data, hence it is called 
data-driven approach. We performed simulations and a 
patient study to validate the proposed approach, comparing 
reconstructions with and without motion correction.  

II. METHOD 

A. Coordinate system 
A clinical helical CT system usually has a curved detector. 
We define a coordinate system 3( , , )c x y z� � 3  in Fig. 1, 
which is fixed with respect to the scanner, its z-axis coincides 
with the rotation axis of the scanner. Detector coordinate 
system 3( , , )c u v z� �� � 3 is fixed with respect to the 
rotating source-detector system: its origin is in the center of 
the detector, z�  is parallel to z , u  is tangent and v  is 
orthogonal to the detector. For one projection view, we define 
the rigid motion transform in the coordinate system c  : 

                     T( , , , , , )world x y z x y zS t t t� � ��              (1) 

where x� , 
y� , z�  are the 3 rotations, xt , yt , zt  are the 3 

translations in the world coordinate system. The transform 
can be mapped in the coordinate system c�  : 

                     T
det ( , , , , , )ector u v z u v zS t t t� � � ��              (2) 

where u� , v� , z�  are the rotations ut , vt , zt � , are the 
translations in the detector coordinate system. A small motion 

vt in the direction perpendicular to the detector results in a 
very small magnification of the projection, which we assume  
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Fig. 1 The scanner and detector coordinate systems on which motion 
correction is based.                                                                   
to be negligible [7]. In every projection view, then, we set vt  
as zero and only 5 parameters need to be estimated in our 
correction scheme u� , v� , z� , ut and zt � : 

               T
det ( , , , , )ector u v z u zS t t� � � ��                          (3) 

    The estimated motion in the detector coordinate system can 
later be transformed to the motion in the world coordinate 
system, as the reconstruction requires a transform in the world 
coordinate system:        

                          det det

det

ector ector

world ector

S T
T R T

�
� �

                                  (4) 

where T is the 4×4 homogenous matrix representation of the 
transform, R is the 4×4 transformation matrix that maps the 
detector coordinate system to world coordinate system. 

B. OSEM reconstruction 
In the presence of object motion, the helical CT-orbit is 
distorted into an effective orbit with arbitrary shape. Since 
this is problematic for analytical reconstruction, an iterative 
reconstruction algorithm is needed. We used Ordered Subset 
Expectation Maximization (OSEM) as the reconstruction 
algorithm [8]. We used the OSEM-algorithm for convenience, 
but if the use of a better noise model would be required, it can 
be replaced with a dedicated iterative algorithm for 
transmission tomography. 

C. General motion correction scheme 
The following describes the basic idea of the data-driven 
motion correction: motion-corrected reconstruction and 
motion were alternately updated to increase the likelihood, the 
iterations were stopped when the motion estimate seemed to 
have converged (Fig. 2). The implementation involves: (1) a 
2D-3D image registration to update the motion estimate for 
each view at the current iteration; (2) an image update with 
iterative reconstruction, incorporating the updated motion in 
the system matrix; (3) alternate updates of both image and 
motion with a multi-resolution scheme; (4) final 
reconstruction with a system matrix based on the last motion 
estimate. The following 4 paragraphs discuss the details about 
each part of the framework. 

  
Fig. 2. General motion estimation scheme. μ is the update of the 
attenuation image, s is the update of the rigid transform, n is the 
iteration number. A multi-resolution scheme was applied to the 
motion estimation, increasing the sampling as the iteration number. 

     
1) Motion update  

From the measured raw data an initial image is reconstructed. 
This image can be reconstruction produced with the system 
software (postprocessed to convert Hounsfield units back to 
attenuation integrals), or a first iterative reconstruction (Eq. 5) 
from the measured data. 
    For one projection line i , we integrate along the projection 
line to define the forward projection of the current estimate 
	 : 

                                  i ij j
j

f a 	� 
                             (5) 

In helical CT, we organize the line integrals in views, where 
view θ contains all line integrals associated with a single 
source position: 

                                     � �if f �                                  (6) 

    For each view, the 5 motion parameters are estimated one 
after the other. Suppose the general motion correction scheme 
(Fig. 2) is at the iteration n, hence the current motion update 
is ns .  Assuming that the motion represented by the (rotation 
or translation) parameter ŝ is small, the derivative of 
projection f  with respect to ŝ can be approximated as a 
finite difference of the intensities: 

                                ˆ( ) ( )
ˆ

nf f s f s
s s
  � �

�
�

                       (7) 

where ( )nf s  is the calculated re-projection (using the current 
estimates for the image and motion) and ˆ( )f s

is the measured 

projection for view  . To estimate ŝ  in Eq. 7, we need to 
know the derivative on the left hand side, hence we introduce 
another equation which is very similar to Eq. 7: 

                             
( ) ( )nf f s f s

s s
  � � �

�
� �

                    (8) 

where s�  is known small increment of the parameter to be 
estimated. When s�  represents a translation, ( )f s �  can be 
approximated as simple translation of the current re-
projection ( )nf s ; for in-plane rotation, again ( )f s � can be 
approximated as a simple rotation of the re-projection f

, as 
shown in Fig.3. For the two out-of-plane rotations, we 
calculate ( )f s �  with a forward projection using a system 
matrix adjusted with s� . 
    Eq. 7 and 8 assume that a small increment of one degree-
of-freedom rigid motion only results in a linear change of the 
intensities in the projection. All above lead to a least squares 
minimization problem for current view at current iteration : 

      

2

ˆ

ˆ( ) ( )
arg min

ˆ ( ) ( )incre

n n

n

n ns

s f s s f s
s

s f s s f s

 

 

� �� � � � �� ��
� �� � � �� �

        (9) 

To find n
incres , Eq. 9 was solved analytically. Defining 

                           
ˆ( ) ( )

( ) ( )

n n

n n

P f s s f s
Q f s s f s

  

  

� � �

� � � �
                   (10) 

and setting the derivative of the Eq. 9 with respect to  
to zero, one obtains:  

ŝ
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                    (11) 

where N is total number of voxels in one projection view  .  
    This procedure was applied to estimate all five parameters 
in Eq. 3. The sequence of the estimation is translation first, 
then rotation. The newly estimated parameter values were 
used immediately when estimating the value of next 
parameter. This sequential estimation of the five motion 
parameters for all projection views completes the update of 
the rigid motion in the current iteration. Then the rigid motion 
parameters for each projection view were transformed into a 
homogenous matrix in the detector coordinate system (Fig.1). 
Applying the Eq. 4, the matrix was mapped into world 
coordinate system. The transformation matrix obtained in the 
current iteration (n) was then used to update the previous 
motion estimate for every view, which will be used in the next 
iteration (n+1): 

                                 
1

n n
incre
n n n

S T
T T T



  
�

� �

� ��
                           (12) 

 

 
Fig. 3 Cartoon illustrating that the effect of object translation or 
rotation parallel to the detector can be well approximated as 
translation and rotation of the projection. For simplicity, the 
curvature of the detector was ignored. In the figure at left, t is the 
magnification factor from the object to detector.  

2) Image update 
After obtaining the motion, the image representing the 
attenuation coefficients can be updated with iterative 
reconstruction. We used OSEM as the reconstruction 
algorithm.  
   Instead of moving the reconstruction image, rigid motion 
correction was done by considering a coordinate system fixed 
to the object and incorporating the motion (now associated to 
the source-detector pair) into the system matrix. This 
corresponds to an arbitrary 3-dimensional (3D) motion of the 
virtual gantry around the object being scanned [2]. Motion 
correction was enabled by introducing a modified version of 
standard OSEM: 

        

1 1

1 1
n+1 1

( )

( )
( ) ( )

n n

n
jn n i

j i ij n n
ii ij i ij j

i k

T invert T
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� �

� �
�

�

� 

 

    (13) 

where i  is the projection line index, j  is the voxel index, 

ija  is the effective intersection length of line i with voxel j
, m is the log converted sinogram, bS  is one subset of 
projections of b subsets. iT  is a 4 � 4 rigid transformation 
matrix applied to the projection line i . If iT is the identity 

matrix for all projection lines, then Eq. 13 is the same as 
original OSEM. In helical CT, iT is constant for all projection 
lines in one projection view. Because of the high rotation 
speed and the large number of views, the motion within a 
single view is negligible. 
    Distance-driven projectors were used for interpolation 
during the (back) projection [9]. The new estimation of the 
attenuation from step 2 can then be used for next motion 
update step (step 1). 

3) Multi-resolution alternate updates 
By repeating steps 1 and 2 we can estimate the reconstruction 
(Eq. 13) and motion (Eq.14) alternately. Because the 
correction of the image and the correction of the transform 
parameters are jointly estimated from the measured data, the 
problem of error propagation is mitigated.  

An approach to reduce the computation time is to apply a 
multi-resolution techniques. We utilize this technique by 
running the algorithm with a coarse to fine representation of 
the raw data and the image. As in Fig. 2, the image update is 
reconstructed at coarse resolution at early iterations, while the 
resolution increases as the iteration numbers increase. 
Similarly, the projections in Eq. 10 are computed with 
gradually increased resolution. An possible additional 
advantage of the multi-resolution scheme is that it may help 
to avoid convergence to an undesired local maximum. Since 
these computations are the most expensive ones in the multi-
resolution scheme, we stopped the scheme at the one but 
finest resolution. 

As proposed in [2], the motion estimates were smoothed 
(by filtering each component independently) to remove 
outliers. We chose the Savitzky-Golay filter [10] to do the 
smoothing right after every motion update. We found that 
selection of the 15-point and 201-point kernel can achieve 
satisfactory jitter suppression, in simulations and patient 
scans respectively. 

It is not obvious to define good stopping criteria for the 
motion estimation, especially considering the ground truth 
image is missing for the clinical data. In the motion estimation 
scheme, a maximum number of iterations was chosen for each 
resolution level. In addition, the summation of projection 
errors between the re-projected and measured data over all the 
views was computed, and at each resolution level, the 
iterations were stopped earlier when the relative change of 
this error measure did not exceed 5% of the summed error 
between last re-projected and measured data.  

 
4) Final reconstruction 

When the motion estimate has converged, a final 
reconstruction of diagnostic quality must be produced. In 
simulation studies we start the final reconstruction with the 
last image update from the alternate updates. To achieve a 
similar speedup in the clinical study, we start the final 
reconstruction from an approximate helical Feldkamp-Davis-
Kress reconstruction (motion correction was enabled in the 
backprojection step), provided the image is not affected much 
by the motion artifacts. 
    To further accelerate the final reconstructions, the forward 
and backward projection operations were implemented in 
OpenCL and run on a GPU (NIVIDIA Tesla C2075). 
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III. EXPERIMENTS AND RESULTS 

A. Simulation 
In the simulation, a segment of measured motion from a 
volunteer was applied to a voxelized phantom to generate a 
simulated scan. Reconstructions from this scan were analyzed 
quantitatively to assess the performance of the motion 
correction algorithm. The phantom is a 3D voxelized phantom 
from the Visible Human Project [11]. The unit was converted 
from Hounsfield (HU) to attenuation coefficient (cm-1) at 
peak kilovoltage of 70 kVp. The image size was 
256×256×240, pixel size was 1×1×1 mm3.  

A helical scan was simulated as being scanned with a 
Siemens Definition AS CT scanner (Siemens Medical 
Solutions USA, Inc., Malvern, PA), with reduced angular 
sampling to reduce the computation times. The crucial 
parameters were: angles per rotation 250, pitch 1.0, 
collimation 32×1.2 mm.  The motion was applied to the 
phantom for the simulated helical scan. To avoid the cone-
beam artifacts, all simulated helical scans covered a bit more 
than the entire object. 
    OSEM was used for all reconstructions, with motion 
correction enabled (Eq. 13). During the joint estimation of the 
attenuation image and the motion, the attenuation image was 
updated using 1 OSEM iteration with 40 subsets. 
Reconstruction pixel size was 1×1×1 mm3 at the finest 
resolution. Alternate updates of both image and motion were 
performed within a multi-resolution scheme to obtain the 
optimal motion. For the final reconstruction, 4 iterations and 
60 subsets were applied. Fig. 4 and Fig. 5 show the estimated 
reconstruction and motion.  

 
Fig. 4. Selected transaxial and coronal slices from reconstructions 
without and with motion correction, and also from the true image. 

 
Fig. 5. The estimated motion values as a function of the view angle 
for the two most prominent motion parameters. Left: x� , right: xt . 

B. Real scan 
The method has been applied to clinical studies in which 
motion artifacts had been observed. The outcome was 
evaluated by assessing the image visually. 

The anonymized raw data of one patient who had 
previously undergone a head CT scan in the Department of 

Radiology at Westmead Hospital, Sydney, Australia, were 
collected with the approval of the Human Research Ethics 
Committee of the Western Sydney Local Health District. The 
scan was performed on a Siemens Force scanner (pitch 0.55, 
tube voltage 120 kVp, tube current 150 mAs, angles per 
rotation 1050, collimation 64×0.6 mm). Flying focus was 
turned on in both z and phi directions. 

Because of the huge size of the raw data, we read and 
average every 8 projection of them for the motion estimation. 
This accelerated both the motion updates and the image 
updates. We used OSEM as the reconstruction algorithm. The 
motion correction was enabled for all reconstructions. Unlike 
in the simulation, 2 OSEM iterations with 40 subsets were 
done for the image updates. The final reconstruction pixel size 
was 0.40039×0.40039×0.75 mm3, image size is 
512×512×436. To accelerate the motion estimation, the multi-
resolution scheme was applied as in II. C. Stopping criteria 
were also described in II. C. For the final reconstruction with 
motion correction, the starting image was set as the image 
from helical FDK reconstruction. Six OSEM iterations with 
60 subsets were applied in combination with Nesterov’s 
acceleration [12] on the GPU. Fig. 6 shows the original 
reconstructed image and motion-corrected reconstructed 
image. 

 
Fig. 6. Selected transaxial plane, without (left) and with correction 
(right) for motion artifacts in a clinical scan.  

IV. CONCLUSION 
In this paper, we proposed a motion estimation and correction 
approach for helical X-ray CT of the head, only based on the 
measured raw data. Since no additional measurements are 
needed, it can be applied retrospectively to standard helical 
CT data. Further testing of the method with clinical data is 
ongoing. 
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Digital Breast Tomosynthesis Reconstruction with
Detector Blur and Correlated Noise

Jiabei Zheng∗, Jeffrey A. Fessler∗, Heang-Ping Chan†

Abstract—This paper describes a new reconstruction method
for digital breast tomosynthesis (DBT). The new method incor-
porates detector blur into the forward model. The detector blur
introduces correlation in the measurement noise. We formulate
it as a regularized quadratic optimization problem with data-fit
term that accounts for the non-diagonal noise covariance matrix.
By making a few assumptions based on the breast imaging
process, we can model the detector blur in the optimization
problem and solve it with a separable quadratic surrogate (SQS)
algorithm. This method was applied to DBT reconstruction of
breast phantoms and human subjects. The contrast-to-noise ratio
and sharpness of microcalcifications and the visual quality of
mass margins were analyzed and compared to those by the simul-
taneous algebraic reconstruction technique (SART). The results
demonstrated the potential of the new method in improving the
image quality of the reconstructed DBT images. This work is our
preliminary step towards a model-based iterative reconstruction
(MBIR) for DBT.

Index Terms—Digital breast tomosynthesis, detector blur, cor-
related noise, model-based iterative reconstruction

I. INTRODUCTION

D Igital breast tomosynthesis (DBT) has been developed to
reduce the problem of overlapping tissue in conventional

2-D mammography. In DBT, commonly-used reconstruc-
tion methods include filtered back-projection, the maximum-
likelihood expectation-maximization algorithm [1][2] and si-
multaneous algebraic reconstruction technique (SART) [3].
These methods do not account for noise correlation or other
image degradation factors in the imaging process. In this paper,
we introduce a new reconstruction method that includes a
correlated noise model, as a first step towards model-based
iterative reconstruction (MBIR) for DBT.

In an x-ray imaging system, the finite pixel size and light
diffusion in the phosphor of an indirect detector contribute
to blurring of the measured image. Neglecting detector blur
introduces blurring to the reconstructed objects, especially for
small objects such as microcalcification (MC) in DBT. We
modeled the detector blur and the associated noise correlation
into the cost function of the optimization problem. The op-
timization problem is simplified with a few assumptions and
solved with a slightly modified separable quadratic surrogate
(SQS) method [4].

In this paper, we first introduce our detector blur model
and the assumptions used for its simplification. We describe
the optimization problem and the cost function for regularized
reconstruction. The usefulness of the method is demonstrated
by comparing its reconstructed image quality with that by
SART using DBT of both breast phantom and human subject.

∗ Jiabei Zheng and Jeffrey A. Fessler are with the Department of Electrical
and Computer Engineering, University of Michigan, Ann Arbor, MI. (e-mail:
{jiabei,fessler}@umich.edu)† Heang-Ping Chan is with the Department of Radiology, University of
Michigan, Ann Arbor, MI. (e-mail: chanhp@med.umich.edu)

II. METHODS

A. Formulation of the Reconstruction Problem

Let Ai denote the projector and f denote the unknown
array of attenuation coefficients in the imaged volume. Let
Yi denote the measured projection at the ith projection angle
of all m projections (i = 1, ...,m). Considering the detector
blur, the expected projection value Ȳi can be written as

Ȳi = I0Bi exp(−Aif) (1)

where Bi denotes the blurring operation in matrix form and
I0 is the constant expected projection value if there is no
object present in the imaged volume. Bi is assumed to be
projection-angle-dependent but linear shift-invariant within a
given projection.

To deal with the non-diagonal matrix Bi before the expo-
nential, we assume that the image f consists of two parts: (1)
a low-frequency background fb that is approximately uniform
within the support of the blurring kernel; (2) small structures
fs (such as MC in DBT) that only contributes very little to
the projection value (Aifs � 1). These assumptions are more
reasonable in breast imaging than in CT of body parts that
include bone or other high-attenuation objects. Under these
assumptions, we can approximate (1) as:

Ȳi ≈ I0 exp(−BiAif) (2)

Thus the expectation of the transformed projection yi is:

ȳi = log (I0/Yi) ≈ BiAif (3)

We assume yi has approximately a multivariate Gaussian
distribution: yi ∼ N (ȳi,Ki). Ki is the covariance matrix
for the ith projection.

The quantum noise in the imaging process is affected by
the detector blur but the detector electronic noise is not. A
reasonable model for the noise covariance Ki is:

Ki = BiK
q
iB

′
i +Kr

i (4)

where ′ denotes conjugate transpose (in case the kernel of
Bi is asymmetric). Kq

i and Kr
i are diagonal matrices of the

variances of quantum noise and readout noise at each detector
element, respectively.

We then formulate the following reconstruction problem:

f̂ = argmin
f

1

2

∑
i

‖yi −BiAif‖2(BKq
iB

′+Kr
i )

−1 +R(f)

= argmin
f

1

2

∑
i

‖Piyi −PiBiAif‖22 +R(f)
(5)

where R(f) is the regularization term and the inverse matrix
square root of the noise covariance is

Pi = (BiK
q
iB

′
i +Kr

i )
−1/2 (6)
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B. Implementation of Pi

Since (BiK
q
iB

′
i+Kr

i ) is non-diagonal, the implementation
of Pi is very challenging. In CT application, one possible
method is to solve another optimization problem with a
set of conjugate gradient iterations [5]. In DBT, we can
dramatically simplify the implementation by making some
reasonable assumptions. Unlike body CT where there exist
large bones and even perhaps metal objects of significant size
that are strongly attenuating, the compressed breast has a fairly
uniform thickness mainly composed of soft tissue. As a first-
order approximation, we assume quantum noise to be constant
for all detector elements in a given projection angle:

Kq
i = σq

i
2
I (7)

In addition, we assume all detector elements have similar
readout noise variance:

Kr
i = σr

i
2I (8)

Let hi be the point spread function (PSF) of the detector,
The blurring operation is given by Bi = Q−1HiQ, where
Q is the discrete Fourier Transform (DFT) matrix and Hi =
Diag(DFT{hi}). Then the operation Pi by a vector can be
easily implemented as a high-pass filter using FFT operations
without needing any iterative method for matrix inversion:

Pi = Q−1(σq
i
2
HiH

′
i + σr

i
2I)−1/2Q (9)

In our study, we used a Lucite slab with a similar thickness as
the object to be reconstructed to estimate σq

i . σr
i was estimated

from the dark current image of the detector.

C. Regularization

Since Pi is implemented as a high-pass filter, it would
amplify noise in reconstruction if used without regularization.
Regularization is very important for stable reconstruction. We
use a Huber-like function η(t) to define R(f) in this work:

η(t) = δ2(
√

1 + (t/δ)2 − 1) (10)

Since the DBT reconstruction is non-isotropic, the regulariza-
tion term is written separately in terms of the horizontal and
vertical in-plane directions as

R(f) = βx

∑
j

η([Cxf ]j) + βy

∑
j

η([Cyf ]j) (11)

where Cx and Cy are operations to calculate difference
between neighboring pixels along the x and y-direction, re-
spectively, as defined in Fig. 1. Our DBT slice thickness is 10
times in-plane pixel size, making correlation between slices
relatively weak and z-direction regularization unnecessary.

D. The Reconstruction Algorithm

Both the quadratic function of the data-fit term and η(t)
are convex and their second-order derivatives are less than or
equal to 1. This allows us to use SQS with a small modification
to account for the effective system matrix Ã and solve the
optimization problem:

f (n+1) = f (n) −
(
βxC

′
xη̇(Cxf

(n)) + βyC
′
y η̇(Cyf

(n))

+ Ã′(Ãf (n) − ỹ)
)
�
(
4βx1+ 4βy1+ |Ã′Ã|1

) (12)

Fig. 1: Geometry of the DBT system used in this study.

where 1 is an all-one vector, | · | and � represent element-wise
absolute value and division, and the effective system matrix is
defined as

Ã =

⎛⎝ Ã1

...

Ãm

⎞⎠ =

⎛⎝ P1B1A1

...
PmBmAm

⎞⎠ (13)

ỹ =

⎛⎝ ỹ1

...
ỹm

⎞⎠ =

⎛⎝ P1y1

...
Pmym

⎞⎠ (14)

Pi is a high-pass filter with negative elements in its PSF. Ã
has negative elements, making it challenging to implement
|Ã′Ã|1. The implementation of |Ã′Ã|1 is still under investi-
gation. We temporarily use Ã′Ã1 as an approximation.

In DBT reconstruction, we usually use only one projection
view at a time. Therefore, we assume that, for each i:

∇(
m∑

k=1

‖ỹk − Ãkf‖22) ≈ m∇(‖ỹi − Ãif‖22) (15)

The ordered-subset (OS) reconstruction update is given by:

f (n,i+1) = f (n,i) −∇Ψi(f
(n,i))�

(
4βx1+ 4βy1+ |Ã′Ã|1

)
(16)

∇Ψi(f
(n,i)) = βxC

′
xη̇(Cxf

(n,i)) + βyC
′
y η̇(Cyf

(n,i))+

mÃ′
i(Ãif

(n,i) − ỹi)
(17)

The iteration counter n is incremented by 1 after all measured
projections have been used once.

III. MATERIALS

A. DBT System

We used a GE GEN2 prototype DBT system for image
acquisition. The imaging geometry is shown in Fig. 1. The
system uses a CsI phosphor/a:Si active matrix flat panel
detector with a pixel size of 0.1mm×0.1mm and an area
of 1920×2304 pixels. The detector is enclosed inside the
breast support and is stationary during image acquisition. The
distance from the x-ray source to the fulcrum is 64cm. There is
a 2cm gap between the imaged volume and the digital detector.
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Fig. 3: Comparison of the mean CNR and mean FWHM averaged
over all clusters in the phantom.

B. Breast Phantom and Human Subject DBT

MCs are small calcium deposits in the breast of sizes from
about 0.1mm to 0.5mm. Clustered MCs are important signs
of early breast cancer. One of the main challenges in DBT
reconstruction is to reduce noise while enhancing MCs and
preserving the margin features of masses. In this study, we
used a breast phantom with embedded MCs for the evaluation
of the effects of reconstruction methods and parameters on the
image quality of MCs. It is difficult to build mass phantoms
with realistic spiculated or ill-defined margins, which are
strong indicators of breast cancer; we therefore used real breast
DBT for visual evaluation of the image quality of masses.

The breast phantom consists of a stack of five 1-cm-thick
slabs of breast tissue mimicking material [6]. Clusters of
calcium carbonate specks of three nominal size ranges (0.15-
0.18mm, 0.18-0.25mm, and 0.25-0.30mm) were sandwiched
between the slabs to simulate MCs of different conspicuity
levels. For the human subject DBT, we selected a case with
a spiculated mass that was biopsy-proven to be an invasive
ductal carcinoma. Both the phantom and human subject DBT
were acquired with 60° scan angle, 3° increments and 21 pro-
jections. To simulate the DBT acquired with a GE commercial
system, we used the 9 central projections for reconstruction,
corresponding to DBT of 24° scan angle with 3° increments.

C. Figures of Merit (FOMs)

Quantitative comparison of reconstruction quality are based
on two FOMs of MCs: contrast-to-noise ratio (CNR) and
full-width at half maximum (FWHM). We applied a 2-D
least-squares Gaussian fitting to each reconstructed MC. With
the fitted standard deviation σMC, the FWHM is given by
2.355σMC. The noise level σNP is estimated from a noise
patch near each cluster. The CNR is given as: CNR =
AMC/σNP, where AMC is the fitted amplitude of the MC.

IV. RESULTS AND DISCUSSION

A. Reconstructed MC Clusters

We compared the new method (SQS with detector blur and
correlated noise, or SQS-DBCN) with SART. We performed
three complete iterations for SART since more iterations will
amplify noise and reduce the CNR of MCs. Compared with
SART, SQS-DBCN is regularized, allowing us to increase the
number of iterations and enhance the contrast of MCs. We
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Fig. 4: Parameter selection: CNR and FWHM as a function of β for
a range of δ. The red lines indicate the level of the SART.

experimentally chose 10 complete iterations for this study. To
reduce the number of the parameters to be determined, we
also set βx = βy = β. For the discussion in this section, the
parameter combination is: β = 80, δ = 0.002/mm.

The reconstructed clusters are shown in Fig. 2. To make
a more quantitative comparison, we used 49 of 0.15-0.18mm
MCs, 66 of 0.18-0.25mm MCs and 64 of 0.25-0.30mm MCs
from 5 clusters of each size. We calculated the mean CNR and
FWHM of the MCs in each size range. The results are shown
in Fig. 3. Compared with SART, SQS-DBCN generates more
conspicuous and sharper MCs, as indicated by a higher CNR
and smaller FWHM. For the smallest MCs (0.18-0.25mm),
the mean CNR increases by 54.4% from 4.17 to 6.44 using
the SQS-DBCN reconstruction. The mean CNRs increased by
77.3% and 139.7% for medium and large MCs. With SART,
the FWHMs of the reconstructed MCs are larger than their
nominal size. With the SQS-DBCN method, the FWHMs are
closer to the nominal size, due to the ‘shrink’ effect of the
deblurring by Pi. The regularization suppressed background
noise, making MCs more visible to the observer.

B. Regularization Parameter Selection

Performance of the method depends on parameter selection
of the regularization term. We reconstructed the phantom
DBT with different parameter combinations. Mean CNR and
FWHM were calculated for each reconstruction and the trends
are shown in Fig. 4. For MCs of different sizes, there exists
a different ‘optimal’ parameter combination that yields maxi-
mum CNR. Over a large range of parameters, the new method
outperforms the SART method in the sense of enhancing CNR.
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(A1) Cluster A: SART:
mean CNR = 3.87,
FWHM = 0.210mm

(A2) Cluster A: SQS:
mean CNR = 6.86,
FWHM = 0.172mm

(B1) Cluster B: SART:
mean CNR = 5.56,
FWHM = 0.235mm

(B2) Cluster B: SQS:
mean CNR = 10.4,
FWHM = 0.217mm

(C1) Cluster C: SART:
mean CNR = 5.55,
FWHM = 0.243mm

(C2) Cluster C: SQS:
mean CNR = 8.37,
FWHM = 0.222mm

Fig. 2: (A1)-(C2) shows the comparison of MC clusters. Mean CNR and FWHM of all MCs on the patch are given under each figure.
(A1)(B1)(C1) used SART with 3 iterations, (A2)(B2)(C2) used SQS-DBCN with β = 80, δ = 0.002/mm, 10 iterations. Size of MCs in
Cluster A is 0.15-0.18mm, size of MCs in Cluster B and C is 0.18-0.25mm.

(a) SART, 3 iterations (b) SQS-DBCN,
10 iterations, β = 80,
δ = 0.002/mm

(c) SQS-DBCN,
10 iterations, β = 120,
δ = 0.001/mm

Fig. 5: Comparison of reconstructed images for human subject DBT.
The CNR of MCs increases from image (a) to (c). However, the
spiculation and the tissue textures become more patchy and artificial
in (c). The artifacts may not be readily visible in this reduced-size
image.

The FWHM of all MCs increases as β increases due to the
stronger smoothing effect from the regularization term.

The parameter combination used for reconstructing the
examples in Fig. 2 was not the one with highest CNR shown in
Fig. 4 to avoid the strong distortion of the background texture
in the images (also see Fig. 5(c)).

C. Human Subject DBT

The FOMs used in this study only evaluated the CNR and
FWHM of MCs. Currently there is no simple FOM that can de-
scribe the visual quality of the mass margin and tissue texture.
Some reconstruction methods or parameter combinations can
generate strong artifacts on the tissue texture, as observed in
CT [7]. To evaluate the visual quality of the tissue texture, we
applied SQS-DBCN to the human subject DBT. Fig. 5 shows a
comparison of two parameter combinations to SART. It can be
observed that the SQS-DBCN method enhanced MCs by the
parameter combination (β = 80, δ = 0.002/mm) (Fig. 5(b)),
preserved tissue structure and did not generate noticeable
artifact compared to the image by (β = 120, δ = 0.001/mm)

(Fig. 5(c)), in which the texture looks patchy and artificial.
Therefore, the former is a better choice for human DBT
although the latter provided higher CNR enhancement for
MCs. We are investigating parameter selection strategies that
can be more adaptive to different imaging conditions and for
various breast lesions and parenchymal densities.

V. CONCLUSION

We proposed a DBT reconstruction method that incorporates
detector blur and a correlated noise model as the first step
towards developing a model-based iterative reconstruction
method for DBT. We have shown quantitatively and visually
that the new SQS-DBCN method can better enhance MCs
compared with the SART while preserving the image quality
of spiculations and tissue texture.

The SQS-DBCN method depends on several assumptions.
The performance of the method depends on good parameter
selection and accurate estimation of noise variance. Further
study is underway to develop an adaptive method to select
the parameters, better estimation of noise variance, and more
general model to relax the assumptions.
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Abstract—X-ray Tensor Tomography is a recently developed
modality enabling the reconstruction of anisotropic scattering
tensors using an X-ray grating interferometer. The reconstruction
problem can be formulated as a large-scale linear system, which
allows the application of regular reconstruction algorithms. As
opposed to the block-based reconstruction approaches used so
far, in this paper we suggest using a conventional reconstruction
algorithm not based on blocks (the conjugate gradient method).
We show first results applied to data acquired of a carbon fiber
sample, demonstrating marked advantages in convergence speed
while achieving comparable image quality.

I. INTRODUCTION

Recent developments in grating-based X-ray imaging enable
the additional extraction of X-ray phase-contrast [1] and dark-
field [2] in a conventional X-ray setup. While phase-contrast
provides a signal based on X-ray refraction, the dark-field
signal is linked to scattering of the X-rays while traversing
through an object. As opposed to absorption and phase-
contrast, the dark-field signal provides an anisotropic signal,
which is caused by the fact that scattering at a certain position
within the measured object occurs strongest in directions
orthogonal to microstructures at this position [3], [4].

Improved image contrast and resolution of micro-structures
at sub-pixel level have been shown for several fields of
application when using dark-field based radiography. Among
others there have been studies regarding lung imaging [5],
[6], breast imaging [7], [8], musculoskeletal imaging [9], [10],
microbubbles as contrast agents[11] and material testing [12].

Due to the directional nature of the dark-field signal, tomo-
graphic reconstruction becomes more challenging than in the
standard computed tomography (CT) case. Based on a super-
position principle derived in [13], Malecki et al. [14] proposes
the first tomographic reconstruction approach for X-ray dark-
field tomography by incorporating the directional information.
In this work Malecki et al. uses a rank-2 tensor to represent
the anisotropic scattering, i.e. the mathematical formulation of
an ellipsoid representing a gaussian scattering process, hence
the name ’X-ray Tensor Tomography’, or in short XTT. This
approach has been further extended by Vogel et al. [15], who
shows that the forward model and the corresponding inverse
problem can be rewritten as a large-scale linear system. Both
Malecki et al. and Vogel et al. use block-based algorithms
to compute the tomographic reconstruction for each scattering
direction in parallel.

In this work we will use the same problem formulation as
a large-scale linear system, and directly apply an algorithm
acting on the whole linear problem at once. This allows the
use of regular reconstruction algorithms not based on blocks,
in particular we will use the Conjugate Gradient method (CG).

II. METHODS

In order to reconstruct the scattering tensors, Malecki et
al. [14] derive a forward model for the anisotropic dark-field
imaging based on superposition. Following this approach, let
ε̂k ∈ R3, k ∈ {1, . . . ,K}, denote a finite set of K normalized
scattering directions. Assuming that scattering strictly occurs
in these directions ε̂k, Malecki et al. provide a forward model
similar to the standard forward model used for computed
tomography,

mj =

∫
Lj

K∑
k=1

vkj · ηk(x) dx (1)

Here, m := (mj), j = 1, . . . , J , denotes the negative
logarithm of the dark-field measurements with Lj denoting
the corresponding ray, vkj denotes weights explained below,
and ηk denotes the to-be-reconstructed scattering coefficients
corresponding to the scattering direction ε̂k, k = 1, . . . ,K.

Based on this forward model Vogel et al. [15] derives a
reformulation of the reconstruction problem as a large-scale
linear system. This reformulation is based on the fact that the
above mentioned superposition model describes a weighted
sum of standard CT X-ray transforms.

The corresponding weights vkj are based on a model for
the scattering probability and the detectability based on the
normalized ray direction Îj and the orientation of the grating,
represented by the orthogonal in-plane direction of the grating
lines t̂j (see [16], [13], [15]):

vkj = (|Îj × ε̂k|〈ε̂k, t̂j〉)2 (2)

According to [15], the problem of XTT reconstruction can now
be represented as a large-scale linear system as follows: Let
P ∈ RJ×I denote the system matrix as used in standard CT,
where J denotes the number of projections times the number
of detector pixels, and where I denotes the number of voxels
used to represent the reconstruction volume. Using diagonal
weighting matrices Dk = diag(vk1, vk2, . . . , vkJ), the XTT
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(a) proposed whole-system CG (b) Vogel et al.

(c) proposed whole-system CG (d) Vogel et al.

Fig. 1. Visualization of the reconstructed tensors for both our whole-system approach using CG (a,c) and the method of Vogel et al. (b,d). The ellipsoid tensor
visualizations for slice 104 are shown in the upper row, while the bottom row shows the streamline visualization along the direction of the microstructures.
In both cases, the results are color coded according to the orientation of the microstructure.

reconstruction problem to reconstruct the unknowns η := (ηk)
can be written as

m =
(
D1P D2P · · · DKP

)
⎛⎜⎜⎜⎝

η1
η2
...

ηK

⎞⎟⎟⎟⎠ (3)

Using A :=
(
D1P D2P · · · DKP

)
∈ RJ×IK , we can

write the linear system in short

m = Aη (4)

In contrast to the previous works using block-based solvers,
we now attack the whole problem (4) at once using the stan-

dard CG algorithm. Of course other, more elaborate algorithms
could be used in place of CG here.

For implementation we use our software framework [17]
for large-scale inverse problems, which allows to assemble the
complete system matrix A in such a way that A is computed
on-the-fly from on-the-fly versions of the DkP matrices. Thus
the CG algorithm acts on this on-the-fly matrix A, allowing
to solve the problem just as one would do if the matrix were
stored in memory.

III. EXPERIMENTS

For experimental evaluation of the whole-system approach
we apply it to an experimental data set acquired using a grating
interferometry setup as in [15].
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(a) proposed whole-system CG (b) Vogel et al.

Fig. 2. Volume rendering of the strongest scattering, i.e. the largest eigenvalue of the tensor at each location, for both methods.

The software implementation is done in our C++ framework
[17]; to compute the system matrix P we used the projector
developed by Fehringer et al. [18]. Further we compare our
method to the one proposed by Vogel et al. [15], both executed
on the same computer equipped with dual Intel Xeon E5-
2687W processors and a Nvidia Tesla K20 GPU.

The experimental dataset is a knot made out of carbon
fibers, for which 732 projections with 321x321 pixels each
were recorded. The reconstruction volume consists of 201 ×
201× 201 voxels.

In order to have comparable results to the method proposed
by Vogel et al. [15], we stopped the iterations of our proposed
CG approach as soon as the residual norm ‖Aη−m‖2 dropped
below the residual norm of the 100 iterations employed Vogel
et al. in [15].

We provide two kinds of visualizations of the reconstructed
results. The first one is a typical glyph visualization showing
the whole information of the tensor as ellipsoids, the second
one is a streamline visualization. For the latter, a Runge-Kutta
(RK-4) was used to track fibers along the directions of least
scattering, as this is supposed to be the direction of microstruc-
tures. In both cases we use color coding corresponding to the
direction of the microstructures in order to improve the visual
impression of the directional orientation of the tensors.

IV. RESULTS

The results of the XTT reconstructions of the carbon knot
sample using both our proposed method and the one from
Vogel et al. [15] are shown in figures 1 and 2.

The reconstruction using the method from Vogel et al.
using 100 iterations took approximately 2 hours on our ma-
chine. Using our proposed method, the residual norm criterion

aborts the iteration already after 12 iterations, which cuts the
reconstruction time down to approximately 12 minutes on
the same machine. The computational effort per iteration of
both methods is similar, so the gain in speed is only from
requiring less iterations due to higher convergence speed of
the reconstruction method.

Figure 1 shows different visualization of the reconstruction
volumes of tensor using two different visualization paradigms.
The upper row 1a,1b shows a visualization of the tensors in
slice 104 of the reconstructed volumes in form of ellipsoids,
i.e. the geometric equivalent of a rank-2 tensor. In order to
improve the visual impression, we only display every third
tensor. Furthermore the ellipsoid are color coded based on the
direction of the microstructure (the direction of least scattering
corresponding to the smallest half axis of the ellipsoid). While
this visualization allows a complete representation of the
tensors, it is not useful for 3D visualization.

In order to have meaningful 3D visualization, we extract
the direction of the microstructure and compute a streamline
visualization along those directions. The corresponding 3D
visualizations are shown in Figures 1c, 1d.

Another 3D visualization is given in Figure 2, which shows
a volume rendering of the strongest scattering direction, i.e.
the largest eigenvalue of tensor at each location in the volume.
While it does not give a visualization of the microstructures,
it allows an impression of smoothness of the reconstruction.

V. DISCUSSION AND CONCLUSION

Comparing the results from both approaches in Figures 1
and 2, the results are qualitatively very similar. At a closer
look we observe the whole-system CG reconstruction to be
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slightly more regular, which might be caused by the implicit
regularization due to stopping the iterations significantly ear-
lier in this approach.

With respect to the amount of time needed to compute
the reconstructions, we find a significant reduction when the
whole-system approach is used due to faster convergence
speed of the CG. While the method used by Vogel et al. also
uses a single CG iteration in its block-parallel scheme, a single
iteration of CG is equivalent to a single Landweber iteration,
which explains the convergence speed advantage of our whole-
system approach using multiple CG iterations.

In summary, we presented a whole-system approach for
computing XTT reconstructions. Our first results show a
significant reduction in the amount of time needed to compute
the reconstruction compared to previous approaches, while
yielding comparable reconstruction quality.

This work marks another step towards employing the well-
founded theory of linear inverse problems to the novel XTT
imaging modality, which in the future will also enable incor-
poration of regularization as a next step.
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Abstract— A Multiple Aperture Device (MAD) is a novel x-ray 
beam modulator that uses binary filtration on a fine scale to 
spatially modulate an x-ray beam. Using two MADs in series 
enables a large variety of fluence profiles by shifting the MADS 
relative to each other. This work details the design and control of 
dual MADs for a specific class of desired fluence patterns. 
Specifically, models of MAD operation are integrated into a best fit 
objective followed by CMA-ES optimization. To illustrate this 
framework we demonstrate the design process for an abdominal 
phantom with the goal of uniform detected signal. Achievable 
fluence profiles show good agreement with target fluence profiles, 
and the ability to flatten projections when a phantom is scanned is 
demonstrated. Simulated data reconstruction using traditional 
tube current modulation (TCM) and MAD filtering with TCM are 
investigated with the dual MAD system demonstrating more 
uniformity in noise and illustrating the potential for dose reduction 
under a maximum noise level constraint. 

Index Terms—Fluence field modulation, Radiation dose 
reduction, Dynamic bow-tie filter, Region-of-interest CT, X-ray 
beam modulation, Patient-specific CT.  

I. INTRODUCTION 

X-ray computed tomography has found widespread clinical 
utility; however, increasing concerns about the risks associated 
with ionizing radiation have driven the search for exposure 
reduction strategies. While many algorithmic strategies for 
producing better images at lower exposures have been 
developed, there has been relatively little research on innovative 
hardware-based dose reduction methods. Dose to an individual 
patient is naturally tied to the particular exposure settings of a 
CT scanner; however, finding minimum dose strategies is both 
complex due to the dependence on patient size, anatomical site, 
etc. and, currently, somewhat limited due to the relative 
inflexibility of modern CT scanners to control the distribution 
of x-rays used to image a patient. 

Typical clinical scanners permit coarse control of the x-ray 
beam through exposure settings (tube current and voltage), and 
many systems have tube current modulation hardware that 
permits variation of exposure as a function of rotation angle and 
table position. Control of the spatial distribution of the x-ray 
beam is typically very limited and is achieved through the 
introduction of a bow-tie filter. Some systems allow selection 
from a small number (typically three or fewer) bow-tie filters 
based on patient size. Typical filters attenuate x-rays at large fan 
angles to achieve higher fluence levels in the center of the 
patient (where the attenuation is highest) and lower fluence at 
the edges (where attenuation is low). Unfortunately, such static 
beam shaping is limited and cannot account for variability in the 
width/size of the patient as a function of angle and table position. 
Similarly, static bow-tie filters can be sensitive to positioning 
since a well-centered patient is presumed. 

 
 

Fluence-field modulated (FFM) CT is an area of active 
research that seeks strategies for dynamic modulation of the 
spatial distribution of the x-ray beam. Successful 
implementation of FFM-CT increases acquisition flexibility 
permitting dose reduction objectives [1] as well as novel data 
collection strategies (e.g., region-of-interest scans). A number 
of different FFM strategies have been proposed including the 
use of heavy metal compounds on paper [2], digital beam 
attenuators [3], piece-wise linear dynamic bowties [4, 5], and 
fluid filled attenuators [6, 7].  

Due to the severe operational requirements within a CT 
scanner (e.g. limited space, high rotation speeds, accelerations, 
etc.), the design of dynamic FFM-CT is a challenge. The authors 
of this paper have previously proposed a novel beam modulation 
strategy using Multiple Aperture Devices (MADs) which 
address some of the challenges associated with practical FFM-
CT [8]. In this work, we present a strategy for MAD design to 
achieve specific desired dynamic fluence objectives.  

II. METHODS 

A. The Multiple Aperture Device Concept 

 The conceptual operation of a MAD filter is illustrated in 
Figure 1.  The device comprises thin bars of a highly attenuating 
material (e.g. tungsten) of varying widths and spacing. On a fine 
scale the MAD acts as a binary filter, either completely blocking 
or passing the X-ray beam using alternating bars and slots. In 
this fashion, one can concentrate the amount of x-rays spatially 
by varying the thickness of the blockers locally. 

As discussed in [8], the pitch (spacing between blockers) of 
the MAD device may be designed to minimize high-frequency 
patterns at the detector. For example, if the focal spot of the x-
ray source is assumed to be a rectangle, the MAD pitch may be 
placed at the first null frequency associated with the focal spot 
blur MTF. In this fashion, the fine bar pattern of the MAD 
device is blurred out and is not visible at the detector. Desirable 
(lower frequency) spatial modulation associated with the 
variable bar width is still achievable. 

A single fluence pattern can be obtained with a single MAD 
device. With multiple MADs in series, capable of moving with 
respect to each other, a range of fluence patterns can be obtained 
since it is the composition of two binary filters. Moreover, small 
relative displacement of the MADs with respect to each other 
can induce large changes in the fluence pattern. Because small 
actuations have a large effect on the x-ray distribution, speed 
and acceleration requirements can be reduced for device 

Design of dual multiple aperture devices for 
dynamical fluence field modulated CT 
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Fig. 1: Illustration of fluence modulation using Dual MAD filters.  
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construction. Similarly, because these filters do not rely on 
variable attenuation using a low atomic number material, the 
filters can be made very thin and compact. In the following 
sections, we discuss how to design dual MAD filters for specific 
fluence objectives. 

B. Initial Phantom Study and System Geometry 

For initial investigations, we have concentrated on fluence 
optimization for a single target object; however, the approach 
may be extended to classes of objects. Specifically, the known 
object in the simulation study was chosen to be an 
anthropomorphic phantom body of uniform material (acrylic), 
as illustrated in Fig. 2. This digital phantom emulates 
commercially available physical phantoms (QRM GmbH, 
Morehendorf, Germany) that will be used in subsequent studies. 

The system geometry was chosen to emulate a CT scanner’s 
source-to-detector distance and also geometry achievable in a 
flat-panel-based experimental test bench that is available for 
subsequent experiments. For our investigations, we considered 
360 degree rotation, in steps of 0.5 degree. To create projection 
data for MAD design and analysis, we used a polyenergetic 
forward model and Spektr [9], a computational tool for x-ray 
spectral analysis, corresponding to a tube voltage of 100 kVp 
with additional filtration (2 mm of Al, 0.2 mm of Cu). The model 
also includes fluence adjustments to accommodate divergent 
beam effects.  

C. Optimization Procedure 

1) MAD parameterization 
In order to design a set of MAD filters, the location and 

dimensions of many MAD attributes must be specified. The 
elements of a dual MAD design are identified in the illustration 
in Figure 3. Specifically, the free design parameters include: 1) 
b0(x), the thickness of each bar as a function of position in 
MAD0 that locally blocks X-rays; 2) b1(x), the analogous bar 
function for MAD1; 3) δ(x), a local offset function that specifies 
the position of individual bars in MAD1 relative to MAD0; and 
4) the MAD pitch (e.g., the spacing interval between bars).  

As mentioned in [8], the MAD pitch may be designed 
independently of other parameters based on the first null 
frequency of the focal spot, magnified to the MAD plane. For a 
rectangular focal spot size,���, the optimal MAD pitch is 

� � �� � �	 
 ��
�� 

We note that for nonrectangular focal spots, one can similarly 
find a null or minimal pass frequency to enforce smooth fluence 
profiles. Additionally, even though Fig. 3 shows MAD0 and 
MAD1 to be parallel with identical pitch, each of the flat MADs 
have a slightly different pitch and the bars/slots must be focused 
to the source due to the diverging x-ray beam. 
 The last parameter that is important for design is the control 
parameter Δ, which denotes the relative offset between MAD0 
and MAD1. This is the one-dimensional actuation that controls 
the fluence profile enforced by the MAD filters. In general, this 

parameter must be part of the design process as well, and is a 
function of the CT rotation angle and/or table position, which 
we will denote as Δ(θ). 

With MAD pitch specified, the remaining parameters: �����, �����, ����, and ���� are sought. In [8], these values were 
determined analytically using an “endpoint” design to match 
two desired profiles by considering the minimum and maximum 
blocking conditions of a dual MAD system. While this approach 
is attractive due to its closed-form solution, it fails to provide 
best fit solutions for a wide range of desired fluence patterns. In 
this work, we seek that more optimal solution, which may be 
stated as a nonlinear, nonconvex optimization (discussed in the 
next section). 

To facilitate optimization, we have chosen to further 
parameterize the dual MAD design using a low-dimensional set 
of basis functions. For example, rather than have a parameter for 
every bar width in MAD0, we presume neighboring bar widths 
vary smoothly as a function of position. Specifically, we chose 
to represent our parameters with a small set of Fourier 
coefficients, cp(ω) such that 

���� � � �	 � ��������� � ��� � !��"#��$�% 
where p(x) is one of  &�����' �����' �����' ()�*���+. Thus, the 
optimization will focus on finding the optimal coefficients: #,��$�, #,-�$�, #.�$�, and #*�$� which are functions of the 
spatial (or, for Δ, angular) frequencies selected for the basis set. 

2) Objective function 
To define our optimization objective, we construct a model of 

the fluence output which is a function of the design and actuation 
values and can be written in terms of the original parameters or 
vectors of low-dimensional Fourier coefficients: �������' �����' ����/ ����� 0 ���' �/ #,�' #,-' #.' #*� 
Note that M is a function of spatial location (e.g., a fluence 
profile) as well as rotation angle. 
 Using this model, we pose the following optimization: 

1# ,�' # ,-'# .' # * 2 � 3)4567889:��' ��:���� 
 ���' �/ #,�' #,-' #.' #*������ 9
-

�;<=
 

where :��' �� denotes desired fluence patterns as a function of 
rotation angle. The objective is computed as the mean squared 
error between the desired and modeled fluence patterns over all 
projections that intersect the phantom (or patient). As such, X-
rays passing outside the phantom (e.g. not contributing to dose) 
will be ignored in the optimization process.  

Also note that both the modeled and desired fluence patterns 
are normalized by ����� � > ���' �/ ? ��  and :���� � > :��' ��� , 
respectively. This normalization concentrates the design process 
on achieving the proper fluence shape. The magnitude of the 
profile can be adjusted post-design through exposure settings 
and tube current modulation.While there are many potential 
desired fluence patterns that one might seek including those that 
enforce minimum peak variance [10], combined noise and dose 
objectives[1], or maximize task-based detectability[11], we will 
focus on fluence patterns that flatten the signal and homogenize 
noise in projection data.  
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Fig. 2: Illustration of the simulated CT geometry and phantom. 
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Fig. 3: Parameterization of the MAD design. 
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3) Optimization framework 
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) 

was chosen for the optimization. CMA-ES requires no 
derivative computations and is well-suited to nonlinear 
nonconvex optimization since a population of solutions is 
employed to avoid local optima. We implemented the objective 
function and the profile modeling function in efficient C++ code 
including parallelized computation of objective function values 
(over the population) using OpenMP. The CMA-ES algorithm 
was initialized to the output of the end-point design process from 
[8]. A population size of 16 was selected and the stopping 
criteria for optimization was to stop if successive function 
evaluations differ less than 10-12 or 10,000 iterations was 
computed. All the MAD design parameters were constrained to 
lie between 0 and a single pitch, �, to avoid nonphysical and 
periodic solutions (e.g. beyond a single cycle of actuation).  

III. RESULTS/DISCUSSION 

A. Target and achieved fluence profiles  

To generate desired fluence patterns, the phantom was rotated 
360 degrees in steps of 0.5 degrees. The fluence is simulated at 
the detector plane, and the fluence profile at the MAD plane 
required to flatten this fluence is computed using the 
methodology of Section IIB. The MAD parameterization used 8 
Fourier coefficients for each MAD feature (4 total), and only 
symmetric basis functions were employed to enforce symmetric 
MAD designs. A subset of these target fluence profiles are 
shown in Fig. 4. The fluence obtainable with the dual MADs 
using the CMA-ES optimization is also plotted.  

The designed fluence profiles very closely match the desired 
fluence pattern suggesting that a dual MAD system can match a 
range of fluence profiles and, in this case, substantially flatten 
the fluence profiles at the detector for this phantom. For the 
fluence profiles with a flat top, the achievable CMA-ES profiles 
show fluctuation on the flat edge. The narrow fluence profiles 
show slight misalignment error, which is potentially correctable 
by shifting both MADs together. Such analysis is the topic of 
ongoing investigations and will likely be important for 
asymmetric beam profiles (e.g., for miscentered patients, off 
axis targets, etc.). 

B. Estimated MAD design parameters 

The optimized MAD design parameters are shown in Fig. 5. 
Note since the bar widths are directly proportional to the amount 
of local blockage and consequently inversely proportional to the 
local fluence, the effect of the MAD0 filter alone is not unlike a 
traditional bowtie (e.g. more fluence in the center of the field 

and less at the edges). The MAD1 design is almost the opposite 
(when acting alone). The bar widths in both MADs span the 
range of approximately 50 μm to 800 μm. Such designs are 
largely within the constraints of modern tungsten sintering 
technology, though features <100 μm can present some 
challenges (such constraints can potentially be integrated into 
the design process). The local offset function, δ(x), is 
predominantly negative, meaning that the MAD1 bars are 
located to the left of the center position in each MAD period.  

The actuation control shown in Figure 5D illustrates that 
MAD1 is displaced between 0.15 mm to 0.4 mm as the 
projection angle changes from 0 to 360 degrees. This minimal 
movement of the MADs causes the large change in the fluence 
patterns seen in Figure 4 and can be attributed to the relatively 
small MAD pitch. From an implementation standpoint, the 
potential mechanical advantage is the fast switching speed of the 
MAD fluence profiles as the CT gantry spins around the patient. 
The smooth profile of the displacement also reduces the 
acceleration requirements on the actuator. Though not done 
here, one could integrate specific acceleration limits as part of 
the optimization.  

C. Achievable Fluence Patterns 

It is interesting to note that the design of the previous sections 
only utilizes part of the actuation control range. Fig. 6 shows the 
full range of fluence patterns achievable as the second MAD is 
moved with respect to the first MAD within a single MAD pitch 
(e.g. one cycle). Recall, that for the selected phantom, only 
fluence profiles between MAD1 displacements of 0.1 to 0.4 
were used. 

Fig. 4.  Normalized target fluence patterns (red) at the MAD plane to flatten the 
fluence through the phantom at the detector plane, and achievable fluence 
patterns (blue) using the dual MAD setup. The fluence required is normalized 
such that the sum is unity.  

Fig. 5.  Solutions to the dual MAD design optimization. A) Bar width function ,
b0(x) for MAD0; B) barwidth function b1(x) for MAD1; C) local offset function
δ(x); and D) the actuation control, Δ(θ), as a function of rotation angle. 

Fig. 6. Post-filtering fluence profiles at the MAD plane with a full range of 
control actuation (displacements of MAD1 with respect to MAD0). 

The 4th International Conference on Image Formation in X-Ray Computed Tomography

31



 
 
 
 
 

However, from the fluence map, it is clear that much sharper 
fluence patterns can be obtained by changing the displacement 
to 0.7 mm. This potentially enables other applications such as 
region-of-interest fluence modulation and suggests additional 
design flexibility for larger classes of profiles (e.g. more 
complex objects, multiple classes, etc.).  

D. Tube Current Modulation (TCM) 

Although a variety of fluence patterns have been 
demonstrated, practical application and fitting to the desired 
fluence profiles requires proper scaling. This scaling can be 
achieved through tube current modulation (TCM). Typical 
Automatic Exposure Control (AEC) seeks to provide a constant 
fluence at the center of the detector. We have applied this 
strategy for the no filter scenario. For the MAD scenario, we 
applied the same strategy of providing constant fluence at the 
central detector pixel, through the Dual MAD and phantom. For 
comparison between the no filter and MAD filtered scenarios 
we have ensured that the total fluence (i.e., the number of 
simulated photons) incident on the phantom is constant for the 
two approaches. Specifically, TCM is scaled to enforce a total 
of 100,000 photons incident on the phantom. 

Fig. 7 shows the TCM required to convert the fluence 
generated by the MADs to the required target fluence. Without 
the MAD filter, the TCM is largest when the path length of X-
rays through the phantom is largest. The dual MAD filter has 
maximum attenuation when the fluence profile is narrow. 
Therefore, more photons are required at 0 and 180 degrees to 
flatten the fluence with MAD than at 90 or 270 degrees. The 
MAD requires higher scaling and modulation to generate the 
same number of photons incident on the phantom.  

E. Simulated Projection Data 

Figure 8 and 9 show the fluence profiles with and without the 
phantom in the field of view for the no filter and MAD filtered 
scenarios (TCM is used in both cases). In Fig. 8, we see that the 
no filter scenario can only modulate the per view number of 
photons through TCM while the dual MAD filter can customize 
both the shape and intensity of the beam. In Fig. 9, the post-
object fluence is more uniform across object projections (the 
design goal) than the no filter, TCM-only scenario. 

F. Simulated Reconstructions 

With Poisson noise added to the projection data in Fig. 9, 
filtered backprojection reconstructions were performed for both 
filtering scenarios. Results are shown in Figure 10. Both 
methods show approximately the same average noise level (as 
expected due to an equal number of incident photons). However, 
we see much greater noise uniformity in the MAD filtered 
image. This is significant if a minimum noise level is prescribed 
to obtain sufficient image quality. The TCM-only case will 
require more incident photons (hence larger dose) to obtain the 
same minimum noise level over the entire image. 

G. Ongoing and Future Work 

While these initial results suggest that dual MAD filters can 
successfully achieve a broad class of fluence patterns, we are 
seeking to extend this work to even larger classes of fluence 
patterns (e.g. different size patients). Similarly, parallel efforts 
are working to fabricate physical MAD devices and evaluate 
performance in an experimental CT system. 
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Fig. 8: Illustration of the fluence profiles received at the detector with no 
phantom in the scanner using A) no filters and AEC, and B) using optimally 
actuated and designed dual MAD filters and AEC. The space occupied by 
phantom is shown with a dotted red line. Unit are in photons.
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Fig. 9: Illustration of the projection data received at the detector with the 
phantom in the scanner using A) no filters and AEC, and B) using optimally 
actuated and designed dual MAD filters and AEC. The space occupied by 
phantom is shown with a dotted red line. Units are in photons. 

Fig. 7: Illustration of tube current modulation with and without MAD filters. 

Fig. 10: A) Filtered backprojection of phantom with no MAD filters and Dual 
MAD filters. B) Noise image with no MAD filter and Dual MAD filter 
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Abstract— Hybrid Photon Counting (HPC) detectors 

revolutionized diffraction experiments at third generation 
synchrotrons. Allowing the simultaneous measurement of X-ray 
intensities in multiple energy bins, they have the potential to do 
the same in the field of medical imaging. In order to meet the 
requirements for human CT applications and other imaging 
modalities, high-Z sensor materials with high quantum efficiency 
for X-ray energies above 100 keV have to be used. 
Characterization results of suitable CdTe- and CZT-sensors are 
presented. The readout ASIC has to support accurate spectral 
measurements at very high photon fluxes. We observe stable 
operation of CZT detectors up to 3.7∙108cts/mm2/s. We use our 
measured data as input parameters for a Monte Carlo 
simulation, which is used to predict the spectral performance at 
high rates for various pixel sizes.  
 

Index Terms—Photon Counting Detectors, Spectral Computed 
Tomography, Pixel Detectors, CdTe, CZT, Charge Summing 
 

I. INTRODUCTION 
ybrid Photon Counting (HPC) Detectors are believed to 
radically transform medical imaging from the year 2020 

onward [1]. Due to the combination of direct X-ray detection 
in the structured high-Z semiconductor sensor and single 
photon counting electronics in each pixel of the ASIC, such 
detectors offer an unprecedented combination of high 
detection efficiency, high spatial resolution (below 100 �m), 
high count rate capability (up to 3∙108 cts/mm2/s), and good 
energy resolution (2-5 keV) in an energy range from 5 to 
above 100 keV. In the field of X-ray diffraction, HPC 
detectors proved to be a disruptive technology [2] both for 
scientific and industrial applications. In addition to the 
excellent performance of the detectors, the stable and 
maintenance-free operation of thousands of systems around 
the world is a key reason for the fast spread of the technology.  
It is still questioned whether photon counting detectors can 
cope with very high photon fluxes. At typical operating 
conditions (120 kVp, 800 mA) of a clinical CT system, the 
flux can be as high as 1.6∙109 ph/mm2/s [3]. However, many 
groups have shown quite remarkable rate performance of their 
systems, see e.g. [4]. Due to the small capacitance of the 
pixelated sensor element (typically less than 100 fF) the input 
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load of the pixel amplifier is very small. Modern CMOS 
processes allow the design of low noise and still very fast 
amplifiers. The minimum shaping time � is around 20-30 ns, 
in order to collect the charge generated in the sensor. This 
allows for count rates well beyond 107 cts/pixel/s. However, 
all counting circuits suffer from pile-up effects due to the 
stochastic arrival of the X-rays.  This leads to a limitation of 
the observed count rate. Most circuits are paralyzable 
counters, which reach a maximum observed count rate at an 
incoming count rate of τ-1 counts, and the detector paralyzes 
completely in the limit of very high incoming rates. The pixel 
size of different systems varies from 55 �m up to about 500 
�m. Pixel sizes of >500 �m are not able to cope with the high 
incoming flux of CT systems. 
Another very important aspect of HPC detectors is the 
improved spatial resolution. Due to the direct detection of the 
X-rays, the modulation transfer function (MTF) is very close 
to the theoretical value of a box function point spread function 
(PSF).   The energy resolution of photon counting detectors is 
dependent on the capacitance of the sensor pixel, equivalent 
noise charge (ENC) of the preamplifier, shaper and 
comparator, on the leakage current from the sensor. Energy 
resolution is also limited by incoming rate per pixel due to 
pulse pile-up, i.e. for high rates, energy resolution is reduced. 
Thus it would make sense to make the pixels as small as 
possible. It is well known, that for small pixels more and more 
charge is shared by the adjacent pixels, and fluorescent 
photons have a higher probability of escaping the pixel, thus 
affecting the energy resolution as well. Another important 
point is the matching of a large ensemble of pixels, i.e. one has 
to look at the energy resolution of the sum of all pixels of a 
HPC detector. 
The energy resolution is not the only parameter of interest, 
because material decomposition is not only dependent on the 
energy resolution but also on the fraction of charge sharing.  
We use a quantity called Spectral Efficiency, which is the 
photo-peak to background ratio. We compute the Spectral 
Efficiency as a function of pixel size and photon flux with a 
Monte-Carlo simulation, which includes all relevant 
contributions. The simulation has been validated by detailed 
measurements.  

II. SYSTEM DESCRIPTION 

A. Sensor Materials 
Thanks to their high atomic number, II-VI semiconductor 

Cadmium Telluride (Z=50) and Cadmium Zinc Telluride 
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(Z≈49.1) offer the unique possibility to extend the detectable 
X-ray energy range up to levels unattainable with silicon 
sensors [5]. Though their wide spread has been formerly 
prevented by the poor material quality and in particular by the 
limited charge transport properties [6], in recent times they 
regained much interest due to the constant improvement of the 
growing techniques that made detector-grade material 
available [7]. In this context, DECTRIS investigated the 
feasibility of photon counting detectors featuring CdTe and 
CZT sensors and is finally able to successfully manufacture 
large area CdTe detectors with few or no defects, while CZT 
detectors are still in a prototyping phase and, though some 
further improvement are needed at the material level, show 
already promising results. 

Typical CdTe and CZT sensor range from 1 mm to 2 mm 
thickness and thanks to their wide bandgap and extremely high 
resistivity (>109 Ω·cm) can be operated in ohmic mode already 
at room temperature – with beneficial results on the 
polarization effect [8][9]. Due to the higher μ·τ product of 
electrons with respect to holes, the detectors operate in 
electron collection mode and virtually all the charge is 
collected by the front-end electronics. The scaling of the pixel 
size brings further benefits in virtue of the small pixel effect 
[10]. The limit on the energy resolving capabilities is set by 
the electronic noise and a FWHM of 2 keV at 20 keV was 
measured with a PILATUS3-CdTe [13] detector. 

In virtue of the direct photon conversion and despite the 
unavoidable charge sharing effect affecting the charge 
collection [11], the spatial resolution remains excellent. The 
impact of the charge sharing on the detector performances can 
be – under some assumptions – analytically described and 
accurate predictions can be drawn. For example, Table 1 reports 
the estimated percentage of pixel area subject to charge 
sharing (collected charge < 95%), for different pixel sizes and 
two sensor thicknesses, assuming a bias voltage of 500V. 

 
Table 1:  Estimated charge sharing area (collected charge <95%) expressed in 
percentage of the total pixel area for different pixel sizes and for two sensor 
thicknesses, under an assumed bias voltage of 500 V. 

Pixel Size 
[μm] 

Charge Sharing Area [%] 

d=1000 μm d=1500 μm 

75 54.2 76.7 
150 27.9 41.5 

225 20.3 27.9 
300 15.4 20.3 
400 11.7 16.8 
500 8.4 13 

1000 3.9 6 

It can be seen, that by doubling the pixel sixe from 75 to 150 
μm the charge sharing is reduced by almost a factor of 2. In 
order to limit the charge sharing to about 15% for a 1 mm 
thick sensor a pixel size of at least 300 �m is required. Further 
reduction of charge sharing is only achieved by the 
implementation of charge sharing correction methods in the 
ASIC. 

 

B. ASICs   
The PILATUS ASIC, which is very widely used in X-ray 

diffraction systems [12] features a pixel size of 172 μm×172 
μm and is compatible with both the hole-collection mode 
required by silicon and with the electron-collection mode 
required by high-Z sensors. High tolerance to radiation is 
achieved by design. Each pixel is equipped with a 
preamplifier, shaper and comparator with selectable threshold 
and a 20-bit counter, which provides an extra-large dynamic 
range. In order to cope with the incredible high local count-
rates at 3rd generation synchrotron sources, the count-rate 
model in the pixel was improved. In the PILATUS 3 ASIC, 
the patented instant retrigger technology allows for a non-
paralyzable counting mode, which achieves count rates above 
3∙108 cts/mm2/s [13].  

The EIGER ASIC [14] is used for applications, which 
require higher spatial resolution and higher frame rates. The 
pixel size has been shrunk to 75 μm×75 μm – with a total chip 
area of 19.3 mm×20m m – and thanks to the double-buffered 
counter the frame rate can be as high as 3 kHz.. 
 

C. Simulation 

Numerical simulations play an important role in the design 
process of an HPC ASIC, since they allow rapid evaluation of 
new concepts and optimization of important detector 
specifications like the pixel size. While analytic models can be 
used to investigate some aspects of spectral photon counting 
detectors, Monte Carlo methods are an ideal tool to model 
stochastic effects like pulse pile-up in the ASIC or 
fluorescence in the sensor material. 

A Monte-Carlo simulation framework, originally developed 
to study the effect of synchrotron bunch modes on pulse pile-
up [15], was extended to incorporate fluorescence effects in 
high-Z sensors to study the spectral response of HPCs. For the 
purpose of the presented results, a continuous beam following 
Poisson statistics is used as a source of mono- or 
polychromatic X-rays. The photo-absorption in the sensor is 
followed by the creation and propagation of secondary 
fluorescence photons. Effects of Compton scattering are 
currently not implemented. The simulation of the charge cloud 
expansion during its drift to the readout electrodes uses a 
simple diffusion model. After splitting the charge over several 
pixels, each event generates a pulse with its height being 
proportional to the amount of collected charge. The pulse 
shape is taken from a transistor level simulation of the 
preamplifier and shaper response. Pulses overlapping in time 
are linearly summed up and finally compared to a predefined 
energy threshold. The results of the Monte-Carlo were 
crosschecked with analytical models and experimental data. 
 

III. RESULTS 
We conducted a comprehensive characterization campaign 

– carried out both in our in-house laboratory and at several 
synchrotron beamlines – in order to assess CdTe and CZT 
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sensor properties and their performances when coupled to the 
different ASICs .  

A. Performance of CdTe and CZT systems 
1) Modulation Transfer Function 
The spatial resolution has been measured for a CdTe 0.75 mm-
thick photon counting detector of 75 μm pixel size and 
compared to the one of a commercial flat-panel detector of 
same pixel size, where a scintillation layer provides the photon 
conversion. Fig. 1 shows the Modulation Transfer Functions 
(MTF) of the two detectors plus the ideal case under the same 
experimental conditions – direct X-ray tube beam at 60 kVp 
filtered with 3 mm Al. At the Nyquist frequency (6.7 lp/mm) a 
MTF of >35% is achieved and at 10% MTF we get a 
resolution of 10 lp/mm.  

 
Figure 1:  Measured MTF of a CdTe 0.75 mm-thickness photon counting 
detector and of a commercial flat-panel detector equipped with a scintillation 
layer. Both systems feature a pixel size of 75 μm and are irradiated with a 
direct X-ray tube beam at 60 kVp (filtered with 3mm Al). The benefit of direct 
conversion over the indirect detection with a CMOS flat panel is clearly 
visible. 

 
2) Retrigger and Count Rate Capability  
 

PILATUS3-CdTe and -CZT count rate curves have been 
measured in the energy range 10-60 keV at the BAM beamline 
at BESSY-II synchrotron in collaboration with the PTB group. 
Figure 2 shows the measured and corrected count rate curves 
of CdTe 1 mm-thick, measured at 60 keV with the energy 
threshold at 50% and instant retrigger enabled (non-
paralyzable counting mode). The rate-corrected curves 
saturate at ~3.7∙108cts/mm2/s limited by the PILATUS ASIC. 

 
Figure 2:  Measured and corrected count rate curves for 1 mm PILATUS3 
CdTe detectors with an incoming photon energy 60 keV and a threshold at 
50%. Instant retrigger is enabled, i.e. the detector is operated in non-
paralyzable counting mode. 

B. Simulation of different system configurations  
 

The main factors affecting the spectral performance of HPC 
detectors are the finite sensor thickness, fluorescence effects in 
the sensor material, charge sharing between adjacent pixels, 
electronic noise and pulse pileup. Fig. 3 shows the influence 
of these factors on the spectrum of a W-tube operated at 120 
kVp. The sensor thickness is 1 mm of CdTe. The pixel size is 
300 μm, the equivalent noise charge 100 e- and the flux 
5∙107ph/mm2/s. The results are obtained with the Monte-Carlo 
simulation framework described above. Especially the 
fluorescence effects, the charge sharing between pixels and 
pule pileup degrade the spectral performance.  

  

  
Figure 3: Simulation of the measurement of the spectrum from a W-tube 
operated at E0=120 kVp by an HPC detector. The red dashed line shows the 
tube spectrum, the black solid line the spectrum as recorded by the detector. 
The peaks are smeared out corresponding to the energy resolution of the 
detector. The recorded low energy spectrum is increased due to fluorescence 
and charge sharing. The simulation parameters are given in the text. 

 
The most import decision during detector design concerns 

the pixel size. While large pixels reduce the detrimental effect 
of charge sharing and fluorescence, smaller pixels are less 

rate corr. ON 

rate corr. OFF 

CdTe 
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prone to pulse pile-up. Fig. 4 shows the simulated Spectral 
Efficiency for photons of 60 keV for a CdTe HPC detector as 
a function of pixel size and photon flux. The Spectral 
Efficiency (SE) is defined as the ratio of the photons counted 
in a given energy range to the total number of photons 
impinging on the sensor. The Spectral Efficiency SE in the 
energy interval (E0, E1) can be expressed as a function of the 
quantum efficiency QE: SE(E0 < E < E1) = QE(Et=E0) – 
QE(Et=E1) with Et the applied energy threshold. A constant 
pulse width of 44 ns and an equivalent noise charge of 100 e- 
are assumed. For small pixel sizes the Spectral Efficiency 
decreases due to charge sharing and fluorescence, for large 
pixels due to pulse pileup. For a typical photon flux (after 
attenuation by an object) of 5∙107ph/mm2/s, the best 
performance is achieved with a pixel size in the range of 150 
μm to 300 μm. 

 

 
Figure 4: Simulated Spectral Efficiency (SE) in the energy range 54 keV < E 
< 66 keV for monochromatic X-rays with an energy of E0=60 keV as a 
function of pixel size and incoming photon flux. For a typical photon flux of 
5x107ph/mm2/s, the optimal pixel size lies in the range between 150 μm and 
300 μm. 

C. Concept of a high rate high energy resolution system 
 
Aside from the effects of charge sharing and fluorescence, 
small pixels offer many advantages for Spectral X-ray 
Imaging. Besides the higher spatial resolution, the small pixel 
effect allows for fast charge collection and the reduced count 
rates per pixel mitigate the distortion of the spectral 
information due to pulse pile-up. To compensate for the 
splitting of the deposited charge over multiple pixels, several 
charge-summing mechanisms have been proposed [4], but 
usually they lead either to a reduced rate capability or 
decreased quantum efficiency. A simpler and faster approach 
to perform the summing could improve the spectral 
performance compared to existing charge-summing 
mechanism. First simulations of a fast summing approach for 
small pixels below 150 μm size show encouraging results. 
Spectral Efficiencies of around fifty percent at 5∙107 ph/mm2/s 
seem to be within reach. 
 

IV. CONCLUSION 
 
Spectral X-ray imaging is a very demanding application for 

Hybrid Photon Counting detectors. To achieve high quantum 
efficiency, high-Z sensors materials like CdTe or CZT have to 
be used. Our extensive characterization of these materials in-
house and at synchrotron beam lines shows that they provide 
high spatial resolution and that they are able to cope with high 
photon flux and are lag free.. Applying high bias voltages 
helps to mitigate polarization effects.  

The most challenging task for HPC detectors is to provide 
accurate spectral information at the very high photon fluxes. 
Charge sharing, fluorescence effects and pulse pileup can 
significantly degrade the quality of the recorded spectrum. A 
promising approach to tackle this challenge is the 
implementation of a fast charge summing mechanism 
combined with pixels smaller than 150 μm. The Spectral 
Efficiency of a fast summing approach has been simulated and 
the results indicate improvements over existing solutions.  

 

REFERENCES 
[1] K. Taguchi, J. S. Iwanczyik, “Vision 20/20: Single photon counting x-

ray detectors in medical imaging,” Medical Physics, vol. 40, no. 10, 
2013. 

[2] C. Broennimann, P. Trueb, “Hybrid Pixel Photon Counting X-ray 
Detectors for Synchrotron Radiation,” in Synchrotron Light Sources and 
Free-Electron Lasers, E. Jaeschke et al., Ed. B e r l i n : Springer, 2015, 
Available: http://link.springer.com/referenceworkentry/10.1007/978-3-
319-04507-8_36-1. 

[3] Shikhaliev P. M., “Medical X-Ray and CT Imaging with Photon-
Counting Detectors,” in Radiation Detectors for Medical Imaging, S. J. 
Iwanczyik, Ed., pp. 47–80 , CRC Press 2015. 

[4] Ballabriga R., et al., “Review of hybrid pixel detector readout ASICs for 
spectroscopic X-ray imaging”, Journal of Instrumentation, vol. 11, 
P01007, 2016. 

[5] C. Szeles, “CdZnTe and CdTe materials for x-ray and gamma ray 
radiation detector application,” Phys Stat. Sol.,vol. 241, pp. 783–790, 
2004. 

[6] G. Ottaviani, et al., “Charge carrier transport properties of 
semiconductor materials suitable for nuclear radiation detectors,” IEEE 
Trans. Nuclear Science, vol. NS-2, pp. 192–204, Feb. 1975. 

[7] S. Del Sordo, et al., “Progress in the development of CdTe and CdZnTe 
semiconductor radiation detectors for astrophysical and medical 
applications,” Sensors, vol. 9, pp. 3491–3526, 2009. 

[8] A. Cola, et al., “The polarization mechanism in CdTe Schottky 
detectors,” Applied Physical Letters, vol. 94, 2009. 

[9] R. Grill, et al., “Polarization study of defect structures of CdTe radiation 
detectors,” IEEE Trans. Nuclear Science, vol. 58, pp. 3172–3181, Dec. 
2011. 

[10] M. D. Wilson, et al., “Investigation of the small pixel effect in CdZnTe 
detectors,” 2007 IEEE Nucl. Science Symp. Conference Records, N24-
108, pp. 1255–1259, 2007. 

[11] K. Mathieson, et al, “Charge sharing in silicon pixel detectors,” Nucl. 
Instrum. and Meth. A, vol. 487, pp. 113-122, 2002. 

[12] E. F. Eikenberry, et al, “PILATUS: a two-dimensional X-ray detector 
for macromolecular crystallography,” Nucl. Instr. and Meth. A, vol. 501, 
pp. 260–266, 2003. 

[13] T. Loeliger, et al., “The New PILATUS3 ASIC with Instant Retrigger 
Capability,” 2012 Nucl. Science Symp. Conference Records, N6-2, pp. 
610–615 , 2012. 

[14] R. Dinapoli, et al., “EIGER: Next generation single photon counting 
detector for X-ray applications,” Nucl. Istr. and Meth. A, vol. 650, pp. 
79–83, 2011. 

[15] P. Trueb et al., “Bunch mode specific rate corrections for PILATUS3 
detectors,” J. Synchrotron Rad., vol. 22, no. 3, pp. 701–707, May 2015.

 

The 4th International Conference on Image Formation in X-Ray Computed Tomography

36



Simultaneous spectral scaling and basis material map
reconstruction for spectral CT with photon-counting

detectors
Emil Y. Sidky1, Taly Gilat-Schmidt2, Rina Foygel Barber3, Wooseok Ha3, and Xiaochuan Pan1

Abstract—Photon-counting detectors are being investi-

gated for use in spectral computed tomography (CT). The

main advantage is that transmitted X-ray photon counts

can be measured simultaneously in several energy windows.

This capability is potentially useful for spectral CT when

more than two basis images are desired as would be the

case for the use of K-edge contrast agents [1,2]. An impor-

tant practical issue for spectral CT with photon-counting

detectors is accurately calibrating the spectral response of

each of the detector pixels. Slight mis-calibrations result in

prominent ring artifacts in the basis images. In this abstract

we report on an image reconstruction algorithm for spectral

CT that yields the basis maps while simultaneously solving

for scaling factors for each of the detector pixel spectra. By

including the spectral factors in the reconstruction process

the pixel spectra receive small adjustments that reduce

ring artifacts. The proposed algorithm is demonstrated on

experimental spectral CT data.

I. INTRODUCTION

We have recently developed a general algorithm for
spectral CT image reconstruction that can perform im-
age reconstruction of basis material maps from energy-
windowed X-ray transmission data while incorporating
convex constraints [3,4]. The algorithm is based on a
large-scale first order solver for some forms of nonconvex
optimization problems – the mirrored convex/concave
(MOCCA) algorithm [3]. Use of the MOCCA algorithm
on spectral CT allows for one-step inversion of the spectral
CT data model going from photon count data directly to
basis material maps. This approach differs from the more
usual two-step processing, where the X-ray photon count
data are pre-processed to material sinograms which are
then fed into standard reconstruction algorithms [2]. For
the purpose here, the one-step reconstruction is employed
to exploit a bound on the material map total variation (TV)
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2Marquette University, Department of Biomedical Engineering, PO
Box 1881, Milwaukee WI, 53201.

3The University of Chicago, Department of Statistics, 5734 S.
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to constrain the inversion from count data to material maps
for experimental spectral CT data.

In performing image reconstruction on spectral CT data
with a photon-counting detector it is crucial to have accu-
rate calibration of the spectral response of each detector
pixel. Because the spectral response varies with each
pixel, slight calibration errors can cause prominent ring
artifacts. For this reason, we propose to allow for limited
auto-calibration of the spectral response in the image
reconstruction by including scaling factors for each energy
window of each detector pixel. The spectrum scaling
is seen to reduce the ring artifacts in the reconstructed
material maps.

The data model including the spectrum scaling factors
and the theory of the spectral CT image reconstruction
is presented in Sec. II. Results for experimental spectral
CT data are shown in Sec. III. A comparison of the
reconstructed material maps with and without the use of
spectrum auto-scaling is shown.

II. METHODS

To model the spectral CT data, we allow for each
detector pixel to have its own spectral response Sw,j(E)
for each energy window

Iw,s,u =

∫
dE Sw,u(E) exp

[
−
∫
�(s,u)

dt μ(E,�r(t))

]
,

(1)
where Iw,s,u is the transmitted X-ray photon fluence along
ray �(s, u) in energy window w for X-ray source and
detector bin location s and u, respectively; t is a parameter
indicating location on �(s, u); Sw,u(E) is the spectral
response at the detector bin u in energy window w; and
μ(E,�r(t)) is the energy and spatial dependent linear X-
ray attenuation coefficient. In the experiment Sw,u(E) is
not known a priori, and it is determined by measuring
X-ray transmission through a phantom of known shape
and composition [5]. As is standard, we employ a basis
material decomposition to model the attenuation map

μ(E,�r(t)) =
∑
m

(
μm(E)

ρm

)
ρmfm(�r[t]), (2)
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where ρm is the density of material m; μm(E)/ρm is the
mass attenuation coefficient of material m; and fm(�r) is
the spatial map for material m.

To obtain the final data model, we combine Eq. (1) with
Eq. (2), discretize all integrations, and include parameters
αw,u that allow for the fact that there is error in the
experimentally determined spectra Sw,u(E). The counts
model becomes

Iw,s,u =
∑
i

Sw,u,i exp

⎡⎣−αw,u −
∑
m,k

μm,iXs,u,kfm,k

⎤⎦ ,
(3)

where Sw,u,i = Sw,u(Ei); μm,i = μm(Ei); Xs,u,k

represents X-ray projection along the ray �(s, u); and
fm,k is the pixelized material map with k indexing pixel
number. The unknowns in the model are the spectrum
scaling coefficients αw,u and the material maps fm,k, and
image reconstruction is comprised of determining these
unknowns from measured values for Iw,s,u. Note that the
scaling factors are put in the exponential. We formulate the
scaling in this way because all the unknowns are combined
linearly in the argument of the exponential and thus no
change is required in the MOCCA algorithm for solving
optimization problems involving this data model.

Constrained transmission Poisson likelihood maxi-
mization: Maximizing a Poisson likelihood model for the
transmitted photon counts is equivalent to minimizing the
following data fidelity function

DTPL(I, c) =
∑
w,s,u

[
Iw,s,u − cw,s,u − cw,s,u log

Iw,s,u

cw,s,u

]
,

(4)
where cw,s,u are the measured counts in energy window
w along ray �(s, u). We employ TV constraints on the
material maps to perform sparsity regularization in the
material map gradient. We also constrain the magnitude of
the spectrum scaling vector α. The complete optimization
problem that we use for performing the image reconstruc-
tion is

f�, α� =argmin
f,α

DTPL ((I(f, α), c) (5)

subject to ‖α‖2 ≤ δ; (6)

and ‖∇fm‖1 ≤ γm for m = 1, . . . ,M,

where the constraint parameter δ bounds the spectrum
scaling parameters α and γm is the TV constraint param-
eter for the material map m. The parameter M is the total
number of material maps.

We favor use of TV constraints in formulation of this
problem over TV penalties because changing the TV
constraint parameter for one basis material map does not
alter the TV of other material maps. Use of a penalization

formulation may yield more complicated parameter de-
pendences as changing the TV penalty parameter for one
material map results in affecting the TV for all material
maps.

The optimization problem of interest in Eq. (5) is
nonconvex due to the nonconvexity of DTPL ((I(f, α), c)
as a function of f and α. This nonconvexity results from
the fact that the second derivative of the counts model
in Eq. (3) with respect to components of f and α can be
negative. Because the constraints are convex, this problem
does fit within the MOCCA framework as applied by us
previously to image reconstruction in spectral CT [4].

The simultaneous determination of the spectrum scaling
vector α and material maps fm depends on the choice
of M + 1 constraint parameters γm and δ. We aim to
select these parameters in such a way that we accurately
estimate the basis material coefficients in a quantitative
sense. We hypothesize that the best values of γm and δ can
be found through validation. For validation we randomly
select 10% of the data – the testing data– to leave out
during the reconstruction. The image reconstruction is
performed on the remaining 90% of the data – the training
data. Reconstruction is performed with the training data
varying the parameters γm and δ and the data fidelity DTPL

is evaluated on the testing data and we select the constraint
parameters by

γm, δ = argmin
γm,δ

DTPL
(
I (testing)(f�, α�), c(testing)) .

Performing the optimization over γm, δ can be too time-
consuming for a basic grid search because evaluating each
point in the search involves solving Eq. (5). For the work
here we employ the simplex-based COBYLA algorithm,
which is standard solver that does not require computation
of numerical derivatives [6].

III. RESULTS

Experimental spectral CT data were performed on
a bench-top X-ray system with a photon-counting
Cadmium-Zinc-Telluride (CZT) detector (NEXIS,
Kromek) comprised of 192 detector pixels. Transmitted
photon counts were acquired in three energy windows
with a nominal setting of [25-50], [50-60], [70-100] keV.
The actual spectral response for each energy-window
and detector pixel was estimated from transmission
measurements through 25 known combinations of
Poly(methyl methacrylate) (PMMA) and Aluminum. For
the spectral CT data set, 200 views were acquired of a
6.35cm-diameter PMMA cylinder that included empty
(Air), Teflon, and low-density polyethylene (LDPE)
inserts. The image reconstruction was performed as
described above using two basis materials, Aluminum
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and PMMA. Validation was used to select the constraint
parameter values γAl, γPMMA, and δv . After obtaining
these validated constraint parameters the reconstruction
is performed with the full data set.

Shown in Fig. 1 are the reconstructed material maps
from the three-window spectral CT data. The theoretical
coefficients are shown in the top row of Fig. 1 for
reference. The material maps obtained with the validated
constraints values γAl, γPMMA, and δv show minimal ring
artifacts, but there is error in the reconstructed material
map coefficients. Most notable are the gray values cor-
responding the the PMMA rod and background cylinder;
this material should appear only in the PMMA image.
Overall the shifts in gray level from the theoretical values
are likely due to missing physics in the imaging model. In
an attempt to reduce the high spatial frequency artifacts,
we show images for the material maps with tighter TV
constraints: γAl/2, γPMMA/2, and δv. The high frequency
artifacts are clearly reduced, but there is also an impact
on the reconstructed gray levels. In particular the back-
ground PMMA cylinder appears noticeably darker (more
negative) in the Aluminum map than the images obtained
by the validation constraints. To see the impact of the
use of the spectral scaling factors, images are shown for
reconstruction without these factors while still employing
the TV constraints with parameters γAl, and γPMMA. The
TV constraints still have a regularizing effect in this case,
but ring artifacts are visible.

In order to obtain a sense of the spectrum response
calibration and the estimated spectrum scaling, we show
results in Fig. 2 for a single view in the lowest energy
window. In the top plot, where the raw photon counts
are normalized to the incident average photon count, it
is seen that there is substantial variation at the level of
the integrated spectral response across the detector pixels.
There is an equally large variation in the normalized
spectra (not shown). The normalized count values are also
shown after incorporating the calibrated spectral response
for each detector pixel. It is seen that the rapid variations
from pixel to pixel are substantially reduced. Finally, the
spectrum scaling factors are shown that are estimated
simultaneously with the basis material maps. The factors
indicate corrections on the level of a couple percent.

IV. SUMMARY

We have applied the MOCCA algorithm to spectral CT
image reconstruction with data acquired with a photon-
counting detector using three energy windows. The spec-
tral CT data model is calibrated by use of transmission
measurements of a phantom of known composition and
dimensions. The MOCCA reconstruction includes simul-
taneous determination of the basis material maps and

Aluminum map PMMA map

Fig. 1. Reconstructed material maps for the Aluminum (Left) and
PMMA (Right) basis materials. The Aluminum map is shown in a
gray scale window [-0.1,0.2] cm−1, and the PMMA map is show in a
gray scale window [0.5,1.5] cm−1. The rod inserts are: Air (top left),
Teflon (top right), PMMA (bottom right), and LDPE (bottom left). The
background cylinder is PMMA. The top row indicates the coefficient
values for the phantom. The second row shows the reconstructed
material maps for the constraint values γAl, γPMMA, and δv obtained
by validation. The third row shows the reconstructed material maps
for tighter TV constraints: γAl/2, γPMMA/2, and δv. The fourth row
shows the reconstructed material maps without allowing for spectrum
scaling: γAl, γPMMA, and δ = 0.

spectrum scaling factors. Including the latter allows for
reduction of ring artifacts in the images. Also of interest
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Fig. 2. Top graph shows the raw and calibrated X-ray photon counts
in the lowest energy window for the first projection view; the photon
counts are normalized to the incident counts. The bottom graph shows
the estimated scaling factors obtained from the MOCCA reconstruction,
plotted is exp(−αw=1,u).

is the ability to perform quantitative measurements, which
could potentially be useful for tissue identification in the
tomographic images. We employ validation to obtain the
constraint parameters, and we observe errors in the basis
material gray levels on the order of 0.05 cm−1.

The error seen in the experimental results can originate
from physics outside of the model used for the image
reconstruction. For example we have not included X-ray
scatter nor a number of detector-physics issues [7] such as
pulse pile-up and charge-sharing (although it is possible
that some accounting of the detector physics is implicitly
performed by estimating an effective spectral response).
There is also the possibility of error within the spectral
CT model used. That the phantom is decomposable into
two basis materials is only approximately true. Also, the
calibrated spectra can have error or the spectral response
of the detector pixels can drift with time. The computation
of spectrum scaling factors may only partially compensate
for these errors, since they do not change the shape of the
spectral responses.

At the meeting, in addition to showing image recon-
struction from experimental spectral CT data, we will
show simulation results that investigate error reduction
within the spectral CT model. Namely, we will show re-
sults with more than two basis materials and higher order
correction to experimentally determined spectral response.
Furthermore, we will show simulation results testing the
use of validation for obtaining constraint parameters that
yield images with minimal bias.
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Penalized Likelihood Decomposition for Dual Layer
Spectral CT

Bernhard Brendel1, Frank Bergner1, Kevin Brown2, Thomas Koehler1

Abstract—Dual layer CT systems are spectral CT systems,
which acquire for each scan spatially and temporally synchronous
spectral projection data. This has the advantage that spectral
evaluations can be done retrospectively for every scan (even if
the scan was initially not intended to deliver spectral results), and
that material decomposition can be done directly in projection
domain. The material decomposition in projection domain avoids
inherently beam hardening artifacts, which is not the case for
decomposition approaches in image domain [1]. Since material
decomposition is an ill-posed nonlinear problem that amplifies
noise of the native projection data and may generate bias, noise
reduction in the projection domain is helpful to reduce noise
streaks as well as bias in the reconstructed material images. An
algorithm that combines material decomposition and noise reduc-
tion is introduced in this abstract. The algorithm, which is called
Penalized Likelihood Decomposition (PL-Decomp), is derived in
detail, and its performance and properties are illustrated.

I. INTRODUCTION

CONVENTIONAL clinical CT has a number of drawbacks
and limitations (e.g., beam hardening artifacts), which

are due to the fact that the acquired projection data represents
the attenuation properties of the object to be imaged for X-ray
radiation of only one polychromatic spectrum. These draw-
backs can be overcome if the acquired projections represent
attenuation properties for at least two different X-ray spectra.
This allows furthermore to derive additional attenuation prop-
erties of the object, including the derivation of quantitative
attenuation values for different X-ray energies as well as
discrimination and quantification of materials with different
attenuation properties within the object.

Thus, techniques to acquire CT projection data represent-
ing different X-ray spectra have been developed in the last
decades, embraced by the term “spectral CT”. In recent
years, CT systems using two different polychromatic spectra
have been implemented, so called “dual energy” CT systems.
The choice of two different spectra makes sense, since the
attenuation of X-rays in the human body is mainly based on
two physical processes, namely the photo-electric effect and
Compton scattering. Examples for dual energy CT systems
are “dual source” systems [2], “kVp-switching” systems [3],
and “dual layer” systems. In the latter case, X-ray detectors
are utilized that can differentiate different X-ray spectra on the
detection side of the system [4], [5]. The usage of such energy
resolving detectors has the advantage, that two projections
under the same projection angle are acquired simultaneously

1 Philips GmbH Innovative Technologies, Research Laboratories, Hamburg,
Germany

2 Philips Healthcare, Cleveland, OH

representing spectrally different attenuation spectra of the
object. Thus, for dual layer acquisitions the above mentioned
decomposition into different materials (e.g., water, calcium,
iodine, etc.) can be done directly on the projection data, since
spatially and temporally matching acquisitions for both X-ray
spectra are available.

For this, the attenuation line integral values derived from the
two simultaneously acquired detector measurements of the two
layers are transformed to material line integral values of two
materials by a “material decomposition” [6], [7].

Basically, the energy dependent total x-ray attenuation
μ(�x,E) in a volume is attributed to attenuation due to the
photo-electric effect and due to Compton scattering:

μ(�x,E) = ap(�x)μp(E) + as(�x)μs(E) , (1)

where the coefficients ap(�x) and as(�x) describe the spatial
distribution of the contribution of the photo-electric effect
and Compton scatter to the total linear attenuation, and the
attenuation spectra μp(E) and μs(E) represent the energy
dependent attenuation of x-ray radiation for photo-electric
effect and Compton scatter. The two images quantifying ap(�x)
and as(�x) are called the photo-electric effect image (or shorter
the photo image) and the scatter image, respectively.

For any line L parametrized by a source position �s and a
normalized direction vector �n pointing to a detector pixel, the
expected measurement of the detector layer k ∈ {1, 2} is

Ik =

∫
Sk(E) exp (−mpμp(E)−msμs(E)) dE (2)

with

mp =

∫
L

ap(�s+ l�n) dl ms =

∫
L

as(�s+ l�n) dl (3)

being the energy-independent line integrals of the photo image
and the scatter image, respectively. In Eq. (2), the “effective
tube spectra” Sk(E) denotes the product of spectral x-ray
photon fluence and the detector absorption efficiency of the
two layers indexed by k.

The processing step of estimating the material line integrals
m̂p and m̂s from noisy measurements I1 and I2 is called
“material decomposition”. Since two unknowns are estimated
from two measurements, the decomposition represents a prob-
lem with a unique exact solution for a reasonable choice
of materials. Different algorithms are thinkable to find these
solutions. Here, a lookup-table based approach is used, called
“conventional decomposition” in the following.

Since the energy dependencies μp(E) and μs(E) are similar
in the x-ray energy range used for medical CT, and the
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effective spectra S1(E) and S2(E) for the two detector layers
overlap, the decomposition step is an ill-posed problem. Due to
that, the estimated values mp and ms for the true line integrals
m̂p and m̂s suffer from amplified and anti-correlated noise.
Furthermore, since the material decomposition is a nonlinear
function, the material line integrals are affected by a bias:
While the noise affecting the measured intensities has a zero
mean value, the noise affecting the decomposed line integrals
has a non-zero mean value due to the non-linearity of the
decomposition. This bias can lead to deviations of quantitative
values in reconstructed material images. In the following, an
algorithm is described that decomposes the measured line
integrals to material line integrals, and at the same time
reduces the noise and bias in the material line integrals.

II. METHODS

The decomposition algorithm introduced here is a penalized
likelihood method (called PL-Decomp in the following) based
on a cost function comprising a data term and regularization
terms. The decomposition is performed by minimizing the cost
function. In the following spectral forward model, data term,
regularization terms, and cost function, as well as a suited
minimization algorithm are briefly described.

A. Cost Function

1) Spectral Forward Model: In the following, the spectral
forward model as given in equation (2) is used:

Iki =

∫
Ski(E) exp (−mpiμp(E)−msiμs(E)) dE (4)

where i indexes the measurements.
2) Data Term: In the data term the negative log-likelihood

is utilized. For the noise model it is assumed that the noise
in the measurements of different detector pixels/layers is not
correlated [8]. Furthermore, a Gaussian noise distribution is
assumed, leading to the following weighted least square data
term for the negative log-likelihood:

D =
1

2

∑
i,k

N2
ki0

σ2
ki

(
exp(−l̂ki)− exp(−lki (mpi,msi))

)2
(5)

l̂ki are the measured line integral values of the two detec-
tor layers, and σ2

ki are the variances of the corresponding
measured intensities. Nki0 represents the effective number of
photons interacting with layer k for measurement i without
object. Thus, Nik0 exp(−l̂ki) converts the line integrals to
intensities. lki (mpi,msi) are the line integral values that can
be derived from the intensities calculated with the forward
model in equation (4):

lki (mpi,msi) = − ln

(
Iki∫

E
Ski(E) dE

)
(6)

3) Regularization Terms: Two regularization terms are used
here. One term penalizes differences between neighboring
pixels:

RG =
∑
i

[(∑
l∈Ni

wpilΨ(mpi −mpl)

)2

+

(∑
l∈Ni

wsilΨ(msi −msl)

)2 ] 1
2

(7)

Ni is a neighborhood of pixels around the pixel with the index
i, wpil and wsil are weighting factors that define the influence
of each neighbor, and Ψ is the Huber potential function [9],
which is essentially a quadratically disturbed absolute value
function, parameterized by a parameter δ.

The second term has the same form, but utilizes instead
of the difference a 1D Laplace operator [-1 2 -1] for two
symmetric neighbors l1 and l2 around the central pixel i:

RL =
∑
i

[⎛⎝ ∑
l1,l2∈Ni

wpilΨ(2 ·mpi −mpl1 −mpl2)

⎞⎠2

+

⎛⎝ ∑
l1,l2∈Ni

wsilΨ(2 ·msi −msl1 −msl2)

⎞⎠2 ] 1
2

(8)

The regularization term given in equation (7) is called
Gradient-Huber regularization, and the regularization term
given in equation (8) is called Laplace-Huber regularization
in the following. The reason for using the additional Laplace-
Huber regularization term is briefly discussed in the results
section.

4) Cost Function: The cost function is the sum of the data
term given in equation (5) and the regularization terms given
in equations (7) and (8), with two additional weighting factors
to adjust the influence of the two regularization terms:

L = D + β · ((1− α) ·RG + α ·RL) (9)

While β adjusts the overall regularization strength, α balances
the influence of Gradient-Huber regularization and Laplace-
Huber regularization.

B. Optimization
An optimization method based on the ICD (iterative coor-

dinate descent) optimization [10] is utilized here. The ICD
algorithm is an iterative method, where in each iteration the
cost function is optimized for each unknown separately. The
main disadvantage of ICD is that it is hard to parallelize,
since a huge number of optimization problems have to be
solved sequentially, if the cost function is not separable with
respect to the unknowns. The main advantage of ICD is
that it converges in many cases much faster than methods
with simultaneous update. In the case considered here, the
original ICD iteration is modified with respect to two aspects:
Firstly, the original optimization problem is not split into 1D
optimization problems, but into 2D optimization problems,
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namely for each pair of unknowns mpi and msi of one
measurement i. Thus, optimization is a bit more difficult.
However, since mpi and msi are correlated in the data term,
the 2D optimization is expected to converge much faster than
two separate 1D optimizations for mpi and msi. Secondly,
the optimization is parallelized nonetheless, since the cost
function is separable with respect to the unknowns of each
projection, if regularization is only done with neighbors within
one projection. Furthermore, the cost function is separable for
certain sets of detector pixels within one projection. These sets
are constructed such that the neighborhoods of pixels used in
the regularization do not overlap for any two pixels in the set.
Since the optimization can be done for all separable unknowns
simultaneously, it is done here with a considerable degree of
parallelization.

The 2D search for each pair of unknowns mpi and msi

is solved with a line method in multidimensions [11]. The
most straight forward option for this is a gradient descent
optimization, but this yields for the given cost function of-
ten slow convergence. Another method that is known to be
faster in many cases is the Newton method [11], that utilizes
apart from the gradient the Hessian to determine the search
direction. However, the Newton method works only for convex
regions of the function to optimize, and thus may fail to deliver
a real descending direction for the non-convex cost function
given here. Thus, a hybrid approach is applied: If the direction
determined with the Newton method is a descending direction,
it is used as search direction, otherwise the negative gradient
is used. If the following criterion is fulfilled, the direction
determined with the Newton method is a descending direction:

∇(L)TH−1(L)∇(L) > 0 (10)

where ∇(L) is the gradient of the cost function L, and
H−1(L) is the inverse Hessian. Once a search direction is
determined, a golden section line search is performed (see [11]
for details).

ICD is known to converge fast on high spatial frequencies
and slow on low spatial frequencies. This is due to the fact
that optimization is done for each detector pixel separately. In
order to speed up the convergence for low spatial frequencies,
another modification of the ICD method is implemented: After
each full iteration of ICD the difference between the current
output and the output of the last ICD iteration is used as
search direction for a simultaneous optimization of all pixels
in all views. The optimization is done with a 1D line search
in multidimensions (see [11] for details).

C. Simulated Data

For evaluation purposes, a polychromatic simulation of a
cylindrical water phantom with a number of calcium and
iodine inhomogeneities (see Fig. 1) is done for the two detector
layers. Subsequently, independent Poisson noise is realized
to the signal for each detector layer. Details of phantom and
simulations are described in [12]. Here the simulation for the
“real detector” scenario detailed in [12] is applied.

photo scatter

Fig. 1. Phantom for simulations: Photo image (left) and scatter image (right).

III. RESULTS

A. Impact of Regularization Terms on PL-Decomp
In Fig. 2 the impact of the PL-Decomp processing on a

photo projection is visualized. To the left the output of a con-
ventional decomposition is shown. The result of PL-Decomp
utilizing only the Gradient-Huber regularization is presented in
the middle. The projection has a significantly lower noise level,
but some noise-spikes are left, which would lead to streaks in
reconstructed images. These noise peaks could be removed by
increasing the strength of the Gradient-Huber regularization,
but this would potentially lead to a loss of details in the
reconstructed images. If additionally to the Gradient-Huber
regularization the Laplace-Huber regularization is applied, the
spikes are removed efficiently, as illustrated in Fig. 2 on the
right.

B. Performance of PL-Decomp
In Fig. 3 reconstructed images for material line integrals

generated with a conventional decomposition and with PL-
Decomp are shown, together with illustrations of the biases
in these images. The bias images are generated by taking the
difference between the reconstructed images and the known
phantom ground truth. For better visualization of the bias,
these difference images are smoothed with a moving average
filter within the slices. Clearly, the noise level in the images
decomposed with PL-Decomp is significantly lower. Remain-
ing noise can be removed in image domain, e.g. with methods
described in [12]. Furthermore, the bias that occurs for the
images reconstructed from a conventional decomposition is
significantly reduced when PL-Decomp is applied.

IV. CONCLUSION

One of the central steps of spectral CT data processing
is the material decomposition. For a dual layer CT system
this can be done in projection domain, converting measured
intensities to material line integrals. This decomposition is an
ill-posed nonlinear problem, causing noise amplification and
bias in the reconstructed material images. To address these two
problems, a combined decomposition and denoising method
called penalized likelihood decomposition (PL-Decomp) has
been introduced. It has been shown that PL-Decomp efficiently
reduces noise and bias compared to a conventional decompo-
sition.

The 4th International Conference on Image Formation in X-Ray Computed Tomography

43



A B C

Fig. 2. Photo projection for different decomposition methods. A) Conven-
tional decomposition B) PL-Decomp with Gradient-Huber regularization C)
PL-Decomp with Gradient-Huber and Laplace-Huber regularization.
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Abstract—In this work, we suggest a method for obtaining
angular oversampling and anti-aliasing filtration of the angular
signal in continuous rotation CT by utilizing the overcapacity
of the integrated circuit (ASIC) on a photon-counting detector.
The ASIC on the detector can sample the photon counters at
a higher rate than the read-out can handle. Previously, the
sampling rate in the ASIC has been adapted to the read-out
rate, but now we propose that the higher sampling rate in the
ASIC is maintained and that a digital low-pass FIR filter is used
for decimation to match the read-out capability. The method
increases the modulation transfer function (MTF) of the angular
(temporal) signal with up to 40% and reduces the risk of angular
aliasing artifacts in the reconstructed image.

Index Terms—computed tomography, oversampling, anti-
aliasing, photon-counting

I. INTRODUCTION

Insufficient angular sampling in CT leads to impaired spatial
resolution and risk of aliasing artifacts and many techniques
have been developed in order to handle data with sparse
angular sampling[1], [2], [3].

In continuous rotation CT, the angular sampling rate is
determined by the frame time and the rotation speed of the
gantry via Δθ = ωΔt, where Δt is the frame time and ω
is the angular velocity of the gantry. In order to increase the
number of angular samples, it is necessary to either decrease
the frame time, which leads to an increased amount of data per
second, or to decrease the rotation speed, which leads to more
motion artifacts and longer scan times. The angular sampling
rate in today’s CT systems is generally limited by the rate
at which data can be read out from the detector. Meanwhile,
procedures that require high rotation speed, such as cardiac
and perfusion imaging, are becoming more common[4]. If the
angular sampling rate is insufficient and aliasing occurs, the
only way to remove the aliasing is by suppressing the signal at
the aliased frequencies, which compromises the image quality.

Photon-counting detectors are an interesting alternative to
today’s energy integrating detectors used in CT. The potential
benefits include: spectral imaging, better trade-off between
noise and dose and improved spatial resolution[5], [6].

We are currently developing a spectral photon-counting
silicon-strip detector for x-ray computed tomography[5], [7].
The detector (shown in Fig. 1) consists of a silicon wafer with
read-out electrodes on a 2D grid. Each individual electrode is

(a)

Figure 1: A photon counting silicon detector with three ASICs
visible on the right side. Each ASIC has 150 channels con-
nected to individual electrodes on the silicon wafer.

connected to a subsequent channel in an ultra-fast ASIC (ap-
plication specific integrated circuit), mounted on the detector
module [8]. Each ASIC channel comprises an analog channel,
pulse-height comparators and a digital channel. When an x-
ray interacts in the range of an electrode, the deposited energy
is converted into an electric pulse. The pulse is processed by
the analog part of the corresponding ASIC channel and the
pulse-height comparators are used to determine the energy of
the pulse. Finally, in the digital part, a counter corresponding
to the highest triggered comparator is incremented. The digital
part of the ASIC counts the number of detected pulses during
the frame time and the counters are read out in parallel once
per frame.

The AISC on the detector can sample the photon counters
at a higher rate than the read-out can handle. Previously, the
sample rate in the ASIC has been adapted to the capacity of the
read-out. In this paper, we propose that the high sample rate in
the ASIC is maintained and that the signal is preprocessed by
a digital FIR filter in the ASIC before being downsampled and
read out to the storage module. The method both reduces the
risk of aliasing and increases the modulation transfer function
(MTF) of the angular (temporal) sampling process. This paper
contains a theoretical evaluation of the proposed method.
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II. METHODS

A digital FIR (finite impulse response) filter for decimation
[9], [10] is implemented in the ASIC on the photon counting
detector. The choice of a FIR filter, and not a IIR (infinite
impulse response) filter for example, is based in that the filter
has to be linear phase, such that the the relative phase of the
input is conserved. The goal for the FIR filter is to suppress
the frequency content above Nyquist frequency of the data
read-out such that aliasing is mitigated [11]. The filtration is
implemented by convolution, and the signal is downsampled
by returning every second sample of the filtered signal.

A. The filter process

A first-in, first-out (FIFO) memory on the ASIC can be used
to store the 2M + 1 latest samples. Lets call the elements
in the memory f̂ , where the first element is the oldest. The
convolution kernel can be stored in a static memory on the
ASIC as the vector ĝ, which has finite support in the set
{−M,−M + 1, ...,M − 1,M}. After the acquisition and
storage of the sample i+M , the filtered value of the sample
at i can be computed by the sum:

f̂filtered[i] = f̂T ĝ =
M∑

j=−M

f̂ [j]ĝ[i− j] (1)

B. Filter design

Now assume that the data has to be N times decimated
before being read out. The cut-off frequency, fc, of the low-
pass filter should then lie at 1/2N of the original sampling
frequency in order to lie at the Nyquist frequency of the
decimated signal.

The ASIC filter is required to have a high stop-band
attenuation in order to remove the frequency content which
otherwise would cause aliasing in the decimated signal. The
attenuation in the pass-band is not as important since it can
be reversed after the read-out by, for example, dividing the
Fourier transform of the signal from the ASIC by the transfer
function of the ASIC filter (G(ξ)):

f̃(t) = F−1

(
F (f̂filtered(t))(ξ)

G(ξ)

)
, (2)

This is possible without blowing up the noise since both the
noise and the signal are subject to the same filtration, i.e. the
signal-to-noise ratio (SNR) per frequency is conserved in the
filtration process. This allows using a non-ideal filter as long as
the requirement on the stop-band attenuation is fulfilled, which
is cheaper in terms of required memory and computation than
a near-ideal filter. A suitable approach to filter design is that
proposed by McClellan and Parks [12] in which the optimal
FIR filter is found under a set of constraints on the desired
pass-band and stop-band ripple.

In this preliminary study, we implement a windowed sinc
kernel, which approaches an ideal low-pass filter for wide win-
dows, in order to demonstrate the effect filtering without also

implementing a post processing step such as that described by
Eq. 2. The windowed sinc kernel is given by

g(i) = w(i) sinc(2πfci) = w(i)
sin(2πfci)

2πfci
,

where fc is the cut-off frequency. Here we will use a Blackman
window, given by

w(i) = 0.42− 0.5 cos(πi/M)

+ 0.08 cos(2πi/M) for i = 0, 1, 2, .., 2M

The length of the kernel (2M + 1) determines the quality
in terms of pass-band ripples and how fast the filter drops
after the cut-off frequency. The implementation of a 2M + 1
long linear phase filter for decimation by a factor of 2 requires
M/2+1 multiplications (every second filter coefficient is zero
and the symmetry of linear phase filters can be used by first
adding the values which are to be multiplied by the same
factor) and M additions. Also, this requires storing 2M + 1
samples in a FIFO memory and storing the M/2+1 non-zero
unique elements of the filter kernel in a static memory. With
filter optimization, the filter length can be reduced and the
number of operations minimized.

C. Simulation

The modulation transfer functions (MTF) of the sampling
process with and without applying a FIR filter were simulated.
In the simulation, an analytical input signal consisting of a
windowed sinusoid was used and the sampling was emulated
by integrating the analytical signal over the duration of a
frame. An example of a simulated signal is shown in Fig.
2a. The output signal without preprocessing was created by
simply summing every consecutive pair of samples, emulating
a twice as long frame time. The simulated FIR filter was a
windowed sinc kernel designed for decimation by a factor of
2. The length of the kernel was 2M+1 with M = 100, which
makes it a near-ideal low-pass filter. To simulate the MTF,
the frequency of the input sinusoid was incremented and the
modulation transfer was estimated by integrating the Fourier
transform of the output signal over a small interval near the
input frequency.

To prove the concept in a CT imaging case, a mathematical
phantom, consisting of an off-center 2D Gaussian, is imaged.
The angular signal with and without AISC filter were created
in the same way as when simulating the MTF (described
above). The image was simulated without noise in order to
emphasize the artifacts. The FWHM of the Gaussian was
gradually decreased until aliasing artifacts were visible in the
reconstruction without ASIC filter. The images were recon-
structed by filtered back-projection using the MATLAB (2012,
The Mathworks Inc., Natick, MA) iradon function with a Ram-
Lak filter and linear interpolation.

III. RESULTS

The resulting MTFs, with and without applying the FIR
filter, are shown in Fig. 2b. The FIR filter increases the MTF
for all frequencies in the pass band, the largest increase being
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Figure 2: a) The simulated signal input (a windowed sinusoid)
used to simulated the MTF. b) The simulated MTF of the
sampling process with and without ASIC preprocessing. The
frequency axis is scaled to the output data rate, i.e. the Nyquist
frequency lies at 0.5.

for frequencies close the Nyquist frequency, for which the
MTF is increased by approximately 40%. Also, the frequen-
cies above the Nyquist frequency are effectively suppressed,
mitigating aliasing in the downsampled signal. Without the
FIR filter, any frequency content in the input signal above
the Nyquist frequency will “alias” and appear at a different
frequency, obscuring the signal.

A part of the reconstructed image of the 2D Gaussian
without using the ASIC filter in which aliasing artifacts were
present is shown in Fig. 3a. The 2D Fourier transform of the
sinogram used to reconstruct Fig. 3a is shown in Fig. 3b.
The Fourier transform shows frequency folding in the angular
direction. The same part of the reconstructed image, but now
with the ASIC filter, is shown in Fig. 4a. The Fourier transform
of the sinogram (Fig. 4b) now shows that the frequency content

above the cut-off frequency of the filter has been efficiently
suppressed and there are no signs of frequency folding.

IV. DISCUSSION

A. Noise and SNR

Due to the Poisson nature of the photon counting process,
short frame times lead to higher relative standard deviation
in each sample. Therefore it is not obvious that the SNR
per frequency is increased by short frame times even though
the MTF is increased. However, the low-pass filter removes
the noise power above the cut-off frequency, which otherwise
would have folded into the signal during the downsampling.
This implies that the noise amplitude per frequency in the
pass-band for the preprocessed signal is, for downsampling
by a factor of two, equal to that of a signal with twice as long
frame time. The SNR per frequency in the pass-band of the
preprocessed signal is therefore higher than that of a signal
with twice as long frame time, since they both have the same
noise amplitude, but the preprocessed signal has a higher MTF.

B. Further investigations

Further investigations can include: design of the convolution
kernel; technical implementation on the ASIC; more thorough
investigations of the imaging performance; or post-processing
steps.
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Figure 3: a) A zoom-in on a part of a reconstructed image of a 2D Gaussian without the ASIC filter containing sever aliasing
artifacts. b) The 2D Fourier transform of the sinogram used to reconstruct the image in a) shows frequency folding in the
angular direction.
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Figure 4: a) The same part of the image as in Fig. 3a (with the same window), but now with an ASIC filter performing 2 times
decimation before readout. b) The 2D Fourier transform of the sinogram used to reconstruct the image in a). The frequency
content has been effectively suppressed above the Nyquist frequency and there are no signs of frequency folding.
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Non-linear regularized decomposition of spectral
x-ray projection images

Nicolas Ducros∗, Simon Rit, Bruno Sixou and Françoise Peyrin

Abstract—Spectral computed tomography (CT) exploits mea-
surements from x-rays with different energies to obtain the 3D
description of the patient in a material basis. It requires to solve
two subproblems, namely the material decomposition and the to-
mographic reconstruction problems, either sequentially or jointly.
In this work, we address the material decomposition problem,
which an ill-posed non-linear problem. Our main contribution is
to introduce a material-dependent spatial regularization scheme.
The problem is solved iteratively using the Gauss-Newton’s
method. The framework is validated on numerical experiments
of a thorax phantom made of soft tissue, bone and gadolinium
scanned with a 90 kV source and a 3-bin photon counting
detector.

I. INTRODUCTION

Spectral photon counting detectors [1] can be used to image
high Z contrast agents by exploiting the K-edge discontinuity
of their energy-dependent linear attenuation coefficient (LAC)
[2], [3]. These new scanners open new clinical applications
for x-ray imaging as a functional imaging tool, e.g., for the
characterization of the atherosclerotic plaque [4].

Spectral CT image reconstruction can be split in two
subproblems: (1) decomposition of the energy-resolved data
and (2) tomographic reconstruction. The two subproblems can
be solved sequentially (projection-based approach) or jointly
(image-based approach). Both approaches face challenging
difficulties. First, spectral CT is a non-linear problem. Al-
though it can be linearized [5], taking into account the non-
linearities of the forward model is more adequate [2]. Second,
the sensitivity of spectral imaging is limited [6] and several
groups have investigated statistical penalties and spatial priors
in the image domain in order to improve the signal-to-noise
ratio of the reconstruction [7]–[11].

In this work, we address the basis material decomposition
(BMD) problem of the projection-based approach. The main
contribution of this work is to introduce a material-specific
spatial regularization scheme. Like in [2], our forward model
is non-linear and takes into account the spectral response of the
detector but we also regularize each material projection image.
While the spatial regularization might not be optimal, working
on a smaller problem, i.e., one projection at a time, has several
advantages: the inverse problem is easier to optimize using
explicit computation of sparse matrices, and each problem can
be solved in parallel. We present preliminary simulations on
synthetic data and the projection of a real thorax phantom.

All authors are with the University of Lyon, INSA-Lyon, Université Lyon 1,
CNRS, Inserm, CREATIS UMR 5220 U1206, F-69621, Villeurbanne, France.

F. Peyrin is also with the Synchrotron Radiation Facility, 6 rue Jules
Horowitz, F-38043 Grenoble Cedex, France
∗ nicolas.ducros@creatis.insa-lyon.fr

II. THEORY

We consider a 3-dimensional (3-D) object in Ω that is
imaged with a 2-D detector with a sensing surface S .

A. Physical models
1) X-ray / matter interactions: Let n(E,u) denotes the

number of photons of energy E that reaches the detector at the
pixel position u ∈ S . Neglecting scattering within the object,
n follows the Beer-Lambert law. Mathematically,

n(E,u) = n0(E) exp

[
−
∫
L(u)

μ(E,x) dx

]
(1)

where n0(E) is the source spectrum, L(u) is the acquisition
line that depends on the source emission geometry (parallel,
cone-beam, etc), and μ(E,x) is the local LAC of the object
at energy E and point x ∈ Ω.

2) Detection model: The signal recorded by a photon
counting detector may be modelled by

s(E ,u) =
∫
R

d(E , E)n(E,u) dE (2)

where d(E , E) accounts for the detector response function
and is the probability density function for an x-ray photon
hitting the detector with energy E to be detected at energy E .
The photons detected within the ith energy bin [Ei, Ei+1] are
accumulated electronically thanks to a counting circuit. The
number of photons detected within the ith energy bin is given
by

si(u) =

∫
R

di(E)n(E,u) dE (3)

where

di(E) =

∫ Ei+1

Ei

d(E , E) dE (4)

is the response function of the ith bin of the detector. Note
that the detection model assumes that the value measured at a
given pixel is not correlated to the value measured at another
pixel, i.e. charge sharing can be neglected or is corrected for.
It is common to have charge sharing corrected for at the ASIC
level.

B. Object decomposition
It is assumed that the LAC is the superposition of M basis

functions that are separable in energy and space. We have

μ(E,x) =
M∑

m=1

ρm(x)τm(E), ∀x ∈ Ω (5)
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where the τm are some well-chosen basis functions and the ρm
are the corresponding weights in the decomposition. Following
the work of [5], two approaches have emerged for the choice
of the basis functions τm: i) physics-based where τm models
the physical effects, e.g. photoelectric, Compton scattering, k-
edge, and, ii) material-based where τm is the mass attenuation
of the constituents of the objects (in cm2.g−1). Note that in
the latter method, ρm is the density of material m (in g.cm−3).

C. Forward problem

Substituting (1) and (5) into (3), the measured signal may
be written

si(u) =

∫
R

di(E)n0(E,u) exp

[
−

M∑
m=1

am(u)τm(E)

]
dE

(6)

where

am(u) =

∫
L(u)

ρm(x) dx (7)

is the projection of the weights ρm along the line integral
L(u). When a material-based decomposition is performed, am
is the mass of the mth material projected onto the detector (in
g.cm−2). One main difficulty of the problem we address is the
non linearity of the forward mapping expressed in (6).

D. Inverse problem

The detector is assumed to be an array of P pixels centred
at up, p ∈ {1, . . . , P}, and have I energy bins. Let s ∈ RPI

be the measurement vector defined by

s =
[
s1,1 . . . sI,1 . . . . . . s1,P . . . sI,P

]�
(8)

and a ∈ RPM be the (unknown) vector containing the mass
of each material in each pixel, which is defined by

a =
[
a1,1 . . . aM,1 . . . . . . aM,P . . . aM,P

]�
. (9)

Our problem is to recover the mass vector a from the
measured data s. This is an ill-posed problem that requires
prior knowledge about the solution to stabilize the inversion
in the presence of noise.

III. MATERIAL AND METHODS

A. Cost function

In this manuscript, we propose to recover the mass vector
minimizing the cost function

C(a) = ‖s−F(a)‖22 + αR(a) (10)

where F(a) is the non-linear forward mapping defined by (6),
R the regularization functional, and α is a global regulariza-
tion parameter.

Fig. 1. Spectrum of the x-ray source (top), detector response per bin (middle)
and LACs of the three constituents used in the numerical experiments.

B. Regularization functional

We adopt the following regularizing functional, which al-
lows the prior of the different materials to be tuned indepen-
dently:

R(a) =
∑
m

αmRm(am), (11)

where Rm is the regularizing functional of the mth material
weighted by the regularization parameter αm and am =
[am,1 . . . am,P ]

� is a vector in RP that accounts for the mass
of the mth material.

C. Optimisation algorithm

We propose to minimize (10) using Gauss-Newton’s
method, which is a classical iterative tool for non-linear
minimization. It starts with an initial guess a(0) and builds
new estimates

a(k+1) = a(k) +Δa(k) (12)

with the so-called Gauss-Newton step Δa(k)

(2J(k)�J(k) +H(k))Δa(k) = −g(k), (13)

where J(k) is the Jacobian matrix of F about a(k), H(k) is
the Hessian matrix of αR about a(k), and g(k) is the gradient
of C about a(k).

D. Numerical simulations

1) Acquisition parameters: We consider the source spec-
trum n0(E) that is depicted on the top row of figure 1. It was
obtained with a tube voltage of 90 kV. Measurements were
performed in I = 3 energy bins. The response function of
each bin is plotted in the middle row of figure 1 and was taken
from [2] (3 out of 8 bins). The measurements were corrupted
by Poisson noise assuming 108 x-ray photons are launched
onto the patient towards each each pixel of the detector. We
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(a) ground truth

(b) recovered, α = 10−3 (c) recovered, α = 10−0.5

(d) difference, α = 10−3 (e) difference, α = 10−0.5

Fig. 2. Mass of the constituents of the phantom in units of g.cm−2, namely soft tissue, bone, and gadolinium. a) ground truth images, b) recovered images
for a small regularization parameter, c) recovered images for the best regularization parameter, d) difference between b) and a), and e) difference between c)
and a).

approximated this Poisson noise to a Gaussian distribution and
the square L2 norm chosen in this work is effective as a data
fidelity term.

2) Phantom: We considered the 3D thorax phantom that
was segmented from a CT scan in [12]. Each voxel has
been associated to either soft tissue or bone, according to
the segment it belongs to. The material density in each voxel
was estimated from the CT images. The portal vein was
marked with gadolinium at a concentration of 1 g.cm−3. The
mass attenuations of soft tissue, bone, and gadolinium were
taken from ICRU report 44 [13] and are depicted in figure 1
(bottom row). The projected masses for each material are
finally computed according to (7), by integrating densities
along parallel lines chosen perpendicular to the coronal plane.
The resulting material images are displayed on the top row of
figure 2.

3) Spatial regularization: For this 3-material phantom, we
choose

αR(a) = α
(
‖Δasoft‖22 + ‖∇abone‖22 + ‖∇aGd‖1

)
(14)

where asoft, abone, and aGd represents the projected masses
of soft tissues, bone, and gadolinium, respectively, while ∇
and Δ are the first- and second-order differential operators,
respectively. This functional promotes solutions for which i)
the soft tissue and bone images are smooth, ii) the marker
image is piecewise constant, and iii) the soft tissue image

is smoother than the bone image. As a first approach, we
set αm = 1 for each of the material images, keeping only
the global regularization parameter as a free parameter. To
compute H(k) and g(k), a smooth approximation of the �1-
norm is considered, namely the pseudo-Huber loss function
[14].

IV. RESULTS

The cost function given by (10) was minimized iteratively
by a Gauss-Newton algorithm according to (12) and (13).
The algorithm is initialized with the uniform material images
a
(0)
soft = 20 g.cm−2, a(0)bone = 2 g.cm−2, and a

(0)
Gd = 0 g.cm−2.

The algorithm is stopped when the cost function decrease is
less than 0.1%. The minimization was performed for different
regularization parameters α ranging from 10−2 and 101. For
our 361 × 167 images, updating a(k) took 2 s on a standard
laptop (2.6 GHz i7 CPU and 16 GiB of RAM). Depending
on the regularization parameter, from 15 to 30 iterations were
necessary before convergence, which leads to a computation
time of about 30 to 60 s to minimize (10).
The plot of the points (‖s − F(a)‖22, R(a)) for different
values of the regularization parameter α, which is known
as the L-curve, is provided in figure 3. The reconstruction
error ‖a− atrue‖2/‖atrue‖2 is displayed with respect to α in
figure 4. The smallest reconstruction error was obtained for
α = 10−0.5, which corresponds to the corner of the L-curve,
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Fig. 3. L-curve for the proposed experient, i.e., (‖s−F(a)‖22, R(a)) for a
regularization parameter α ranging from 10−2 to 101.

Fig. 4. Decomposition error with respect to regularization parameter.

indicating than the L-curve may be an appropriate tool for
selecting the regularization parameter when the ground truth
is unknown. The material images recovered by our method
are given in the middle row of figure 2. Two regularization
parameters were considered, one being very small (left) and
the other being the best one according to the L-curve (right).
When no regularisation scheme is used (see figures 2b and
2d), the different materials are poorly separated. However, the
three material images are nicely recovered when an appropriate
regularization scheme is considered.

V. DISCUSSION AND CONCLUSION

These preliminary results indicate that the decomposition
of x-ray spectral projection images greatly benefits from the
implementation of a regularization scheme. Similar results
have been reported in the image domain but working in the
projection domain is advantageous because the dimensionality
is smaller and, therefore, more tractable. For example, we have

been able to compute the L-curve in figure 3, which might not
be tractable considering the image-based approach.

We have used a single regularization parameter in this
work. Future works include the use of several regularization
parameters. We will also investigate other statistical methods
that better accounts for the statistical noise in the projection
images and other regularizations, e.g., a non convex prior for
the gadolinium favoring a small support. After a satisfying
solution has been developed in the projection domain, a set of
projection images can be decomposed and reconstructed using
existing filtered-backprojection or iterative CT reconstruction
algorithms.
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5D respiratory motion model based image
reconstruction algorithm for 4D cone-beam

computed tomography
Jiulong Liu, Xue Zhang, Xiaoqun Zhang, Hongkai Zhao, Yu Gao, David Thomas, Daniel A Low, and Hao Gao

Abstract—A 5D model has been developed as an accurate
model of respiratory motion. That is, given the measurements
of breathing amplitude and its time derivative, the 5D model
parametrizes the respiratory motion by three time-independent
variables, i.e., one reference image and two vector fields. This
work aims to develop a new 4DCBCT reconstruction method
based on 5D model. Instead of reconstructing a temporal se-
quence of images after the projection binning, the new method
reconstructs time-independent reference image and vector fields
with no requirement of binning. The image reconstruction
is formulated as a optimization problem with total-variation
regularization on both reference image and vector fields, and
the problem is solved by the proximal alternating minimization
algorithm, during which the split Bregman method is used to
reconstruct the reference image, and the Chambolle’s duality-
based algorithm is used to reconstruct the vector fields. Validated
by the simulation studies, the new method has significantly
improved image reconstruction accuracy due to no binning and
reduced number of unknowns via the use of the 5D model.

Index Terms—image reconstruction, 4D cone-beam computed
tomography.

I. INTRODUCTION

THE 5D model was established to model breathing motion
[1] such that the position of a region of interest within

the patient can be expressed as a linear function of a refer-
ence position vector field, breathing amplitude and its time
derivative (rate). That is, given the measurements of breathing
amplitude, 5D model parametrizes the respiratory motion by
three time-independent variables, i.e., one reference image
and two deformation vector fields (corresponding to breathing
amplitude and rate).

The purpose of this work is to develop a new 4DCBCT
reconstruction method based on the 5D model. Instead of
reconstructing a temporal sequence of images after the projec-
tion binning, the new method reconstructs time-independent
reference image and vector fields with no requirement of
binning. Compared with the conventional approaches [2]–[15]
that require data binning, the new method does not require
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binning, and therefore is free from binning artifacts caused
by inaccurate or uneven binning in phase. Compared with the
cine CBCT approach [16] with no data binning requiremen-
t, the proposed method utilizes the breathing measurement
(breathing amplitude and rate), and therefore is expected to
improve the image reconstruction quality. Compared with
existing approaches with motion reconstruction [13]–[15], the
method here reconstructs only three time-independent vector
fields instead of time-dependent deformation vector fields, and
therefore has a significantly reduced number of unknowns.

In terms of reconstruction algorithms, the image reconstruc-
tion will be formulated as a nonconvex optimization problem
with simultaneous reconstruction of reference image and time-
independent vector fields, both of which are regularized by
the total variation [17]. Specifically the proximal alternat-
ing minimization [18], [19] will be developed to solve this
nonconvex problem, during which the split Bregman method
(or so-called alternating direction method of multipliers) is
used to reconstruct the reference image [20], [21], and the
Chambolle’s duality-based algorithm is used to reconstruct the
vector fields [22].

II. 5D MODEL BASED 4DCBCT AND ALGORITHM

A. Overview of 4DCBCT and 5D model

1) 4DCBCT: Let It be the image phases to be reconstructed
with T phases of 2D N by N images, i.e., {It(xi, yj), 1 ≤
i, j ≤ N, 1 ≤ t ≤ T}. The conventional phase-by-phase
4DCBCT method can be formulated as the following iterative
reconstruction method with the total variation (TV) regular-
ization [17]

min
It
‖AIt − yt‖22 + μ|∇It|1, 1 ≤ t ≤ T, (1)

where A is the system matrix from the X-ray transform [23],
yt the binned projection data to the phase t, and λ the regu-
larization parameter for the spatial TV term (for the purpose
of denoising the image during the iterative reconstruction)
defined by

|∇It|1 =
∑
i,j

√
(∂xIt)2 + (∂yIt)2, (2)

with ∂xIt = It(xi+1, yj) − It(xi, yj) and ∂yIt =
It(xi, yj+1)− It(xi, yj).

In this work, we also compare with a state-of-art 4DCBCT
method that utilizes a priori knowledge that the patient anato-
my is correlated for the dynamic images to be reconstructed,
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through the use of TV to promote the temporal similarity
among image phases in addition to the spatial smoothness for
each phase [6], i.e.,

min
{It}

∑
t

‖AIt − yt‖22 + μ
∑
t

|∇It|1 + λ|∇tIt|1, (3)

with the temporal TV term defined by

|∇tIt|1 =
∑
i,j,t

|∂tIt| (4)

with ∂tIt = It+1(xi, yj) − It(xi, yj) and the regularization
parameter λt.

For the above convex optimization problems (1) and (3),
the solution algorithm can be conveniently developed based
on the split Bregman method [20], [21] with the details given
in our previous work [8], [9].

2) 5D Respiratory Motion Model: The 5D model [1] is
developed to accurately model the respiratory motion. It
parametrizes the dynamic position of a region of interest on
the reference image based on reference position, breathing
amplitude and rate, i.e.,

�Xt = �X + vt �M1 + ft �M2 (5)

in which �Xt and �X are spatial coordinates in It and the
reference image I0 with the same image intensity value,
vt the breathing amplitude, ft the breathing rate (vt and
ft both measured data during free breathing), �M1 and �M2

the corresponding time-independent deformation vector fields.
Correspondingly,

I0( �X) = It( �Xt). (6)

That is, the region of interest at �X in the reference image
I0 deforms to a new location �Xt in an arbitrary image phase
It through the 5D model (5) parameterized by the reference
image I0 and its corresponding time-independent vector fields
�M = ( �M1, �M2). Note that �M is dependent on I0 and therefore
�M has different values for a different I0.

B. 5D Model based 4DCBCT

The innovation of this work is to consider the 4DCBCT
image reconstruction based on 5D model (5) through

min
I0,M

∑
t

‖AIt(I0,M)− yt‖22 + μ|∇I0|1 + λ|∇M |1 (7)

where M denotes time-independent vector fields, e.g., M =
(M1x,M1y,M2x,M2y) in 2D with �M1 = (M1x,M1y), and
�M2 = (M2x,M2y) correspondingly in (5), and M is regular-

ized in the TV norm component-wise for improved smooth-
ness, i.e., |∇M |1 =

∑
i∈{1,2},j∈{x,y}

|∇Mij |1. Note that (1) the

regularization on M is essential to resolve the illposedness
when solving M [24]; (2) no data binning on yt is assumed
here and therefore the number of image phases It to be
reconstructed is the same as the number of projections yt.
For notation convenience, we shall eliminate

∑
t

from the data

fidelity term in (7) from now on.
Next we adapt (7) to the linearized form based on which

the proximal alternating linearized minimization algorithm can

be conveniently developed. Recall that It is related to the
reference image I0 and vector fields M by (5) and (6), i.e.,

I0( �X) = It( �X + Lt(M)). (8)

with Lt(M) = vt �M1 + ft �M2. Then from the linearization

I0( �X) ≈ It( �X) +∇T It · Lt(M) (9)

where ∇T It · Lt(M) = ∂xIt · (vtM1x + ftM2x) + ∂yIt ·
(vtM1y + ftM2y), we have

It = I0 −∇T It · Lt(M) (10)

and correspondingly the linearized form of (7)

min
I0,M

‖A(I0−∇T It·Lt(M))−yt‖22+μ|∇I0|1+λ|∇M |1. (11)

Note that since the vector field M is with respect to I0, It can
be computed based on the deformation from I0, but not vice
versa. Also, during the computation of It, since the deformed
spatial coordinates �X +Lt(M) from the Cartesian coordinate
�X of I0 may not be on the Cartesian coordinate of It, the
interpolation is necessary to derive the Cartesian values of It,
which is through cubic interpolation here.

C. Alternating Reference-Image and Vector-Field Reconstruc-
tion

We apply the proximal alternating linearized minimization
[18], [19] for (7), i.e.,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

IK+1
0 = argmin

I0

‖A(I0 −∇T IKt · Lt(M
K))− yt‖22

+μ|∇I0|1 + 1
2σ‖I0 − IK0 ‖22

MK+1 = argmin
M

‖A(IK+1
0 −∇T IK+1

t · Lt(M))− yt‖22
+λ|∇M |1 + 1

2η‖M −MK‖22.
(12)

Here K indexes the outer loop by the proximal alternating
linearized minimization, and its inner loop (indexed by k)
for solving IK+1

0 and MK+1 will be described next. Here
we found the constant values for η and σ work well for our
problem, although they could vary during iterations (12). Note
that although the optimization problem (7) is nonconvex and
nonsmooth, the proximal operator added to the subproblems
guarantees the convergence of the outer loop [18], [19].

1) Reference-Image Reconstruction: In this section, we
consider the I0 subproblem of (12), i.e.,

IK+1
0 = argmin

I0

‖AI0 − yKt ‖22 + μ|∇I0|1 +
1

2σ
‖I0 − IK0 ‖22

(13)
where yKt = A(∇T IKt · Lt(M

K)) + yt, and IKt is obtained
through cubic interpolation on the deformed IK0 .

Since (13) is a convex problem with sparsity regularization,
we adopt the split Bregman method [20], [21] with the details
given in our previous work [8], [9]. For algorithm complete-
ness, we shall briefly describe it here. That is, introducing
dummy variables (dx, dy) = (∂xI0, ∂yI0) and its auxiliary
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variables (bx, by) for isotropic TV norm (2), the convex
problem (13) is reformulated as

(I0, dx, dy) = argmin
I0,dx,dy

‖AI0 − yKt ‖22 + μ|(dkx, dky)|1

+
ρ

2
‖(dx − ∂xI0 − bx, dy − ∂yI0 − by)‖22 +

1

2σ
‖I0 − IK0 ‖22.

(14)

Then we update I0 and (dx, dy) alternately through

Ik+1
0 = argmin

I0

‖AI0 − yKt ‖22 +
1

2σ
‖I0 − IK0 ‖22

+
ρ

2
‖(dkx − ∂xI0 − bkx, d

k
y − ∂yI0 − bky)‖22 (15)

(dk+1
x , dk+1

y ) = argmin
dx,dy

|(dx, dy)|1

+
ρ

2
‖(dx − ∂xI

k
0 − bkx, dy − ∂yI

k
0 − bky)‖22 (16)

with auxiliary variables (bx, by) updated by

bk+1
x = bkx + (∂xI

k+1
0 − dk+1

x ) (17)

bk+1
y = bky + (∂yI

k+1
0 − dk+1

y ). (18)

Here the linear system for L2 subproblems in (15) is
never explicitly formulated, since the problem (15) can be
conveniently solved by conjugate gradient method as described
in our previous work [8], [9] without explicitly forming the
system matrix A, which can be computed on-the-fly through
the parallel computation of X-ray transform and its adjoint
[23]. And the (dx, dy) subproblem (16) has the explicit solu-
tion, i.e., the so-called isotropic shrinkage formula

(dk+1
x , dk+1

y ) = max(sk − μ

ρ
, 0)

(∂xI
k
0 , ∂yI

k
0 ) + (bkx, b

k
y)

sk
(19)

where sk =
√
(∂xIk0 + bkx)

2 + (∂yIk0 + bky)
2.

2) Vector-Field Reconstruction: Next we consider the M
subproblem of (12), i.e.,

MK+1 = argmin
M

‖A(IK+1
0 −∇T IKt · Lt(M))− yt‖22

+ λ|∇M |1 +
1

2η
‖M −MK‖22 (20)

via the Chambolle’s duality-based algorithm.
First we introduce a convex relaxation of (20)

(MK+1, UK+1) = argmin
M,U

λ|∇U |1 +
1

2θ
‖U −M‖22

+
1

2η
‖M −M (K)‖22 + ‖A(I

(K+1)
0 −∇T IKt · Lt(M))− yt‖22

(21)

where U is an auxiliary variable. Since (20) is convex, (21)
is still convex. Thus, the following alternating scheme (22) is
convergent.⎧⎪⎪⎨⎪⎪⎩

Uk+1 = argmin
U

λ|∇U |1 + 1
2θ‖U −Mk‖22

Mk+1 = argmin
M

‖A(IK+1
0 −∇T IKt · Lt(M))− yt‖22

+ 1
2η‖M −MK‖22 + 1

2θ‖M − Uk+1‖22
(22)

Then from the Chambolle’s duality-based algorithm [22],
the problem (22) can be solved by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Uk+1 = argmin
U

|∇U |1 + 1
2θλ‖U −Mk‖22

= argmin
U

max
‖p‖∗≤1

〈p,∇U〉+ 1
2θλ‖U −Mk‖22

= argmin
U

max
‖p‖∗≤1

〈divp, Uk〉+ 1
2θλ‖U −Mk‖22

Mk+1 = argmin
M

‖A(IK+1
0 −∇T IKt · Lt(M))− yt‖22

+ 1
2θ‖M − Uk+1‖22 + 1

2η‖M −MK‖22
(23)

For the U subproblem, the solution can be analytically
obtained by first computing the fixed point of the following
iteration (24) over the dual variable p [22]

pk+1 =
pk + τ/θ∇(Mk+1 + θdiv(pk))

1 + τ/θ|∇(Mk+1 + θdiv(pk))| (24)

and then
Uk+1 = Mk+1 + θdiv(pk). (25)

Note that both (24) and (25) are with respect to each compo-
nent of M , e.g., Uk+1

0x = Mk+1
0x +θdiv(pk0x) in (25) for M0x.

The solution Mk+1 for the second L2 subproblem in (23) can
be obtained again by conjugate gradient method based on the
following first-order optimality conditions. Again there is no
need to explicitly form the system matrix A, which can be
computed on-the-fly through the parallel computation of X-
ray transform and its adjoint [23].

III. NUMERICAL RESULTS

The proposed method (abbreviated as ”5D Method”) (7)
was validated based on experimental data of a lung patient in
comparison with the conventional phase-by-phase reconstruc-
tion (abbreviated as ”TV”) (1) and a state-of-art method with
spatiotemporal TV regularization (abbreviated as ”TVt”) (3).
The reconstructed reference image and vector fields, measured
breathing amplitude and rate were used to simulate a 4DCBCT
in 2D. In our numerical simulation, there were 570 projections
evenly distributed in one rotation with 500 detection pixels for
each projection. The reconstructed images were 500×500, and
the displayed images were 500× 300 (central parts) for better
visualization.

For ”FBP”, ”TV” and ”TVt”, the 570 projections data were
first binned into 10 phases. After image reconstruction, the 10
reconstructed image phases were re-mapped to 570 projections
in the same order of projection binning. For the proposed ”5D
Method”, no projection binning is necessary and dynamic im-
ages It were formed based on reconstructed (I0,M) through
the 5D model (5). The reconstruction results (Figures 1 and
2) were presented with optimized reconstruction parameters.

Next we consider the model error to evaluate the robustness
of the proposed method, when there is a discrepancy between
the ideal 5D model and the realistic model. For this purpose,
the projection data is generated from the following perturbed
5D model with 10% relative difference in motion magnitude

�Xt = �X0 + (vt �M1 + ft �M2)(1 + 0.1 sin(15
2π

T
t)). (26)

Here T is the total number of frames/projections; 15 in (1)
is the number of the breathing cycle, assuming 4 seconds
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per breathing cycle and 60 seconds per scan rotation. Then
the proposed method based on the ideal 5D model is used to
reconstruct the CBCT images using perturbed projection data.
The corresponding results are plotted in Figures 3 and 4. In
addition, the quantitative errors in L2 norm are summarized in
Table I, which again suggest that the proposed ”5D Method”
improves the image quality.

TABLE I
RELATIVE ERRORS BETWEEN RECONSTRUCTED IMAGES AND GROUND

TRUTH (UNIT IN %)

FBP TV TVt 5D Method
Without model error 28.14 3.86 2.96 0.45
With model error 28.04 4.18 3.52 1.33

Fig. 1. Reconstruction results. (a) FBP; (b) TV; (c) TVt; (d) 5D Method.

Fig. 2. Reconstruction errors and zoom-in details. (a) FBP; (b) TV; (c) TVt;
(d) 5D Method.

Fig. 3. Reconstruction results (with model error). (a) FBP; (b) TV; (c) TVt;
(d) 5D Method.

Fig. 4. Reconstruction errors and zoom-in details (with model error). (a) FBP;
(b) TV; (c) TVt; (d) 5D Method.

IV. CONCLUSION

We have developed a new 4DCBCT image reconstruc-
tion method based on 5D respiratory motion model, with
improved image reconstruction from standard and state-of-
art methods. The new reconstruction algorithm is formulated
as a nonconvex and nonsmooth optimization problem with
the reconstruction of reference image and time-independent
vector fields, which is solved by the proximal alternating
minimization in this work.
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Abstract—The objective of this study was to investigate the 

dependence of geometric efficiency of a MDCT system on several 
exposure parameters such as tube voltage, collimation and pitch. 
Dose profiles in PMMA phantom for Siemens Definition Flash CT 
and GE Discovery CT750 HD were derived in helical mode using 
different tube voltages, collimations and pitches. Corresponding 
geometric efficiencies and weighted geometric efficiencies were 
calculated. Kruskal-Wallis test was performed to test the 
differences between weighted geometric efficiencies using 
different exposure parameters and the Spearman’s correlation 
coefficient was calculated to determine correlation between 
different exposure parameters and weighted geometric 
efficiencies. The results shows with larger collimation the 
weighted geometric efficiency in head and body phantom can be 
improved by 10-30%, while combined with larger pitch the 
weighted geometric efficiency can be reached to about 60%. 
Weighted geometric efficiencies had positive correlation with 
beam collimation and pitch (p<0.05) for both CT scanners, while 
there was no significant difference between weighted geometric 
efficiencies with different tube potentials (p>0.05). The decrease of 
geometric efficiency leads to the increase of patient radiation dose. 
It is necessary to improve the geometric efficiency and reduce the 
burden of patients by optimal setting beam collimation and pitch 
for CT scans.  
 

Index Terms—multidetector computed tomography; geometric 
efficiency; radiation dose.  
 
 

I. INTRODUCTION 
EOMETRIC efficiency (GE) has been defined as the ratio 
of the integral of the dose profile over the nominal active 

detector array width and the total integral of the dose profile by 
the International Electro technical Commission (IEC) [1]. It has 
been also considered as a value to measure the utilization of 
x-ray radiation along the z axis [2-3]. In CT imaging 
inhomogeneous penumbra always reduces the quality of 
images. In single detector CT system, the penumbra area was 
partly included in the active detector length, accordingly, 
geometric efficiency is generally high [4]. But nowadays with 
the fast development of CT technology, the number of CT 
detector rows is growing rapidly [5-8]. Manufactures increases 
the x-ray beam width in multi-detector CT system to make the 
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penumbra fall outside the detector array and ensure all active 
detector elements along z axis receive the same amount of 
radiation when the system is operated free-in-air [9-10]. This 
improves the quality of images but increases the radiation 
burden of patients because a portion of x-ray beam does not 
make contribution to form images. A recent study showed that 
the decrease of geometric efficiency leads to the increase of 
patient radiation dose [4]. Therefore, it is necessary to improve 
the geometric efficiency of MDCT in CT examinations to 
decrease the patient dose burden. The objective of this study 
was to investigate the dependence of geometric efficiency of a 
MDCT system on several exposure parameters such as tube 
voltage, collimation and pitch.  

II. MATERIALS AND METHODS 
Two CT scanners from different manufactures were used in 

the current study: a Siemens SOMATOM Definition Flash CT 
scanner (Siemens AG, Forchheim, Germany) and a GE 
Discovery CT750 HD scanner (GE Healthcare, Waukesha, 
USA). The Piranha x-ray multi-meter equipped with a CT-SD 
16 radiation detector (RTI Electronics AB, Mölndal, Sweden) 
was used to obtain dose profiles. A standard cylindrical head 
PMMA phantom (16cm diameter) and a standard cylindrical 
body PMMA phantom (32 diameter) [11] were used. Each 
phantom contains five holes, one is located in the center 
(position A) and four are around the periphery at “12 o’clock”, 
“3 o’clock”, “6 o’clock”, “9 o’clock”(Position B, C, D, E), 
separately. Dose profiles in PMMA phantom were derived in 
helical mode using different tube voltages, collimations and 
pitches. Corresponding geometric efficiencies and weighted 
geometric efficiencies were calculated.  
    The geometry efficiency at position A was determined by 

[4]: 
+ /2

/2
( )

GE=
( )

w

w
D z dz

D z dz
�

��

��

�
�

          (1) 

 
  Where D (z) is the dose profile along z axis, w is the length of 

the active detector array at position A the isocenter (i.e. the 
beam collimation). The geometric efficiency at the peripheral 
holes of the phantoms was determined by the same formula, but 
the length of the detector array was changed at the peripheral 
holes of the PMMA phantoms due to the distance from the 
peripheral holes to isocenter. 
    A weighted geometric efficiency was also calculated in the 

current study. It was determined by: 
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Where GEc and GEp are the geometric efficiencies measured at 

the center and periphery of the PMMA phantoms. 
Kruskal-Wallis test was performed to test the differences 

between weighted geometric efficiencies using different 
exposure parameters and the Spearman’s correlation coefficient 
was calculated to determine correlation between different 
exposure parameters and weighted geometric efficiencies. 

 

III. RESULTS  
The dose profiles of isocenter (i.e. position A) determined 

using head phantom at 120kV tube voltage and 1.0 pitch for 
Siemens SOMATOM Definition Flash CT scanner were 
displayed in Fig. 1 for four different beam collimations. 

The weighted geometric efficiency values of head and body 
phantom determined using different parameters was shown in 
Fig. 2 and Fig. 3, were found to range from 16% to 63%. As 
shown in Fig. 1 weighted geometric efficiency at 1.6×0.3mm 
beam collimation is lower than 20%, while weighted geometric 
efficiency at 32×1.2mm beam collimation is higher than 50%. 
With larger collimation the weighted geometric efficiency in 
head and body phantom can be improved by 30%. As shown in 
Fig. 3 weighted geometric efficiency at 0.5 pitch is lower than 
50%, with larger pitch the weighted geometric efficiency can 
be reached to about 60%. The results shows weighted 
geometric efficiencies had positive correlation with beam 
collimation and pitch (p<0.05) for both CT scanners, while 
there was no significant difference between weighted 
geometric efficiencies with different tube potentials (p>0.05).  
 
 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 
Figure 1 The dose profiles of position A determined using head 
phantom at 120kV tube voltage, 1.0 pitch and different collimations 
for Siemens SOMATOM Definition Flash CT scanner. The vertical 
lines indicate the beam width. (a) 16×0.6mm beam collimation, (b) 
20×0.6mm beam collimation, (c) 40×0.6mm beam collimation, (d) 
32×1.2mm beam collimation 
 

 
 

 
Figure 2 weighted geometric efficiency is growing with beam 

collimation increasing (pitch=1.0). (a) using head phantom, (b) using 
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body phantom  
 
 

 
 

 
 

 
Figure 3 weighted geometric efficiency is growing with 
increased pitch. (a) using head phantom at 32×1.2mm beam 
collimation, (b) using body phantom at 32×1.2mm beam 
collimation, (c) using head phantom at 128×0.6mm beam 
collimation, (d) using body phantom at 128×0.6mm beam 
collimation 
 

IV. CONCLUSION AND DISCUSSION 
According to fig. 1, in a single scan, the ratio of the integral of 

dose profile falling within the active detector width and the 
integral of dose profile along its total length along the z axis 
was growing for increasing beam collimation, i.e. geometric 
efficiency was increasing for increasing beam collimation. 

Compared to pitch, beam collimation was found to have a better 
positive correlation coefficient with geometric efficiency in 
most cases (i.e. r=0.836, p=0.000 vs r=0.463, p=0.004 and 
r=0.834, p=0.000 vs r=0.417, p=0.011 for Siemens 
SOMATOM Definition Flash CT scanner using head and body 
phantom, separately; r=0.739, p=0.000 vs r=0.684, p=0.002 for 
GE Discovery CT750 HD scanner using head phantom). 
Therefore, wider beam collimation could reduce the “wasted” 
x-ray which is beyond the active detector array. 

The result of the Spearman’s rank order correlation 
coefficient also indicated that tube voltage which affects beam 
quality of the produced x-ray was found to have an insignificant 
negative correlation with geometric efficiency (i.e. r=-0.016, 
p=0.924 and r=-0.249, p=0.143 for Siemens SOMATOM 
Definition Flash CT scanner using head and body phantom, 
separately; r=-0.039, p=0.877 and r=-0.079, p=0.756 for GE 
Discovery CT750 HD scanner using head and body phantom, 
separately). 

With the ever growing utilization of CT in clinical activities 
[12-15], it is imperative to investigate the dosimetric aspects of 
CT. Geometric efficiency as an important exposure feature of 
CT scanners affecting radiation dose should be taken seriously. 

Geometric efficiency was found to have positive correlation 
with collimation and pitch while tube voltage was found to 
have little influence on geometric efficiency. Examiners should 
raise beam collimation and pitch to improve the geometric 
efficiency and reduce the burden of patients.  
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� 
Abstract—Dual-energy CT (DECT) enhances tissue 

characterization because of its basis material decomposition 
capability. In addition to conventional two-material 
decomposition from DECT measurements, multi-material 
decomposition (MMD) is required in many clinical applications. 
To solve the ill-posed problem of reconstructing multiple-material 
images from dual-energy measurements, additional constraints 
are incorporated into the problem formulation, including volume 
and mass conservation and the assumptions that at most three 
materials in each pixel and various material types among pixels. 
One-step MMD methods which reconstruct multiple images 
directly from DECT measurements are computationally 
expensive due to repeated forward projecting multiple material 
images and backward projecting measurements at low and high 
energies. The image-domain direct MMD method proposed by 
Mendonça et al. decomposes pixels sequentially into multiple basis 
materials using direct inversion scheme and leads to magnified 
noise in the material images. In this paper, we propose a statistical 
image-domain MMD method for DECT to suppress noise. It 
applies penalized weighted least-square (PWLS) estimation with 
edge-preserving regularization. The statistical weight is the 
inverse of the estimated variance-covariance matrix of 
decomposed basis materials. The proposed method is evaluated 
using Catphan©600 phantom and pelvis patient data. Compared 
with the image-domain direct inversion method, the proposed 
method reduces noise standard deviation (STD) by 52%, 80%, 96% 
and 83% for bone, iodine, soft-tissue and air images for the pelvis 
patient data, respectively, and it substantially reduces noise with 
minimal effect on decomposition accuracy for the contrast rods 
slice of the Catphan©600 phantom. The proposed method is thus 
practical and promising for advanced clinical applications using 
DECT imaging.  
 

Index Terms—Dual-energy CT, Image-domain, Multi-material 
decomposition, Noise suppression, Optimization transfer, 
Penalized weighted least-square (PWLS). 
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I. INTRODUCTION 
pectral CT enhances tissue characterization because of its 
basis materials decomposition capability. In principle, two 

basis materials with various linear attenuation coefficients (e.g. 
bone and soft-tissue) can be accurately reconstructed using 
dual-energy CT (DECT) technique [1]. However, many clinical 
applications require three or more component images. For 
example, liver-fat quantification requires four constitute 
materials: liver tissue, blood, fat and contrast agent [2]. One 
method to achieve this is using expensive hardware, e.g., 
energy-sensitive photon-counting detectors, to acquire 
multi-energy projection data. In this paper, we design a 
multi-material decomposition (MMD) algorithm using 
conventional dual-energy measurements which are readily 
available from clinical DECT scanners. 

DECT methods are classified into three categories: 
projection-domain, image-domain and direct reconstruction 
methods [3]. Projection-domain methods decompose DECT 
measurements into sinograms of basis materials, and generate 
material images using conventional reconstruction algorithms. 
Projection-domain methods avoid beam-hardening artifacts 
because the material specific projections are estimated prior to 
image reconstruction. One major challenge for 
projection-domain methods is the calibration of spectral 
transmission model which is nonlinear and computationally 
expensive. Image-domain methods apply standard 
reconstruction techniques to obtain low- and high-energy CT 
images, and decompose the resulting images into basis 
materials using linear approximation of decomposition process. 
Mendonça et al. [2] proposed an image-domain pixel-wise 
MMD method for DECT. In addition to mass and volume 
conservation, this method assumes that each pixel contains at 
most three basis materials and the material types vary among 
pixels. It suffers from significantly magnified noise in the 
decomposed basis images since direct inversion at each pixel is 
used to estimate volume fractions of basis materials. Long and 
Fessler [4] proposed a direct MMD method for DECT using 
penalized-likelihood (PL) reconstruction with edge-preserving 
regularizers for each material. This method has advantages of 
modeling the physics of spectral transmission exactly, 
incorporating similar constrains in [2] to its CT object model, 
and significantly decreasing noise and cross-artifacts in the 
decomposed material images. However, it is computationally 
expensive due to the repeated forward projecting multiple 
material images and backward projecting measurements at low 
and high energies and the modeling of poly-energetic spectra. 
 The decomposition procedure of DECT measurements is 
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highly sensitive to noise since X-ray spectra of low and high 
energies are overlapped. In this paper, assuming similar 
constraints in [2], [4], we investigate the noise suppression in 
image-domain MMD methods. As noise in multi-material 
images is correlated, we include the inverse of the estimated 
variance-covariance matrix of decomposed basis materials as 
the statistical weight in the least-square term for a better noise 
suppression performance, which has shown potential in 
image-domain noise suppression of dual-material 
decomposition [5]. The cost function of the proposed method is 
in the form of penalized weighted least-square (PWLS) 
estimation with edge-preserving regularization. We apply 
optimization transfer principles to develop a pixel-wise 
separable quadratic surrogate (PWSQS) at each iteration to 
monotonically decrease the cost function [4]. The separability 
in each pixel enables simultaneous update of all pixels. 

II. METHOD 

A. Object model for Multi-material decomposition (MMD) 
Multi-material decomposition (MMD) from DECT 

measurements is an ill-posed problem since multiple sets of 
images are estimated from two sets of measurements associated 
with low and high energies. To solve this ill-posed problem, we 
apply the constraints of volume and mass conservation [2], [4], 
[6] and additional assumption that each pixel contains at most 
three materials where the triplet-material types vary among 
pixels [2], [4].  

The spatially- and energy-dependent attenuation distribution 
 is  

                                                                       (1) 
where  denotes the volume fraction image of the l-th material, 

 is the total number of basis material types, and is the 
linear attenuation coefficient (LAC) of the l-th material at 
energy level E. According to the constraints of volume and 
mass conservation, volume fraction  satisfies the sum-to-one 
and box constraint: 

                                                              

 

 (2) 

where p indexes the p-th pixel. We relax the lower limit  of 
the box constraint to be slightly smaller than 0, and the upper 
limit  to be slightly greater than 1. Under the assumptions that 
each pixel contains at most three materials and triplet-material 
types vary among pixels, volume fraction  also satisfies the 
following constraint, 

                                           (3) 
Let be a triplet library containing all triplets generated from 

pre-selected materials of interest [4]. The method in [2] directly 
decomposes each pixel into optimal triplet in the library  
under constraints (2) and (3). This method is referred to as the 
direct inversion method hereafter in this paper. The direct 
inversion method can be implemented readily in a sequential 
pixel-by-pixel fashion, but leads to significantly magnified 
noise in the decomposed basis material images as addressed in 
our previous publication [4], [5].  

B. Statistical image-domain MMD 
To suppress noise in the decomposed material images, we 

extend our previous method in dual-material decomposition [5] 
to MMD. We include inverse of the estimated 
variance-covariance matrix of decomposed basis materials as 
the statistical weight in the weighted least-square term. The 
penalized weighted least-square (PWLS) cost function is: 
                              (4) 
The 2Np × L0Np material composition matrix  is 
                ,                                                 (5) 

where Np is the total number of pixels and I is a Np × Np identity 
matrix.  is a 2Np vector where  and  are the 
high- and low-energy CT images, respectively. T denotes the 
transpose operator.  is a L0Np vector 
composed of ,…,  basis material images.   

V is a 2Np× 2Np diagonal matrix whose diagonal elements are 
the noise variance of pixels in the high- and low-energy CT 
images [5], i.e., 
                   (6) 
where and are the statistical noise variance of the 
p-th pixel in the high- and low-energy CT images, respectively,  
which ignores the noise correlation between DECT images 
obtained from two separate scans. To evaluate the noise 
variance, we first select a region of homogeneous material in 
the high/low CT image and evaluate the numerical variance as 
the noise variance of all pixels (i.e., assuming uniform noise 
distribution).  
 The edge-preserving regularization term   [4], [7] is 
                                                              (7) 
where the regularizer for the l-th material is  
                                    (8) 
where the potential function  is a hyperbola function 

                         .                          (9) 

and Nlp is a neighborhood of pixel xlp. The regularization 
parameters  and  can be chosen differently for various 
materials to achieve desired edge preservation and 
noise-resolution tradeoff for each material image. 

C. Optimization Algorithm  
The basis materials are estimated by minimizing the cost 

function  in (4) under the constraints given in (2) and (3), 
i.e., 
                       .

                     
          (10) 

Due to the constraints on each pixel, it is difficult to minimize 
the cost function directly. To monotonically decrease the cost 
function, we use optimization transfer principles to design a 
serial of pixel-wise separable quadratic surrogates (PWSQS) 
[4]. We loop over all the possible triplets in the triplet library , 
minimize the surrogate functions for each material triple under 
the constraints in (2), and determine the optimal triplet for each 
pixel as the one minimizing the surrogate of that pixel. 

D. Evaluation  
The noise is quantitatively measured using standard 
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deviation (STD) of image pixels within a region of interest 
(ROI). We use the root-mean-square (RMS) of the average 
percent error  of the electron densities of all rods as a 
metric to quantify the decomposition accuracy. The electron 
density distribution is calculated as follows, 

                                                                 (11) 
where  and  are volume fractions and electron density of 
the l-th basis material, respectively. For each rod, the average 
percent error of associated pixels inside the rod is 
calculated as 
                                                    (12) 

where  is the average value of estimated electron densities 
inside a rod and   is the ground-truth value of the rod. 

III. RESULTS 
To quantitatively evaluate performance of the proposed 

method, we tested it on the contrast rods slice Catphan©600 
phantom and pelvis patient data. We initialized the proposed 
method using results of the direct inversion method [2], and 
compared their performance. Table I listed the regularization 
coefficient , the edge-preserving parameter for each 
material and number of iterations for each study.  

TABLE I 
THE SELECTED REGULARIZER COEFFICIENT, EDGE-PRESERVING PARAMETER 

AND NUMBER OF ITERATIONS FOR EACH STUDY. 

Data Catphan©600 phantom Pelvis patient 

l
  (for Teflon/bone, 
iodine, soft-tissue and 
air image) 

0.8, 0.2, 1, 10  1, 0.3, 1, 0.2 

l�  (for Teflon/bone, 
iodine, soft-tissue and 
air image) 

0.005, 0.02, 0.012, 0.01
 

0.01, 0.005, 0.01, 0.1 

Iterations 200 100 

A. Catphan©600 phantom study 
Fig. 1 shows the low- and high-energy CT images of 

Catphan©600 phantom on the contrast rods slice. The rods are 
marked with digits as shown in Fig. 1. In this study, we select 
Teflon (#1) the Iodine solution with a concentration of 10 
mg/ml (#3), the inner soft-tissue and air as basis materials. The 
decomposed basis material images using the proposed method 
and direct inversion method [2] are shown in Fig. 2. Table II 
shows the means and STDs of pixel values inside the ROI 
indicated by blue solid rectangle shown in Fig. 2 (b3). 
Compared with the direct inversion method, noise STDs in 
Teflon, iodine, soft-tissue and air images reconstructed by the 
proposed method are reduced by 49%, 76%, 92% and 96%, 
respectively. The RMS of average percent errors are 14.91% 
and 14.98% for the direct inversion and the proposed methods, 
respectively, indicating that the proposed method can 
substantially reduce noise in decomposed images with minimal 
effect on decomposition accuracy. 

B. Pelvis patient study 
Fig. 3 shows the low- and high-energy CT images of the 

pelvis patient data. Fig. 4 shows the decomposed multi-material 

images by the direct inversion method [2] and the proposed 
method. The means and STDs are calculated inside the red solid 
rectangle as shown in Fig. 4(b3) and summarized in Table IV. 
The noise STDs of bone, iodine, soft-tissue and air images are 
reduced by 52%, 80%, 96% and 83%, respectively. The noise 
magnification is significantly suppressed while anatomical 
structure profiles are faithfully retained. 

 
Fig. 1. CT images of the Catphan©600 phantom on the contrast rods slice: (a) 
75kVp and (b) 125kVp. Display window is [0.01 0.04] mm-1. The digits in (b) 
indicate the rods applied in this study: (1) Teflon, (2) Delrin, (3) Iodine solution 
of 10 mg/ml, (4) Polystyrene, (5) low density Polyethylene (LDPE), (6) 
Polymethylpentene (PMP), and (7) Iodine solution of 5 mg/ml. 

 
Fig. 2. The decomposed Teflon (first column), iodine (second column), 
soft-tissue (third column) and air (last column) images of the Catphan©600 
phantom on the contrast rods slice. Row (a): direct inversion method; (b): 
proposed method. The blue solid rectangle in (b3) indicates the region where 
the means and STDs in Table IV are calculated. Display windows are: [0.22 1] 
for Teflon images, [0.4 0.7] for iodine images, [0.2 1] for soft-tissue images, 
and [0.2 1] for air images, respectively. 

TABLE II 
THE MEANS AND STDS OF PIXEL VALUES INSIDE THE ROI INDICATED BY THE 

BLUE SOLID RECTANGLE AS SHOWN IN FIG. 2(b3). 

Method Direct inversion Proposed 

Teflon image 0.054 0.113 0.021 0.058 
Iodine image 0.22 0.261 0.167 0.063 
Soft-tissue image 0.60 0.314 0.704 0.024 
Air image 0.12 0.117 0.108 0.005 

 
TABLE IV 

THE MEANS AND STDS OF PIXEL VALUES INSIDE THE ROI INDICATED BY THE 
RED SOLID RECTANGLE AS SHOWN IN FIG. 4(b3). 

Method Direct inversion Proposed 

Bone image 
Iodine image 

0.002±0.0287 
0.264±0.1000 

0       ±0.0137 
0.272±0.0205 

Soft-tissue image 0.568±0.1194 0.561±0.0042 
Air image 0.165±0.0406 0.166±0.0068 

IV. CONCLUSIONS 
We proposed a statistical image-domain MMD method for 

DECT. Taking the noise correlation of basis materials into 
consideration, we include the inverse of the estimated

(a3)

(b3)
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TABLE III 
ELECTRON DENSITIES INSIDE THE CATPHAN©600 CONTRAST RODS. THE NUMBERS OF THE RODS ARE MARKED IN FIG. 1(b). THE LAST COLUMN IS THE 
ROOT-MEAN-SQUARE (RMS) OF AVERAGE PERCENT ERRORS OF THE SEVEN RODS. THE GROUND-TRUTH ELECTRON DENSITY VALUES OF TEFLON, SOFT-TISSUE AND 
AIR ARE OBTAINED FROM CATPHAN©600 PHANTOM MANUAL. THE ELECTRON DENSITIES OF IODINE SOLUTIONS ARE CALCULATED BASED ON IODINE 
CONCENTRATIONS.  
 

Rods 1 

Teflon 

2 

Delrin 

3 

Iodine solution 

(10 mg/ml) 

4 

Polystyrene 

5 

LDPE 

6 

PMP 

7 

Iodine solution 

(5 mg/ml) 

RMS of Average 

Percent Errors  

Ground truth 6.240 4.525 3.368 3.400 3.155 2.851 3.356  

Direct inversion 6.127 3.928 3.812 2.702 2.512 2.305 3.356  

Average Percent Errors  1.8% 13.2% 13.2% 20.5% 20.4% 19.2% 0% 14.91% 

Proposed 6.132 4.824 3.779 2.654 2.490 2.255 3.231  

Average Percent Errors  1.7% 6.6% 12.2% 21.9% 21.1% 20.9% 3.7% 14.98% 

 
Fig. 3. The CT images of pelvis patient data. (a) The low-energy: 100kVp and 
(b) the high-energy: 140kVp. Display window is [0.012 0.022] mm-1. 
 

 
Fig. 4. The decomposed bone (first column), iodine (second column), 
soft-tissue (third column) and air (last column) images of the pelvis patient data. 
Row (a): direct inversion method; (b): proposed method. The red solid 
rectangle in (b3) indicates the region where the means and STDs in Table IV 
are calculated. Display windows are: [0.2 1] for bone images, [0.33 0.8] for 
iodine images, [0.3 0.8] for soft-tissue images, and [0.18 1] for air images, 
respectively.   
 
variance-covariance matrix of decomposed basis materials as 
the statistical weight in the weighted least-square term for a 
better noise suppression performance. Under the mass and 
volume conservation constraints and the assumptions that each 
pixel contains at most three materials and material triplets vary 
among pixels, the proposed cost function is difficult to solve 
directly. We designed a series of pixel-wise separable quadratic 
surrogates (PWSQS) to monotonically decrease the cost 
function [4]. As the surrogates are pixel-wise separable, the 
proposed method can update all pixels simultaneously, which 
allows faster convergence. The proposed method is a practical 
image-domain method where CT images at low and high 
energies are modeled as linear combinations of linear 
attenuation coefficients of basis materials with weights of their 
volume fractions. The proposed method incorporates noise 
correlation into statistical weight in PWLS estimation, which 
effectively overcomes the issue of significantly magnified 

noise in the decomposed basis materials by the direct inversion 
method [2] and retains anatomical structure profiles faithfully. 

The cost function of the proposed method has two tunable 
parameters (i.e., regularization coefficient and edge-preserving 
coefficient). In current implementation, for balancing noise 
suppression and spatial resolution maintenance preferably, we 
empirically selected the two parameters. In the future, we will 
further investigate optimal selection of these parameters using 
material-cross penalty. We assume uniform distribution of 
noise variance map in CT images, and measure the noise 
variance inside a manually selected region of homogeneous 
material. The performance of the proposed method can be 
further improved by substituting the uniform noise variance 
map with a pixel-dependent one. Several analytic algorithms 
are proposed in literature to calculate the variable noise 
variance map for CT images. In future work, we will combine 
noise variance estimation with the proposed decomposition 
method, and evaluate its performance on objects of clinical 
interests. 
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Abstract—Compressed Sensing changes the relation between
available data and achievable resolution in tomographic re-
constructions. In contrast to classical Filtered Backprojection,
the spatial resolution of Compressed Sensing reconstructions is
primarily dependent on the structure of the imaged sample rather
than solely on the amount of acquired projection images.

While this on the one hand facilitates reconstruction from a
reduced number of projections in many cases, it on the other
hand complicates the quantification of the actually achieved
spatial resolution that is now also dependent on the image to
be reconstructed.

In order to quantify the reliability (i.e. the local resolution) of
each pixel of a Compressed Sensing reconstruction, we parallelize
the local point spread function (LPSF) approach and demonstrate
first results showing the steady improvement of measured resolu-
tion with progression of an iterative Total Variation minimizing
tomographic reconstruction algorithm.

Analyzing the reconstruction quality of spatially localized
signals is particularly relevant to Compressed Sensing in com-
puted tomography, as exact recoverability of such features is its
fundamental assumption.

Index Terms—Compressed Sensing, Computed Tomography,
Resolution

I. INTRODUCTION

C
OMPRESSED Sensing (CS), i.e. the reconstruction of
signals from incomplete data (under certain conditions),

plays an important role in the field of Computed Tomography
due to the prospect of reduced X-ray dose or acquisition time,
depending on the particular application.

Although the exact reconstruction principle [1], [2] gives a
well founded theory for successful complete signal recovery,
not all assumptions are met precisely in practice. On the one
hand, the linear imaging model is not strictly correct in the
presence of beam hardening, scattering and noise, and on
the other hand time constraints always impose limits on the
practically achievable solution to the computationally costly
optimization task definded by CS theory. The quality of the
reconstruction result is in particular strongly dependent on the
image to be reconstructed itself.

In order to utilize Compressed Sensing computed tomog-
raphy as a reliable measurement instrument, the ability to
quantify the precision of the obtained reconstructions is thus
essential. Similar to classical Filtered Backprojection (FBP),
the impulse response or point spread function will generally
not be translation invariant over the spatial dimensions of
the reconstructed images. In contrast to FBP though, a point
spread function of a nonlinear operator as required for CS

Contact: jonas.dittmann@physik.uni-wuerzburg.de

reconstrucion can only be defined locally in the space of
all possible outputs of that operator, i.e. will besides spatial
location also depend on the image to be reconstructed.

This approach of local point spread functions (LPSF) was
presented by several authors [3]–[5] in the context of iterative
maximum-likelihood reconstruction techniques and recently
applied to CS reconstructions in magnetic resonance imaging
by Wech et al. [6]. We will use it to evaluate the performance
of an iterative CS reconstruction algorithm for X-ray com-
puted tomography. In order to obtain fully spatially resolved
resolution information for a particular reconstruction result, we
extend the LPSF approach to simultaneous evaluation of many
spatial locations in order to reduce the required computation
time to a feasible amount.

II. THEORY

Given a linear forward model of the measurement process
A, a nonlinear iterative reconstruction procedure RCS, the
measured data g, the signal to be recovered f , the perturbation
pj with j indicating the location of the nonzero in pj , the
LPSF lj(f) for pixel j is defined in the neighborhood of f as

lj(f) = RCS(g +Apj)−RCS(g) .

In order for the LPSF to be independent of the actual
amplitude of the perturbation pj , the latter has to be small
enough such that

lim
α→0

1

α

(
RCS(g + αApj)−RCS(g)

)
≈ RCS(g+Apj)−RCS(g)

holds, i.e. such that a linear expansion of RCS around g is
valid [4], [6].

As a measure of resolution, the standard deviation σ of a
gaussian fit to its respective LPSF will be attributed to each
image pixel j.

The LPSF has to be evaluated for each pixel (or voxel, in
3D) of the tomogram to get a full resolution map of the latter.
This implies that the reconstruction has to be repeated for a
perturbation at each pixel’s location, i.e. 2 × 105 times even
for a rather small tomographic slice of 500 × 500 pixels. At
reconstruction times in the order of magnitude of minutes, this
would take in the range of a year.

To greatly reduce the amount of necessary calls to the
reconstruction algorithm RCS we thus parallelize the process
of LPSF analysis by introducing many perturbations pj si-
multaneously. This has two implications which need to be
considered: First, the sparsity properties of the solution are
changed which is relevant to the reconstruction algorithm
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itself. By ensuring that the introduced signal components are
few compared to the signal itself, this should be negligible.
Secondly, the presence of multiple perturbations affects the
interpretation of the LPSF as local expansion coefficient of
RCS, which we also neglect for the purpose of resolution
estimation.

Expressed formally, we assume∑
j∈Sk

lj ≈ RCS(g +
∑
j∈Sk

Apj)−RCS(g) ,

where Sk describes a set of perturbed pixels.
Overlapping of the accumulated LPSFs is avoided by ensur-

ing that the respective pixels j in the set Sk have a sufficient
spatial distance from each other. By fitting multiple gaussians
to the result, the resolution at each of the locations j in Sk

can be determined simultaneously (i.e. with only one call to
RCS).

By regarding all possible disjoint sets Sk, a complete map
of LPSF widths can be obtained. The required number of calls
to the time consuming algorithm RCS is now the amount of
necessary sets of perturbations or approximately the amount
of regarded pixels divided by the average size of the sets.

The sets Sk are created by first defining a minimal distance
between each perturbation and then randomly selecting indices
that are in no previous set yet and respect the minimal distance
to every other pixel index in the current set. If no further points
can be found in a fixed number of attempts, further sets will be
populated until no unregarded locations are left. The minimum
required distance between pixels within each set Sk must be
chosen such that the LPSFs do not overlap significantly in
order to fit gauss curves to each LPSF individually.

III. RESULTS

The described method is used to characterize the per-
formance of a SART-based1 iterative Total Variation (TV)
minimizing tomographic reconstruction algorithm as described
in [7]. The algorithm can be summarized as alternating SART
sub-iterations with TV gradient descent steps using a custom
stepsize heuristic. The test phantom (cf. Fig. 1) is specifically
designed to challenge CS reconstruction techniques with re-
spect to spatial resolution.

The simulated measurement consists of 105 fanbeam projec-
tions of the phantom (defined on a 5122 grid) onto a 512 pixel
wide detector array. The projection angles are equidistantly
distributed over 360◦, and the fanbeam opening angle is 15◦.
Classically, the required number of projections for complete
reconstruction by Filtered Backprojection is about the π

2 -fold
of the amount of detector bins [9]. 105 projections as used
in this example thus represent less than 15 percent of the
classically required data.

A first impression of this test setup is given in Fig. 1 which
shows a comparison of regular SART versus Compressed
Sensing reconstruction. Visually, the resolution has clearly
increased with respect to the regular reconstruction.

To quantify the actual resolution achieved, the described si-
multaneous LPSF characterization technique is applied. In this

1Simultaneous Algebraic Reconstruction Technique [8]

Fig. 1. Example of a reconstruction of an 512x512 tomographic slice from
105 projections of a test phantom. The upper half shows the result of a regular
SART algorithm, while the bottom half shows the result of the Total Variation
minimizing Compressed Sensing algorithm. Both used 200 iterations. The
phantom was designed to have no specific symmetry, contain structures at
different level of detail and contrast and cover most important geometric
primitives [7].

Fig. 2. Example of the distribution of perturbations within one set Sk . The
minimal distance was chosen to be 20 pixels here and the total amount of
simultaneous perturbations is 273 here. For the computation of the local PSF’s,
these perturbations will be forward projected and added to the measurements.
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Fig. 3. The reconstruction results (left column) as well as the corresponding resolution maps (right column) are shown for different stages in the iterative
reconstruction process. The reconstruction is based on 105 projections of the 512×512 phantom. From top to bottom the results at 20, 50, 100, 150 and 200
iterations are shown. The colourbar for the right column ranges from black for σ = 0 to white for σ = 3. σ = 0.4 implies perfect reconstruction of the
perturbation, while larger sigmas indicate diminished resolution.

case, a minimal distance of 20 pixels between simultaneous
perturbations is defined resulting in an average of 280 parallel
LPSF measurements per reconstruction run. The perturbation
amplitude was chosen to be 10 percent of the maximum
value in the phantom, which was tested to comply with the
linear expansion interpretation of the LPSF definition (data
not shown). An exemplary perturbation pattern

∑
j∈Sk

pj is
depicted in Figure 2. To complete the entire resolution map
a total of 682 reconstruction runs with different perturbation
patterns were evaluated.

Figure 3 shows the progress of the iterative reconstruction
algorithm both in terms of the actual reconstruction result at
increasing iteration counts (left column) as well as the corre-
sponding LPSF sigma maps (right column). For demonstration
purposes, only a representative middle section of each slice is
shown. Most recognizable is the effect of steadily increasing
resolution in the low contrast region at the very left of the
phantom. The high contrast edges emerge quite fast, while the
low contrast background only converges very slowly to better
resolution values (indicated by smaller standard deviations σ,
i.e. darker shades of grey in Fig. 3 (right), of the gauss fits to
each LPSF).

IV. DISCUSSION

We proposed a massive parallelization of the LPSF evaula-
tion technique in order to facilitate fully spatially resolved

resolution maps for a given reconstruction problem in a
manageable amount of time. Whe used it to characterize
the performance of a Compressed Sensing reconstruction
procedure and demonstrate the (expected) increase in image
quality throughout the iterative process. When concentrating
on small and low contrast features of the reconstructed phan-
tom, the results indicate a good correlation between measured
and perceived image quality, while the apparent property of
the employed reconstruction technique to generally perform
”worse” in areas of actually low variation will leave room for
further investigations.

The LPSF ansatz is particularly interesting in the context of
CS, as it allows to test the validity of the theoretic assumptions
on a case by case basis, i.e. it can particularly give a straight
forward answer to the question whether any given image
feature will or will not be detectable by a given incomplete
imaging matrix in combination with some practical (and
possibly imperfect) implementation of the CS optimization
task.

Regarding the application to engineering problems though,
the perceived resolution of a CT scan not only depends on
the ability of a reconstruction technique to reproduce impulse
responses, yet also on the local contrast of that impulse
response with respect to noise, which was not shown in
the present article. In order to provide meaningful resolution
measures to CT users, an extended definition beyond LPSF

The 4th International Conference on Image Formation in X-Ray Computed Tomography

71



width is necessary.

V. CONCLUSION AND FUTURE WORK

By relaxing the strict interpretation of the local point spread
function (LPSF) as a locally linear expansion of a nonlinear
operator, we massively parallelize the process of LPSF eval-
uation and facilitate the evaluation of fully spatially resolved
resolution maps also for computationally costly reconstruction
operators. These maps foremost serve as an objective perfor-
mance measure for reconstruction techniques and indicate for
each part of an image whether small variations in the imaged
sample adequatly translate to the reconstructed image.

As the latter is the fundamental assumption of CS theory,
respective objective tests are an important tool both for algo-
rithm development and image assessment.

The technique was demonstrated on an iterative Compressed
Sensing tomographic reconstructions using about 15 percent of
the classically required amount of measurements. The obtained
resolution maps still leave some questions especially with
respect to the correlation of strong contrasts in the data and
low σ, i.e. high resolution the LPSF map.

In order to utilize the LPSF technique for image (in contrast
to algorithm) quality assessment in practice, further study of
the relation between measured impulse response and perceived
quality in presence of noise will be necessary.

With respect to the testing of the individual validity of CS
assumptions, testing the reproducibilty of differently shaped
impulses will be a relevant question as well, given that CS
strongly depends on the assumption of spatially localized
signal features.

ACKNOWLEDGMENT

The authors would like to thank Tobias Wech for making
us aware of the local PSF approach.

REFERENCES

[1] E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Ex-
act signal reconstruction from highly incomplete frequency information,”
Information Theory, IEEE Transactions on, vol. 52, no. 2, pp. 489–509,
2006.

[2] E. J. Candes and T. Tao, “Near-optimal signal recovery from random
projections: Universal encoding strategies?” Information Theory, IEEE
Transactions on, vol. 52, no. 12, pp. 5406–5425, 2006.

[3] J. A. Stamos, W. L. Rogers, N. H. Clinthorne, and K. F. Koral, “Object-
dependent performance comparison of two iterative reconstruction algo-
rithms,” IEEE Transactions on Nuclear Science, vol. 35, no. 1, pp. 611–
614, Feb 1988.

[4] D. Wilson and B. Tsui, “Spacial resolution properties of fb and ml-em
reconstruction methods,” in Nuclear Science Symposium and Medical
Imaging Conference, 1993., 1993 IEEE Conference Record. IEEE, 1993,
pp. 1189–1193.

[5] J. A. Fessler and W. L. Rogers, “Spatial resolution properties of penalized-
likelihood image reconstruction: space-invariant tomographs,” Image Pro-
cessing, IEEE Transactions on, vol. 5, no. 9, pp. 1346–1358, 1996.
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Abstract—Dual-energy (DE) computed tomography (CT) pro-
vides the ability to decompose an object into two (or more)
representative material components. The hybrid decomposition
(HD) approach of Shen et al. for DECT combines the principles
of existing sinogram- and image-based decomposition methods
by first converting measured DE polychromatic data (poly-data)
sets to a pair of equivalent monochromatic data (mono-data) sets
at a given monochromatic energy-pair (MEP) in the sinogram-
domain followed by material decomposition in the image-domain.
However, similar to sinogram-based methods, HD can lead to
correlated noise in the resulting mono-datasets depending upon
the choice of MEP, which may not be desirable for further
(non-linear) processing, e.g., model-based image reconstruction
(MBIR), of the mono-datasets. In this work, we present two
simple approaches for selecting MEP for HD so as to reduce the
amount of noise-correlation between the pair of mono-datasets.
This strategy approximately decouples the statistical-modeling
of the mono-datasets allowing us to apply conventional MBIR
techniques individually on each mono-dataset. We demonstrate
the usefulness of the proposed strategy using simulations.

Keywords—Dual-energy, material decomposition, monochro-
matic data, model based image reconstruction.

I. INTRODUCTION

Dual-energy (DE) computed tomography (CT) offers many
advantages over conventional CT including elimination of
beam-hardening artifacts and decomposition of the scanned
object into two or more physically meaningful basis functions
[1], [2], [3], [4]. Existing material decomposition (MD) ap-
proaches can be broadly classified as either image-based [4]
or sinogram-based [1], [2], [3]. Image-based methods [4] have
the advantage that the DE-images can be reconstructed from
the measured DECT datasets independently for each energy,
so that the reconstruction and denoising algorithms can use
noise statistics of the original DECT measurements. However,
image-based methods need to rely on approximate methods
to correct for beam-hardening in the reconstructed DE-images
and therefore are not quantitatively accurate.

Sinogram-based MD has the advantage of accurately elimi-
nating beam-hardening errors in the projection-domain before
those errors propagate and spread all over the reconstructed
image. However, they introduce (positive and negative) noise
correlation between the decomposed material-sinograms re-
quiring advanced (and complicated) MBIR techniques to sup-
press correlated noise.

This work is supported by Department of Homeland Security, Science
and Technology Directorate, Explosives Division, BAA 13-05, Contract #
HSHQDC-14-C-B0048. The authors thank Dr. Yannan Jin, GE Global Re-
search, Niskayuna, NY, USA, for helpful suggestions.

Zhang et al. proposed a MBIR method [5] that accounts
for noise correlation in decomposed material-sinograms in the
statistical-modeling. Long et al. [6] proposed to incorporate
MD as part of the MBIR reconstruction problem and jointly
reconstruct all material-images from all measurements. While
[6] considers a more wholesome reconstruction model than [5],
both [5], [6] perform joint reconstruction of material-images
and can thus be computationally expensive.

Our focus in this work is to develop a method that not only
eliminates spectral artifacts accurately, but is also computa-
tionally simpler than joint reconstruction techniques. For this,
we use the hybrid decomposition (HD) method of Shen et
al. [7] that combines the principles underlying sinogram- and
image-domain methods: first, the measured DE polychromatic
projection data (poly-data) sets (pL,pH) (at low (L) and
high (H) kVps) are converted in to equivalent monochro-
matic projection data (mono-data) sets (pE1

,pE2
) at a chosen

monochromatic energy-pair (MEP) given by (E1,E2), where
we assume E1 < E2. Next, monochromatic images (mono-
images) are reconstructed from the mono-datasets, which are
used for image-domain material decomposition. Shen et al. [7]
demonstrated the effectiveness of HD for eliminating spectral
artifacts and estimation of material properties in a noise-free
setting. Due to its similarity to sinogram-domain methods
however, HD also leads to correlated noise in (pE1

,pE2
) when

(pL,pH) are noisy.

Rather than tackling correlated noise by joint reconstruction
techniques [5], [6], we propose to reduce noise correlation
in (pE1

,pE2
) by selecting (E1,E2) suitably. Specifically, we

propose two approaches where we optimize (E1,E2) (a) jointly
so as to minimize the cumulative magnitude of noise covari-
ance between (pE1

,pE2
)—Method-1; (b) separately to mini-

mize the cumulative magnitude of noise covariance between
(pE1

,pH) and between (pE2
,pL), respectively—Method-2.

While the reasoning behind Method-1 is straightforward,
Method-2 amounts to reducing “flow” of noise from high-kVp
poly-dataset to low-energy mono-dataset and vice versa, thus
encouraging the noise in pE1

and pE2
to be more “similar”

to that in pL and pH, respectively. We observed in our
experiments that both (a) and (b) led to similar choices for
(E1,E2). After optimizing (E1,E2), we apply MBIR to (pE1

and pE2
) independently and perform material decomposition

on the resulting mono-images. We show using simulations
that we obtain better quality material decompositions with
optimized (E1,E2) than without.
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Fig. 1. Experiment 1. 2D-maps of covariance CE1,E2 in (7) for Method-1: Empirical (left); Estimated (right). These maps are symmetric about the identity
line; only one side is shown. Both maps are shown on the same display window.

II. MEASUREMENT MODEL

We assume a simple Poisson-Gaussian noise model [5, Sec.
A] for the DECT raw measurements (λi,L, λi,H), with respec-
tive raw air-scan measurements (λi,0,L, λi,0,H), i = 1, . . . ,M .
We assume that the raw measurements are background-
subtracted and that noise in λi,L and λi,H are statistically inde-
pendent of each other. The projection-values pL = {pi,L}Mi=1
and pH = {pi,H}Mi=1 are then computed as

pi,� = − log

[
λi,�

λi,0,�

]
, i = 1, . . . ,M, � = {L,H}. (1)

Based on a first-order Taylor-approximation of (1), we can
arrive at the following approximation [5, Sec. A] of the
covariance of pi,L and pi,H:

C
(i)
L,H ≈ diag

{
λi,L + σ2

e

λ2
i,L

,
λi,H + σ2

e

λ2
i,H

}
, (2)

where σe is the standard deviation of electronic noise.

III. POLYCHROMATIC-TO-MONOCHROMATIC

CONVERSION & COVARIANCE ESTIMATION

While Shen et al. [7] used a polynomial-fitting approach for
converting DE polychromatic raw measurements to monochro-
matic raw data, we use a similar approach in the projection
domain to convert measured poly-datasets (pL,pH) to mono-
datasets (pE1 ,pE2). Specifically, the ith mono-data sample
pi,Ej

, for the two energies {Ej , j = 1, 2}, is estimated using
the following polynomial expansion

pi,Ej
= fEj

(pi,L, pi,H)
def
=

∑
k1=0,...,K
k2=0,...,K

0<k1+k2≤K

a
(Ej)
k1,k2

[pi,L]
k1 [pi,H]

k2 , (3)

with K = 5, for i = 1, . . . ,M . We obtain the set of
coefficients {a(Ej)

k1,k2
} by least-squares fit of a known set of

(noise free) mono-data samples {pn,Ej}Nn=1 for a known set
of (noise free) pair of poly-data samples {pn,L, pn,H}Nn=1. To
save compute time, we precompute and store {a(Ej)

k1,k2
} for a

range of mono-energies (Ej) for a given low- and high-kVp
DE protocol.

Based on (2) and a first-order Taylor-expansion of
fE1

(pi,L, pi,H) in (3), we can then arrive at the following
approximations for the covariance of (pi,E1 , pi,E2):

C
(i)
E1,E2

≈ [∇fE1(pi,L, pi,H)]
′ C(i)

L,H [∇fE2(pi,L, pi,H)], (4)

the covariance of (pi,E1
, pi,H):

C
(i)
E1,H

≈
(
λi,H + σ2

e

λ2
i,H

)(
∂fE1(pi,L, pi,H)

∂pi,H

)
, (5)

and the covariance of (pi,E2 , pi,L):

C
(i)
E2,L

≈
(
λi,L + σ2

e

λ2
i,L

)(
∂fE2

(pi,L, pi,H)

∂pi,L

)
. (6)

IV. SELECTION OF (E1,E2)

Using the estimate, C(i)
E1,E2

, of the covariance of (pi,E1
, pi,H),

in Method-1 we propose to select the MEP (E1,E2) by jointly
minimizing the cumulative magnitude of C

(i)
E1,E2

over all data
samples i = 1, . . . ,M , i.e.,

(E
opt1
1 ,E

opt1
2 )

def
= arg min

(E1,E2)

{
CE1,E2

def
=

M∑
i=1

∣∣∣C(i)
E1,E2

∣∣∣} . (7)

We consider the cumulative magnitude in (7) so as to reduce
both positive and negative correlation between (pi,E1

, pi,E2
)

combined over all data samples. In Method-2, we obtain the
desired MEP by individual minimization of the cumulative
magnitudes of C(i)

E1,H
and C

(i)
E2,L

, i.e,

E
opt2
1

def
= argmin

E1

{
CE1,H

def
=

M∑
i=1

∣∣∣C(i)
E1,H

∣∣∣} , (8)

E
opt2
2

def
= argmin

E2

{
CE2,L

def
=

M∑
i=1

∣∣∣C(i)
E2,L

∣∣∣} . (9)

We perform the above minimizations by an explicit search
over a range of mono-energies, while in practice, sophisticated
numerical algorithms may be employed for this purpose.
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Fig. 2. Experiment 1. Plot of empirical and estimated covariances CE1,H

and CE2,L in (8)-(9) for Method-2 as a function of monochromatic energy.

TABLE I. EXPERIMENT 1: MONOCHROMATIC ENERGY-PAIRS
SELECTED BY MINIMIZING COVARIANCES IN (7)-(9)

[80, 140] kVp
Method-1 Method-2

(E
opt1
1 , E

opt1
2 ) (keV) (E

opt2
1 , E

opt2
2 ) (keV)

mA Empirical Estimated Empirical Estimated
20 [62, 80] [60, 77] [55, 75] [56, 74]
50 [61, 79] [60, 77] [55, 74] [55, 73]
100 [61, 79] [59, 76] [55, 73] [55, 73]

[120, 180] kVp
Method-1 Method-2

(E
opt1
1 , E

opt1
2 ) (keV) (E

opt2
1 , E

opt2
2 ) (keV)

mA Empirical Estimated Empirical Estimated
20 [71, 88] [70, 86] [68, 83] [68, 83]
50 [71, 87] [70, 85] [68, 83] [68, 83]
100 [71, 87] [70, 85] [68, 83] [68, 82]

V. SIMULATION RESULTS

A. Experiment 1
We first verify the accuracy of the proposed covariance

estimation and MEP selection procedures in Secs. III-IV.
Using the CatSim simulation package [8], we generated noisy
DE measurements (for a GE VCT-type system with energy-
integrating detectors, 50 cm FOV, and no bowtie filter) for an
analytical cylindrical water (density = 0.5 g/cm3) phantom of
40 cm diameter enclosed in PVC cylinder of 5 mm thickness
at [80, 140] and [120, 180] kVp-pairs of tube-voltages (888
channels × 1000 views for each kVp) with varying tube-
currents (20 mA, 50 mA, 100 mA). Due to circular symmetry
of the phantom, all views may be treated as independent
noisy realizations of any one noise free view. For each mA
and each kVp-pair, we computed empirical estimates of the
covariances in the LHS of equations (4)-(6) by averaging
over the 1000 views. We also computed the corresponding
approximate estimates in the RHS of equations (4)-(6) from
just one noisy view.

The empirical and estimated 2D-maps of CE1,E2
(7) in Fig. 1

agree in their trend. Similarly, the empirical and estimated
values of CE1,H and CE2,L (8)-(9) as a function of mono-energy
(in keV) in Fig. 2 closely agree with each other.

We list MEPs (E
opt1
1 ,E

opt1
2 ), and (E

opt2
1 ,E

opt2
2 ), that re-

spectively minimized the empirical and estimated cumu-
lative magnitude of covariances CE1,E2 , and CE1,H and

1 2

34

5

6 7

Fig. 3. Experiment 2. Cylindrical phantom with different materials: (1)
Water, (2) Ethanol, (3) Graphite, (4) PVC, (5) PMMA, (6) Aluminium, (7)
Salt (NaCl).

CE2,L (7)-(9) in Table IV. There is a good agree-
ment between minimum-empirical-covariance and minimum-
estimated-covariance MEPs for all considered kVp-pairs
and tube-currents. There is a slight difference between
(E

opt1
1 ,E

opt1
2 ) and (E

opt2
1 ,E

opt2
2 ) in Table IV, which is to be

expected since CE1,E2
(7) is different from CE1,H and CE2,L

(8)-(9). However, the values of CE1,E2 at (E
opt1
1 ,E

opt1
2 ) and

(E
opt2
1 ,E

opt2
2 ) are close (as seen in Fig. 1), indicating that both

(E
opt1
1 ,E

opt1
2 ) and (E

opt2
1 ,E

opt2
2 ) lead to a comparatively smaller

covariance CE1,E2
in the converted mono-datasets.

B. Experiment 2
We considered an analytical cylindrical water phantom of

20 cm diameter with material inserts illustrated in Fig. 3
and generated noisy DE datasets (for a GE VCT-type system
with energy-integrating detectors, 20.8 cm FOV, and no bowtie
filter) at [80, 140] kVp-pair of tube-voltage (360 channels ×
1000 views for each kVp) and 100 mA tube-current using Cat-
Sim [8]. We performed the minimizations in (7)-(9), obtained
(E

opt1
1 ,E

opt1
2 ) = [56, 74] keV and (E

opt2
1 ,E

opt2
2 ) = [54, 72] keV,

and computed the corresponding pairs of mono-datasets. For
comparison, we also computed a pair of mono-datasets at a
sub-optimal [compared to the optimalities in (7)-(9)] MEP
(Esub

1 ,Esub
2 ) = [48, 80] keV.

We ran an (accelerated) MBIR algorithm similar to that in
[9, Table V] independently on each mono-dataset taking care to
adjust the regularization-strength in each case to obtain similar
resolution (horizontal-profile) across the bars in each material
in Fig. 3. We then performed a two-component material
decomposition on the resulting pairs of MBIR-reconstructed
mono-images with water and salt (NaCl) as the basis materials.
We also obtained the material decompositions for the noise free
ground-truth using CatSim and computed root mean-squared
difference (RMSD) of the noisy material decompositions (for
each material) with respect to the ground-truth.

The water- and salt-images in Fig. 4 corresponding to
(E

opt1
1 ,E

opt1
2 ) and (E

opt2
1 ,E

opt2
2 ) are comparable in quality, with

(E
opt1
1 ,E

opt1
2 ) having the least noise. The sub-optimal choice

(Esub1
1 ,Esub1

2 ) has more noise than either of the proposed
choices. The RMSD of the densities of the water- and salt-
components for each material is tabulated in Table V-B.
Again, the RMSD-values for (E

opt1
1 ,E

opt1
2 ) and (E

opt2
1 ,E

opt2
2 )

are comparable with (E
opt1
1 ,E

opt1
2 ) yielding the lowest RMSD-

values (in bold) and (Esub1
1 ,Esub1

2 ) yielding the highest RMSD-
values for both water- and salt-components for all materials.
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Fig. 4. Experiment 2. Water- (top) and Salt- (bottom) components of the phantom in Fig. 3 obtained from (left to right) noise free ground-truth, and pairs
of mono-images corresponding to the choices of (Eopt1

1 ,E
opt1
2 )—Method-1, (Eopt2

1 ,E
opt2
2 )—Method-2, and (Esub

1 ,Esub
2 )—Sub-optimal, respectively. Display

window is [0 1.5] g/cm3 for Water-component (top) and [-0.1 0.5] g/cm3 for Salt-component (bottom).

TABLE II. EXPERIMENT 2. RMSD OF ESTIMATED DENSITIES OF
WATER AND SALT

Water component (g/cm3) of the decomposition
Ground-truth RMSD for RMSD for RMSD for

Material Density (E
opt1
1 , E

opt1
2 ) (E

opt2
1 , E

opt2
2 ) (Esub

1 , Esub
2 )

Method-1 Method-2 Sub-Optimal

Water 1.0000 0.0515 0.0577 0.0718
Ethanol 0.8338 0.0443 0.0497 0.0656
Graphite 1.6868 0.0462 0.0537 0.0701

PVC 0.1560 0.0705 0.0789 0.0898
PMMA 0.5993 0.0489 0.0542 0.0693

Aluminium 0.5318 0.0717 0.0792 0.0906
Salt 0 0.0863 0.0943 0.1034

Salt component (g/cm3) of the decomposition
Ground-truth RMSD for RMSD for RMSD for

Material Density (E
opt1
1 , E

opt1
2 ) (E

opt2
1 , E

opt2
2 ) (Esub

1 , Esub
2 )

Method-1 Method-2 Sub-Optimal

Water 0 0.0336 0.0377 0.0496
Ethanol 0.0379 0.0282 0.0320 0.0448
Graphite 0.0987 0.0309 0.0360 0.0496

PVC 0.5521 0.0493 0.0548 0.0646
PMMA 0.0250 0.0316 0.0354 0.0476

Aluminium 0.7547 0.0520 0.0560 0.0664
Salt 1.0800 0.0594 0.0645 0.0733

We obtained similar results (not shown) for another experiment
using the phantom in Fig. 3 with tube-current set to 50 mA in
CatSim.

VI. DISCUSSION

We proposed two methods for selecting monochromatic
energy-pairs (MEPs) for conversion of measured DE poly-
chromatic data (poly-data) sets to monochromatic data (mono-
data) sets so as to minimize the amount of noise correlation
in them. This strategy allows us to (approximately) decouple
the statistical-modeling of noise in the mono-datasets and
thus apply conventional MBIR individually on each mono-
dataset. We demonstrated using simulations that the proposed
selections of MEP yield better material decompositions (with
an average reduction in RMSD of 1.4× and 1.25× respectively
for Method-1 and Method-2) than an arbitrary choice of MEP.

The proposed scheme only minimizes and does not eliminate
noise covariance between the mono-datasets. We are currently

implementing a joint reconstruction technique (similar to that
in [5]) that accounts for (any residual) noise covariance in
the mono-datasets in the joint-MBIR statistical-modeling. We
plan to compare this joint reconstruction technique against the
methods proposed in this paper and validate their practical
usefulness as part of future work.
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� 
Abstract — The aim of this study is to propose a methodology to 
benchmark clinical CT protocols using mathematical model 
observer metrics. Two model observers (NPWE and CHO) were 
used to assess the high and low contrast detectability on four CT 
units. One CT unit provides high image quality (at low and high 
contrast) in comparison to the three others. These results show 
that it is possible to compare units with several task-based image 
quality criteria. In the future this approach, will be used to 
compare 8 CT units using 6 clinical protocols.  

 
Index Terms— Computed Tomography, Low contrast 

detectability, Model observer, Spatial Resolution 

I. INTRODUCTION 
omputed tomography (CT) is an imaging technique in 
which interest has been quickly growing since it began to 
be used in the 1970s. Today, it has even become an 

extensively used modality because of its ability to produce 
accurate diagnostic images. However, even if a direct benefit 
to patient healthcare is attributed to CT, the dramatic increase 
in the number of CT examinations performed has raised 
concerns about the potential negative effects of ionizing 
radiation on the population. In order to ensure that the 
benefits-risk ratio still remains in favor of the patient, it is 
necessary to make sure that the delivered dose leads to the 
proper diagnosis without producing unnecessarily high-quality 
images; that is to optimize the way the unit is used on patients 
[1]. In this context many efforts have been made to better 
estimate the risk part of CT examinations by introducing 
standardized ways to quote patient exposure (CTDIvol, SSDE 
and DLP concepts) [2].  Then diagnostic reference levels 
(DRL) have been introduced to reduce the spread of the 
practice.  However, the most important outcome of the 
examination, the clinical image quality, remains subjectively 
assessed.  In such a context the optimization scheme between 
risk and benefit cannot be properly performed.  One needs a 
way to objectively assess the performance of the CT unit 
together with one or several image quality criteria that check 
the detection/characterization of pathologies.  This 
requirement is particularly critical with the introduction of 
iterative reconstruction in CT where very low dose images  
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can be produced without the traditional image signs (artifacts, 
high noise level) that alert radiologists that a low contrast 
lesion could be missed.  To adapt the image quality level to 
the diagnostic question to be answered, to benchmark 
protocols and units one should have access not only to a dose 
report but also to objective image quality criteria [3].  The 
goal of this contribution is to present a strategy to qualify 
clinical CT protocols using two concepts: one to assess the 
low contrast detectability and localization of homogeneous 
spheres placed in homogeneous background and the other to 
assess the performances concerning the high spatial resolution 
properties of the image using the CHO (Channelized Hotelling 
Observer) and the NWPE (Non pre-whitening match with eye 
filter) mathematical model observers. 

II. MATERIALS AND METHODS 

A. Description of phantoms and CT  
Three phantoms were scanned on 4 CT units: GE Revolution 
and VCT (GE Healthcare, USA), Toshiba Aquilion Prime and 
Activion 16 (Toshiba Medical Systems, Japan). Each phantom 
was scanned following the parameters acquisitions described 
in table I and images were reconstructed with the algorithm 
available and usually used in clinical routine (FBP or 
iterative).  For this comparison that involves multiple 
institutions and CT units, the acquisitions parameters were 
kept constant as much as possible between CT units and the 
tube currents (mA) were fixed to obtain comparable CTDIvol 
values. 
First a low contrast head phantom (MITA CCT 191, The 
Phantom Laboratory, USA) with four rods of different sizes 
and contrast levels (3mm/5HU, 2mm/9HU, 4mm/4HU, 
3mm/5HU) placed in a homogeneous background were used 
to assess the low contrast detectability for the head protocol.  
Second a custom made phantom with three cylindrical inserts 
of diameter 10cm and of different materials was used to assess 

Characterization CT unit using a dose 
efficiency index concept 

Damien Racine1, Pascal Monnin1, François O. Bochud1, Anaïs Viry1, Alexander Schegerer2, Sue 
Edyvean3, Francis R. Verdun1 

C 

TABLE I 
 SCANNING PARAMETERS FOR DIFFERENT PROTOCOLS 

 
Head Protocol Thorax 

Protocol 
Abdomen  
Protocol 

CTDIvol (mGy) 55 15 5/10/15 
Slice Thickness 
(mm) 2.5/3 2.5/3 2.5/3 
kV 120 120 120 
X-ray collimation ≈40 ≈40 ≈40 
Pitch ≈1 ≈1.4 ≈1.4 
FOV (mm) 220 250 320 
Rotation time (s) 1 1 1 
Filter Standard Head Lung Standard Body 
Phantom MITA TTF QRM Abdomen 
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the spatial resolution; in Teflon mimics cortical bone, low-
density Polyethylene mimics fatty tissue and Plexiglas 
mimics’ cartilaginous tissue. The inserts are centered in the 
phantom and surrounded by 7.5 cm of water. At the end of the 
phantom a water region without insert was used to compute 
the NPS.  
Third an abdominal anthropomorphic phantom, equivalent 
diameter 24 cm (QRM, Moehrendorf, Germany) was used to  
mimic the X-ray attenuation of a thin abdomen. Two modules 
were inserted inside, a homogeneous module and another 
module containing spheres of different diameters (8, 6, 5, 4 
and 3 mm) of low contrasts (-20 and -10 HU at 120 kV). Only 
the spheres of 5 mm and 20HU, and 8mm at 10HU were 
analyzed in this study. 

B. Non Prewhitening With Eye filter 

The NPWE detectability index was evaluated based on the 
TTF and NPS calculated for each CT unit and protocol.   

 

 
 Equation 1 
 
The spatial resolution was evaluated using the Target Transfer 
Function (TTF) that takes into account the effect of contrast 
on the spatial resolution parameter. The methodology used is 
described in ref. [4]. The mean radial NPS was evaluated 
according to ICRU report 54 using 256 x 256 pixel area taken 
on 10 water slices[5]. (The reader interested in all the 
mathematical details of the process will find extensive details 
in Ott et al. [4]). 

C. Channelized Hotelling Observer  

A Channelized Hotelling Observer (CHO) was used to 
evaluate the low contrast detectability with the head and 
abdomen phantoms. The methodology used is described in ref.  
[6]. This model is used for localization and detection tasks and 
the detectability index calculated from the AUC obtained with 
a ROC or LROC analysis is used as a figure of merit [7][8]. 
For the localization task, the CHO scans all possible locations 
to generate a map with all decision variables calculated for 
every location investigated. The target position defined by the 
model corresponds to the position with the highest decision 
variable. If the difference between the calculated position and 
the actual target location is less than the radius of the target, 
the estimated position is considered correct. Finally, to 
compare the performance of the CHO, the AUC was 
converted into detectability index (dA) using equation 2. 
 

dA = 2 Φ-1(2AUC-1) Equation 2 
 

III. RESULTS 

A. Detection task (QRM abdomen phantom): 

As expected, the image quality metrics improve with the 
CTDIvol between 5 and 15 mGy.   For category 5mm/20HU @ 
15mGy, which corresponds to a relatively high dose level for 
this phantom, only the CT unit “B” is inferior to the others. 
For the unit “C” image quality remains relatively constant 
whatever the dose (Figure 1).  Thus, this particular unit has an 
important potential for patient dose reduction. 
 

 
 
Fig. 1.  Detectability as a function of dose for category 5mm/20HU (QRM 
phantom) 
 
For category 8mm/10HU @ 15mGy, the CT unit “C” is 
superior to the others (Figure 2).  It is interesting to notice that 
the detectability does not reach a plateau as opposed to the 
behaviour observed when dealing with category 5mm/20HU 
shown in Figure 1.  

 
 
Fig. 2.  Comparison between the 4 CT units as a function of dose for the ROC 
study at 8mm/10HU 
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B. Localization task (MITA head phantom): 

Table II shows the LAUC and AUC obtained with the CHO. 
The difference between the 4 CT units is more important for 
the LAUC, showing that the introduction of the localization 
task increases the difficulty of the image quality assessment.  
 

C. Spatial resolution and image noise (TTF phantom):  

Examples of TTF and NPS used to estimate the detectability 
index d’ with the NPWE model observer are shown in Figures 
3 and 4, respectively. The NPS is determined in a volume 
region and were radially averaged over 1D for an easier 
comparison. 

 
Fig. 3. TTF for three materials at 15mGy for CT unit “C” 

Fig. 4.  NPS for CT unit “C” at 15mGy 
 
Table III shows the d’ obtained for a sphere of 0.5mm in 
diameter for three contrast values with  Equation 1.  As 
expected from the contrasts of the three materials considered, 
d’ for PMMA in water is higher than for Polyethylene in 

water,and d’ is the highest for Teflon in water.  If, for a given 
contrast the units “A, B, D” provide comparable outcomes, the 
unit “C” gives higher d’.  This difference is mainly explained 
by the shape and amplitude of a NPS about 150 times lower 
compared to the other systems.  All units had comparable TTF 
outcomes. 
 

 
 

IV. LIMITATIONS - CONCLUSION 
In the framework of patient dose optimization it is essential to 
ensure that comparable image quality levels are obtained.  The 
goal of this study was to use model observers to compare CT 
units using task-based image quality criteria.  These results 
show that it is possible to compare units using several task-
based paradigms, and thus ensure a comparable level of image 
quality for several types of CT units used in clinical routine.  
The proposed methodology allows also a task-based 
evaluation of the advantages of new CT technologies.  Our 
approach has several limitations: first of all the tasks are very 
simple especially for the abdominal protocol, and our 
phantoms have homogeneous backgrounds. However, the 
level of complexity of model observer can be increased aiming 
at predicting the human performance when dealing with the 
detection/localization of target placed in more realistic 
backgrounds. 
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TICMR: Total Image Constrained Material
Reconstruction via nonlocal total variation

regularization for spectral CT
Jiulong Liu, Huanjun Ding, Sabee Molloi, Xiaoqun Zhang, and Hao Gao

Abstract—The purpose of this work is to develop a material
reconstruction method for spectral CT, namely Total Image
Constrained Material Reconstruction (TICMR), to maximize the
utility of projection data in terms of both spectral informa-
tion and high signal-to-noise ratio (SNR). This is motivated
by the following fact: when viewed as a spectrally-integrated
measurement, the projection data can be used to reconstruct
a total image without spectral information, which however has
a relatively high SNR; when viewed as a spectrally-resolved
measurement, the projection data can be utilized to reconstruct
the material composition, which however has a relatively low
SNR. That is, first we reconstruct a total image using spectrally-
integrated measurement without spectral binning, and build the
NLTV weights from this image that characterize nonlocal image
features; then the NLTV weights are incorporated into a NLTV-
based iterative material reconstruction scheme using spectrally-
binned projection data, so that these weights serve as a high-
SNR reference to regularize material reconstruction. In terms
of solution algorithm, TICMR is formulated as an iterative
reconstruction method with the NLTV regularization, in which
the nonlocal divergence is utilized based on the adjoint relation-
ship . The alternating direction method of multipliers (ADMM)
is developed to solve this sparsity optimization problem. The
proposed TICMR method was validated using both simulated and
experimental data. In comparison with FBP and total-variation-
based iterative method, TICMR had improved image quality,
e.g., contrast-to-noise ratio (CNR) and spatial resolution.

Index Terms—image reconstruction, spectral CT, nonlocal total
variation.

I. INTRODUCTION

S
Pectral CT aims to reconstruct the material compositions
from the multi-energy projection data. It can be deter-

mined in a two-step procedure, i.e., image reconstruction
for spectral images and then material decomposition from
these spectral images to material compositions [1], [4]–[10],
or alternatively material-specific sinogram decomposition and
then material reconstruction [2], [11]–[13]. Various iterative
reconstruction models have been developed, with energy-by-
energy reconstruction [1], [2], [5], [7], [8], [11]–[13] and joint
reconstruction [4], [6], [9], [10], such as total variation (TV)
sparsity [10], tight frame sparsity [1], [7], bilateral filtration
[8], patch-based low-rank model [9], rank-and-sparsity decom-
position model [4] and its tensor version [6]. In order to fully
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utilize the image similarity in the spectral dimension, the joint
reconstruction is a natural formulation [4], [6], [9], [10]. With
local sparsity (such as TV), cautiousness is required to handle
such an intensity difference for joint spectral reconstruction
[10]. Nevertheless, with the aforementioned two-step proce-
dure where image reconstruction is independent of material
decomposition, there are two major limitations: (1) it may not
fully utilize the prior that material compositions share common
structures; (2) given that the number of energy bins is often
more than the number of materials, reconstructing a larger
number of spectral images, which are subsequently decom-
posed into a smaller number of materials, may be unstable and
can possibly deteriorate the reconstruction quality. Therefore,
the reconstruction of an overdetermined set of spectral images
independent of material decomposition is unnecessary.

In this work, we propose a material reconstruction method
for spectral CT that maximizes the utility of projection data
in terms of both spectral information and high signal-to-
noise ratio (SNR), i.e., Total Image Constrained Material
Reconstruction (TICMR). The constraint via total image for
improved SNR is achieved via nonlocal total variation (NLTV)
regularization [14], [15]. As mentioned earlier, even if spectral
images or material compositions share common structures,
their intensity values may differ significantly. Therefore, the
prior of spectral similarity may not be efficient to regularize
locally. Instead, we use NLTV as a global sparsity method to
extract image features from the total image and then use these
high-SNR features to regularize the material reconstruction.
That is, first we reconstruct a total image using spectrally-
integrated measurement without spectral binning, and build
the NLTV weights from this image that characterize nonlocal
image features; then the NLTV weights are incorporated into
a NLTV-based iterative material reconstruction scheme using
spectrally-binned projection data, so that these weights serve
as a high-SNR reference to regularize material reconstruction.

II. METHOD

A. Spectral Model

Consider a set of spectral measurement Yim, i = 1, · · · , N ,
m = 1, · · · , Ne, where Ne is the number of spectral energies,
Nv is the number of projection views, Nd the number of
detectors, and N = Nd · Nv . Let M = N · Ne be the total
number of spectral data, s(E) the incident spectrum, ΔEm

the length of the mth energy interval, and Li the path of line
integral for Yim. Assuming the perfect detector response [16],
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the expectation Y ∗
im of spectral measurement Yim is given by

the following spectral model

Y ∗
im =

∫
ΔEm

s(E)e
− ∫

Li
u(x,E)dx

dE (1)

for i = 1, · · · , N,m = 1, · · · , Ne,

where multi-energy attenuation coefficient u(x,E) linearly
depends on the material composition Z [4], i.e.,

u(x,E) =

Nz∑
k=1

Zk(x)Bk(E). (2)

Here Nz is the number of basis materials, Zk(x) is the material
composition of the kth basis material at the spatial location x,
which is spectrally independent, and Bk(E) is the attenuation
coefficient of the kth basis material at the energy E, which is
spatially independent.

We then consider a spatially discretized version of (1) with
a piecewise-constant spatial grid xj , j = 1, · · · , Nx. Let A
be the system matrix for discretized X-ray transform with the
matrix element Aij , e.g., the length of the ray Li overlapping
with the grid xj . Then

Y ∗
im =

∫
ΔEm

s(E)e−
∑

j Aij(
∑

k ZjkBk(E))dE, (3)

where Zjk is the kth material composition at the grid xj .
Next we introduce the effective attenuation coefficient Bkm

of the kth basis material for the energy interval ΔEm, i.e.,

Y ∗
im = sme−

∑
j Aij(

∑
k ZjkBkm), (4)

where

sm =

∫
ΔEm

s(E)dE. (5)

Here (4) is justified by the mean value theorem for definite
integrals, thanks to the continuity of B(E) with respect to E.

In the matrix notation, (4) is

Y ∗ = S · e−AZB , (6)

where Y ∗ ∈ RM is a column vector of the spectral mea-
surement, S ∈ RM a column vector of the source spectrum
distribution formed by replicating {sm} in spatial dimension,
A ∈ RN×Nx the system matrix, Z ∈ RNx×Nz the material
composition, and B ∈ RNz×Ne the material-attenuation ma-
trix.

Last, assuming Poisson distribution for Y , our spectral
model to reconstruct material composition Z from spectral
measurement Y , i.e., the data fidelity term, can be formulated
as the following quadratic functional [17]

L(Z) =
1

2
(AZB − P )TW (AZB − P ) =

1

2
‖AZB − P‖2W ,

(7)
where P = ln( S

Y ) ∈ RM and W = diag(Y ) ∈ RM×M .

B. Total Image Constrained Material Reconstruction

The proposed TICMR consists of two steps: (i) to recon-
struct a total image using spectrally-integrated measurement
without spectral binning, and build the NLTV weights from
this image that characterize nonlocal image features; (ii) to in-
corporate these NLTV weights computed from high-SNR total
image into material reconstruction using spectrally-resolved
projection data.

Let Y0 be the spectrally-integrated measurement, i.e., Y0i =∑
m Yim, i = 1, · · · , N . Then the total image X∗ ∈ RNx is

reconstructed by the following TV based iterative method

X∗ = argmin
X

1

2
‖AX − P0‖2W0

+ λ|∇X|1 (8)

where P0 = ln( s0Y0
) ∈ RN with total source energy s0 =∑

m sm, W0 = diag(Y0) ∈ RN×N , and |∇X|1 an isotropic
TV norm with regularization parameter λ, e.g.,

|∇X|1 =
√
∂2
xX + ∂2

yX. (9)

Then the material composition Z∗ is reconstructed by the
following NLTV based iterative method

Z∗ = argmin
Z

1

2
‖AZB − P‖2W + λ|∇wZ|1 (10)

where |∇wZ|1 is the NLTV norm that will be given in the
next section.

To summarize, TICMR is achieved in this work through
TV and NLTV regularization, i.e., (8) and (10), during which
the total image X∗ reconstructed by (8) provides high-SNR
NLTV weights for the material reconstruction of Z∗ by (10).

In the result section, we compare TICMR with FBP and the
following TV based material reconstruction

Z∗ = argmin
Z

1

2
‖AZB − P‖2W + λ|∇Z|1. (11)

The solution algorithm for sparsity-based reconstruction
problems (8), (10), and (11) is based on alternating direction
method of multipliers [19] or split Bregman method [20].

C. Nonlocal Total Variation

An essential component of NLTV is to characterize the
patch-by-patch similarity [18] instead of pixel-by-pixel sim-
ilarity (e.g., TV). That is, for a given image X , the following
weights can be constructed between any two spatial node x
and y,

wX(x, y) = e−
∫
Ω1

Gσ(t)(X(y+t)−X(x+t))2dt

σ2 , (12)

where G is a Gaussian kernel with the standard deviation σ,
and Ω1 represents the spatial neighborhood to be compared
around x and y.

Such a patch-by-patch similarity at the spatial grid x from
a high-SNR image X can be used to regularize the low-SNR
image u via the following nonlocal gradient at x [14], i.e.,

∇wu(x, y) = (u(y)− u(x))
√
wX(x, y), ∀y ∈ Ω2. (13)

Here Ω2 is the spatial neighborhood around x where the
nonlocal gradient ∇wu(x, y) is computed by (13).
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Then the NLTV norm of Z in (10) is given by

|∇wZ|1 =
∑
k

|∇wZk|1, (14)

where the nonlocal weights w are constructed based on the
total image X∗ reconstructed from (8).

On the other hand, we need to compute the adjoint of (13)
during the reconstruction, for which we utilize the following
adjoint relationship with a nonlocal divergence operator divw

〈∇wu, v〉 = 〈u, divwv〉 (15)

with the nonlocal divergence operator [14] defined as

(divwv)(x, y) =
∫
Ω2

(v(x, y)− v(y, x))
√
wX(x, y)dy (16)

III. RESULTS

A. Simulation Results

Simulations were performed at tube voltage of 65 kVp. The
mean glandular dose was estimated to be approximately 2
mGy for a 10 cm breast with 40% density. A 10 cm PMMA
phantom (Fig. 1) which contains both iodine and calcium of
various concentrations (TABLE I) was used.

Fig. 1. The simulation phantom.

TABLE I
THE CONCENTRATION AND SIZE OF PHANTOM OBJECTS

Object Material Radius Concentration
1 adipose 48mm
2 iodine 8mm 16mg/ml
3,10 iodine 8mm 8mg/ml
4 iodine 8mm 4mg/ml
5,11 iodine 8mm 2mg/ml
6 calcium 8mm 400mg/ml
7,10 calcium 8mm 200mg/ml
8 calcium 8mm 100mg/ml
9,11 calcium 8mm 50mg/ml
12 calcium 4mm 400mg/ml
13 calcium 2mm 400mg/ml
14 calcium 0.6mm 400mg/ml

To compare with the proposed TICMR method (8) and
(10), we applied the FBP method to reconstruct material
compositions from the material-specific projection data P̂ ,
i.e.,P̂ = PBT (BBT )−1. In addition, we compared with the
TV method (11) to reconstruct material compositions directly
from the projection data P .

Fig. 2. Simulation results. (a) FBP; (b) TV; (c) TICMR. (1) adipose; (2)
iodine; (3) calcium.

The reconstructed material composition images with sim-
ulated data are shown in Fig. 2. All three reconstruction
methods were able to decompose the phantom into adipose,
iodine and calcium basis with good accuracy. However, the
noise characteristic of the images was significantly different
for three methods. TICMR has improved image quality from
FBP and TV. Note that the small objects of calcium can be
clearly observed in the TICMR result, which suggests that the
spatial resolution was well preserved.

Fig. 3. Left: CNR of iodine (object 2-5); right: CNR of calcium (object 6-9).

For quantitative evaluation, the CNR of iodine and calcium
are plotted in Fig. 3, which clearly shows TICMR had the
best CNR among all three methods. Here the significant
improvement of CNR of TICMR and TV from FBP was due to
the piecewise-constant representation of simulation phantom.
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Fig. 4. Material composition curve along the horizontal and central line
passing through Object 11. Left: iodine; right: calcium.

In order to evaluate the spatial resolution of reconstructed
material compositions, two material composition curves were
drawn along the horizontal and central line passing through
Object 11 as shown in Fig. 6, which suggest that the TICMR
had the best spatial resolution.

To summarize, the TICMR result had not only the highest
SNR, but also the best spatial resolution. This is enabled
by high-SNR total image constrained material reconstruction
through the NLTV regularization.

B. Experimental Results

Experimental data was acquired from a postmortem breast
with a spectral CT system based on a CZT photon-counting
detector at a mean glandular dose of 1.2 mGy. All X-ray
photons interacting with the CZT detector were sorted into
five user-definable energy bins.

The reconstructed material compositions are shown in Fig.
5, which again show that TICMR had improved image quality
from FBP and TV.

To quantitatively evaluate the reconstruction quality, we
applied CNR(ROI1, ROI2) and CNR(ROI2, ROI1) to cal-
culate CNR as summarized in TABLE II including adipose
(Column 1 of Fig. 5) and glandular (Column 2 of Fig. 5).

Fig. 5. Experimental results. (1) FBP; (2) TV; (3) TICMR. (a) adipose; (b)
glandular.

TABLE II
THE CNR RESULTS WITH EXPERIMENTAL DATA

Material FBP TV TICMR
adipose 24.64 43.03 58.51
glandular 26.26 45.20 62.34

Fig. 6. Material composition profile along the line L in Fig. 5. Left: adipose;
right: glandular.

IV. CONCLUSION

TICMR is proposed for spectral CT with improved im-
age quality, i.e., both CNR and spatial resolution. Such an
improvement is enabled by the total image constraint via
the NLTV regularization. That is, a high-SNR total image is
first reconstructed with energy-integrated projection data of
relatively high SNR, and then built into the NLTV weights
to regularize the material reconstruction with energy-resolved
projection data of relatively low SNR via the NLTV regular-
ization.
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On Approximation of Compound Poisson by Poisson 

Gengsheng L. Zeng and Wenli Wang 

Abstract– Purpose: This paper investigates whether a more 
accurate noise model can result in less noisy images in CT 
iterative reconstruction. Methods: X-ray photons detected by the 
CT detector are usually modeled as Poisson statistics. A more 
accurate noise model for the x-ray photons is based on the 
compound Poisson distribution. A variance formula for the 
compound Poisson noise is derived and presented. Computer 
simulations are conducted with 12 different noise weighting 
methods, and their results are compared. Results: Almost no 
differences are observed between the compound Poisson noise 
model and the regular Poisson noise model used in the maximum 
likelihood iterative reconstruction, when the projection data are 
generated with a compound noise model.  Conclusions: A more 
accurate noise model does not necessarily produce a less noisy 
image. It seems that modeling the system's electronic noise does 
not help. A simpler noise model sometimes can outperform the 
complicated and accurate noise model.

I. INTRODUCTION

N In transmission tomography especially in x-ray 
computed tomography (CT), the iterative image 

reconstruction algorithms assume a simple Poisson model [1-
5]. In this Poisson noise model, it is assumed that the number 
of photons I0 emitted from the x-ray tube is a constant (not 
random) because this number is extremely large. After the x-
ray photons travel through an attenuating/scattering object, the 
number of photons escaping from the object is significantly 
reduced and follows the Poisson noise model. 

Based on the belief that a more accurate noise model used 
in an iterative image reconstruction algorithm may improve 
the signal-to-noise ratio in the reconstructed image, the 
assumption of the source photon count being a constant is 
dropped, and the number of photons emitted from the x-ray 
tube is characterized as the Poisson distribution. This more 
accurate noise model is justified in multi-energy x-ray CT 
imaging, where the x-ray energy spectrum is considered. The 
x-ray energy spectrum can be divided into many sub energy 
windows (or bins); the number of x-ray photons in each 
window is Poisson. The mean value of the photons in each 
energy window can be characterized by a spectrum function 

(E). Since the source photon counts are random and Poisson, 
the detected (after object) x-ray photons are compound 
Poisson distributed [6,7]. 

The linear attenuation coefficient of a material is energy 
dependent and this fact is the cause of the infamous beam-
hardening artifacts in CT. The purpose of this paper is to 
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investigate whether the difference between the compound 
Poisson and regular Poisson can make any differences in the 
reconstructed images. The beam-hardening issues are not in 
the scope of this paper, and the linear attenuation coefficient is 
assumed to be energy independent in all of our computer 
simulations.  

II. METHODS

This section first introduces the compound Poisson 
model, and then derives the pre-log and post-log formulas for 
the mean and variance. Descriptions of the setup of the 
computer simulations are also presented. 
2.1  Compound-Poisson distribution 

The Poisson distribution is well known in medical 
imaging. The most distinguishing feature of the Poisson 
distribution is that its mean and its variance are the same. 
Symbolically, a Poisson random variable q can be represented 
as

)(Poissonq  ,        (1) 
where  is the mean value as well as the variance. A general 
compound-Poisson random variable p can be expressed by 

)(21 PoissonaPoissonap  ,      (2) 
where a1 and a2 are two non-random constants.  The mean and 
variance of the compound-Poisson distribution can be derived 
from the law of total expectation and the law of total variance 
[10]. Thus  

2121| ][)]([)( aaqaaEpEEpE qqpqp .     (3) 

)]([)]([)( || pEVarpVarEpVar qpqqpqp
2

212
2
1212

2
1 )(][][ aaaaqaaVarqaaE qq

.              (4) )( 2
22

2
1 aaa

2.2 Pre-log multi-energy noise  
The number of photons I0 emitted from an x-ray tube is 

Poisson distributed. Since I0 is so large, it is justified to 
assume I0 to be a non-random constant. Let the energy 
spectrum distribution function of the x-ray source be (E)
which is normalized to unity (similar to a probability density 
function).  

The x-ray energy spectrum (before entering the object) 
can be divided into many sub energy windows (or bins); the 
number of x-ray photons in each window is Poisson 
distributed. The mean value of the number of x-ray photons in 
the kth energy window is I0 (Ek).

After the x-rays pass through the object, on the detector, 
each energy window produces a compound-Poisson x-ray 
measurement pk, which can be modeled as [8,9] 

)(0
)(

k
dxx

k EIPoissonePoissonp

I

,    (5) 
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where  is the linear attenuation coefficient and  is assumed
to be independent of the photon energy in this paper; the line 
integral  is along the associated projection ray. dxx)(

The energy-integrating detection outputs a signal of 
, where Ek is the photon energy of the energy 

window and a is the system gain. Using the definition (2) with 
, , and 

kk paE

kaEa1 ))(exp(2 dxxa )(0 kEI , by (3) 
and (4), the mean and variance of the weighted compound-
Poisson variable are given as: 

Mean of ;     (6) dxx
kkkk eEIaEpaE )(

0 )(
Variance of  = kk paE

.    (7) ))(()( )(2)(
0

2 dxxdxx
kk eeEIEa

The total signal p received by the energy-integrating
system along this ray should include the signals from all 
energy windows and the noise d generated in the electronic 
circuits: 

dpaEp
k

kk .        (8) 

where d can be assumed to be a zero-mean Gaussian random 
variable with a variance 2. Using (6) and (7), the mean and 
variance of the random variable p in (8) can be obtained as 

Mean of 0)( )(
0

dxx
k

k
k eEIEap

      )()(
0 k

k
k

dxx EEeIa

EeIa dxx)(
0               (9) 

 with the first moment of the x-ray source distribution 
)( k

k
k EEE ;             (10) 

 Variance of p
2)(2)(

0
2 ))(()( dxxdxx

k
k

k eeEIaE

22)(2)(
0

2 )()( k
k

k
dxxdxx EEeeIa

     2)(2)(
0

2 )( EeeIa dxxdxx      (11) 
with the second moment 

)(2
k

k
k EEE .              (12) 

2.3 Post-log multi-energy noise  
The mean and variance formulas in Section 2.2 are for the 

pre-log data that is a weighted sum of compound-Poisson data 
and Gaussian electronic noise. Normally, the post-log data are 
used for analytical and iterative reconstruction. Let the post-
log data be obtained as 

)ln( 0
p
IEa

y .         (13) 

The mean and variance of y can be obtained as 

Mean of dxx
EeaI

IEa
yy

dxx
)()(ln 

)(
0

0 ;      (14) 

Variance of ) of Variance(
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 ofMean 

2 p
dp
dyy
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y
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1 22
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y
.     (15) 

Formula (15) should be used to calculate the weighting 
function in a post-log iterative reconstruction algorithm for the 
given projection ray: 

Weighting for ray y 

22
0

2

2
0

2 )(

)(1

EeeIa

EeaI
yy

y

y
.     (16) 

However, in practice, the mean value y of the post-log data is 
not available. The one-time measurement y is used instead. 
2.4 Computer simulations 

A gradient descent algorithm will be used to minimize the 
noise-weighted post-log maximum likelihood objective 
function: 

2)(Function  Objective j
i

iij
j

j yaw ,      (17) 

where i is the image pixel whose value is the linear 
attenuation coefficient, yj is the post-log measurement (i.e., the 
noisy Radon transform), aij is the contribution from the ith 
pixel i  to the jth measurement yj, and wj is the weighting 
factor which is chosen to be the reciprocal of the noise 
variance of yj, as shown in (16). The gradient descent 
algorithm is expressed as 

n
njj
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j
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k
i

k
i awa

yawa )( )(
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where  is the estimation of i  at the kth iteration and the 
step size  is a small positive constant to prevent the 
algorithm from divergence. The value of  is set to 0.2 in this 
paper. The purpose of the denominator 

)(k
i

n njjj ij awa is to 

normalize the weighting factors  so that the step size of the 
algorithm is almost the same for any chosen weighting factor 

. The summation over the index n is the projector and 
the summation over the index j is the backprojector. 

jw

0jw

This paper will use 12 methods of implementing the 
weighting factor wj, which is the reciprocal of the noise 
variance sinogram. These 12 methods of calculating the noise 
weighting are listed below. 

Method 1 (Theoretical truth): The weighting factor wj is 
calculated using (16), with a = 0.1, I0 = 104, 2 = 6.32, and jy
being the noiseless post-log projection. The x-ray tube energy 
distribution function (E) is measured in a Toshiba CT 
scanner. The energy spectrum is subdivided into 120 energy 
windows from 0 to 120 keV. The first and second moments of 
the spectrum E  and E are calculated using (10) and (12); 
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their numerical values are 67.8776 keV and 5036.9 (keV)2,
respectively.

Method 2 (Ignoring electronic noise): This method is the 
same as Method 1, except that the electronic noise is ignored 
during image reconstruction. In other words, 2 = 6.32 is used 
in data generation, but 2 = 0 is assumed in reconstruction.  

Method 3 (Statistical approach): This method uses 1000 
realizations of the noisy post-log data sets. The ensemble 
variance "sinogram" is then calculated from these 1000 
realizations, and the weighting function is the reciprocal of the 
variance "sinogram."  

Method 4 (Practical approach): Almost the same as 
Method 1, except that the mean value jy  is replaced by one-

time (i.e., one noise-realization) post-log measurement .

Electronic noise is modeled by 2.
jy

Weighting for ray
22

0
2

2
0

2 )(

)(1
EeeIa

EeaI
y

yy

y

y
. (19) 

Method 5 (Modified version of Method 1): We replace 
the variance by a power function of the variance. 
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Method 6 (Most vendors used model): This is a simplified 

version of (19). The expression is  
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Method 7 (Practical Poisson approximation): Instead of 
using the more accurate compound-Poisson model, this 
method uses the more popular (but less accurate) Poisson 
model and ignores electronic noise, which leads to the 
variance sinogram being )exp( jy . To make it practical, the 

mean value jy  is replaced by one-time measurement 

value .jy

Weighting for ray y

y
ey 2

1 .     (22) 

Method 8 (Constant weights, i.e., No weights): The 
variance sinogram is set to a constant for all projection rays. 

Weighting for ray .        (23) 1y
Method 9 (Totally wrong): This will show what damages 

wrong weighting factors can do to the reconstruction. The 
totally wrong variance sinogram is chosen to be )exp( jy .

Weighting for ray .        (24) yey
Method 10 (Method 7 with the noiseless y): This is more 

accurate than Method 7, where y  is the noiseless true value. 

Weighting for ray y

y
ey 2

1 .     (25) 

Method 11 (Method 10, plus a power p): This method 
uses the same idea of Method 5, but uses the model in Method 
10: 

Weighting for ray ypp

y
ey )1( 2

.    (26) 

Method 12 (Method 11, 1 realization, 5-point average):
Method 11 is not practical, because the noiseless measurement 
is never available. On the other hand, the one realization 
measurement is too noisy. This method replaces y  in (24) by 
a 5-point running averaged (i.e., lowpass filtered) value of y in 
the detector channel direction. This method is practical. 

III. RESULTS

See Tables 1-2 and Figure 1. 

IV. CONCLUSION

A more accurate noise model may or may not reduce the 
noise variance for a given spatial resolution (or image 
contrast). This paper investigates whether the more accurate 
compound-Poisson noise model in x-ray CT pre-log data can 
give better images than the less accurate Poisson noise model. 
This paper gives a negative answer. A more accurate noise 
model does not necessarily give a better image. 

Based on the compound-Poisson noise model, this paper 
derived the expressions for the mean and variance for both 
pre-log data and post-log data. Those formulas were verified 
statistically by computer simulations. 

The linear attenuation coefficient is x-ray energy 
dependent, and this fact causes beam-hardening artifacts, even 
when the data are noiseless. This paper focuses on noise 
model; the beam-hardening effects are not in the scope of this 
paper. Thus, the linear attenuation coefficients are assumed to 
be energy independent in this paper. 

Computer simulations using Methods 1, 2, 3, 4, 6, 7, and 
10 give similar results. This implies that it is reasonable to 
approximate the more accurate compound-Poisson noise 
model by the less accurate Poisson model. Mathematically 
speaking, this approximation is justified if ))(2exp( dxx  is 
much smaller than ))(( dxxeep  and can be ignored. 
Another observation is that the use the one-time measurement 
to approximate the mean value of the measurement can 
introduce some noise to the output image. Therefore, one 
should smooth the projection measurements when they are 
used to form the weighting factors.  

Methods 1, 2, 3, 4, 6, 7, and 10 can generate some low-
frequency shadowing artifacts. If we modify the weighting 
function by a power function of the weighting function this 
low-frequency shadowing artifacts can be reduced without 
scarifying the image contrast, see Methods 5, 11, and 12. A 
thorough study of the weighting function with an exponent 
parameter is outside the scope of this paper, and will be 
conducted in a different paper. 
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Table 1.Evaluation of compound noise variance given by Eq. (15) by 
using 1000 noise realizations 

dx Variance
calculated by Eq. 
(15) 

Variance
computed by 1000 
noise realizations 

0.5 0.0003 0.0003
1 0.0004 0.0004
1.5 0.0006 0.0006

2 0.0009 0.0009
2.5 0.0014 0.0015
3 0.0023 0.0021
3.5 0.0037 0.0035
4 0.0061 0.0062
4.5 0.0100 0.0097
5 0.0165 0.0170
5.5 0.0274 0.0321
6 0.0456 0.0457
6.5 0.0716 0.0912
7 0.1304 0.1943
7.5 0.2259 0.3868
8 0.4025 0.9354
8.5 0.7455 1.2479
9 1.4516 1.4094
9.5 2.9982 1.3063
10 6.5876 1.1831
Table 2. Ranking of the methods in terms of ROI 2 
normalized standard deviation
Rank Method 
1 (best) Method 12 (Exponential, 1 noise realization, 5-point 

running average) 
2 Method 7 (Exponential, 1 noise realization) 
3 Method 11 (Exponential, with a power p, noiseless 

weight) 
4 Method 5 (Theoretical true weight with a power p)
5 Method 10 (Exponential,  noiseless weight) 
6 Method 1 (Theoretical true weight) 
7 Method 2  (Theoretical true weight, ignoring electronic 

noise) 
8 Method 3 (Theoretical true weight, 1000 noise 

realization)
9 Method 8 (Constant weight) 
10 Method 6 (Most vendors used model) 
11 Method 4 (Theoretical true weight, 1 noise realization) 
12 (worst) Method 9 (Totally wrong) 

Method 1 (Theoretical) Method 2 (ignores 
electronic noise) 

Method 3 (1000 
realizations)

Method 4 (1 realization) Method 5 (with a power 
p = 0.2) 

Method 6 (most 
vendors) 

0.0212960, (Rank =5) 0.0210200, (Rank = 4) 0.0226584,  (Rank = 8) 0.0418469, (Rank = 11) 0.0188045, (Rank =3) 0.0413390, (Rank = 10) 

Method 7 (exponential, 
1 realization) 

Method 8 (Constant) Method 9 (Totally 
wrong, 1 realization) 

Method 10 (exponential, 
true)

Method 11  
(exponential, power p = 
0.5, true) 

Method 12 (exponential, 
power p = 0.5, 1 
realization, 5-point 
average)

0.0221364, (Rank =7) 0.0281837, (Rank = 9) 0.2266475, (Rank = 12) 0.0213091, (Rank = 6) 0.0181552, (Rank = 2) 0.0180149,  (Rank = 1) 

Figure 1. Reconstructed images with Methods 1~12, using a stopping rule that a pre-specified image contrast of 0.55  is reached.
The last row lists the normalized standard deviation in a constant region inside the object.
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Abstract—We outline a generic framework for single-frame,
detector-domain material decomposition. The method involves a
segmentation and a background estimation step yielding a virtual
mask image that can be used for subtraction. In many cases,
material decomposition yields non-truncated difference images
enabling the use of novel motion estimation methods that exploit
epipolar consistency conditions.
In this work, a pipeline for virtual digital subtraction coronary
angiography is presented and evaluated on a phantom data
set. The pipeline consists of Hessian-based vessel segmentation
followed by background estimation in Fourier domain. Center
of mass tracking and a metric based on epipolar consistency
conditions is then used to estimate vertical detector translations
that serve as a surrogate for respiratory and cardiac motion.
When assessing the heart phase, we achieved a correlation of 0.91
between the ground truth ECG and the image-based surrogates.
The results encourage further experiments on real data as well
as the application for intra-scan motion compensation.

I. INTRODUCTION

Robust methods for intra-scan patient motion estimation,
such as center-of-mass (CoM) tracking or use of epipolar
consistency conditions (ECC), require non-truncated data [1].
Unfortunately, this requirement is hardly ever satisfied for
scans of thoracic or abdominal regions. However, the object
of interest, such as the coronary arteries, may lie completely
in the field of view. In order to increase visibility and enable
above-mentioned motion estimation techniques, it would be
beneficial to separate the object from the background.
A widely used technique for decomposition is digital sub-
traction imaging, allowing separation of structures that can
be enhanced using some sort of contrast-agent. The most
widely known representative of these techniques is digital
subtraction angiography (DSA) [2]. Traditionally, the method
requires two acquisitions with and without contrast enhance-
ment, that are being referred to as the fill and mask scan,
respectively. Requiring two asynchronous scans makes the
method susceptible to intra- and inter-scan patient motion
[3]. Single-frame material decomposition, however, does not
rely on asynchronous imaging of the same scene and allows
for lower patient dose. So far, it has been described in the
context of energy-resolving X-ray detectors that are not yet
part of clinical routine [4]. Nonetheless, single-frame material
decomposition may be possible for conventional acquisitions
exploiting segmentation and interpolation strategies. Similar
methods have been applied in the context of high-intensity
object masking [5] and background estimation [6] where they
are used for artifact reduction in reconstructions.

We outline a generic framework for virtual single-frame sub-
traction imaging of spatially sparse structures, such as con-
trasted vessels or metal implants, to enable the application of
algorithms that are restricted to non-truncated data. We present
preliminary results of coronary artery motion estimation using
CoM-tracking and ECC on phantom data [7], and show that
the motion patterns can be used for image-based gating.

II. MATERIAL AND METHODS

The schematic of the generic procedure is shown in Fig. 1.
A projection image in which the object of interest is well
visible serves as input to the method. The method involves
the following steps:

i. Segmentation of the structure yielding a binary mask
ii. Background estimation in the masked regions

iii. Digital subtraction of input and virtual background
Success of the method relies on the two key components
segmentation and background estimation, which we will refer
to as inpainting. Both elements can be exchanged arbitrarily in
the sense that their function is fixed while the specific method
can be chosen to best handle the underlying problem.
We describe an exemplary pipeline designed for rotational C-
arm CT coronary angiography, elaborating on the methods
used for segmentation and inpainting of coronary arteries.

A. Preprocessing and segmentation

The segmentation algorithm described here makes use of
derivatives that act like a high-pass filter. To suppress the
influence of noise while preserving edges, a bilateral filter is
applied to the input images I ′a, a = 1, ..., N [8]. The filtered
image Ia at position u ∈ R2 is given as

Ia(u) ∝
∑
ui∈Ω

I ′a(ui) ·fσr
(‖I ′a(ui)− I ′a(u)‖) ·fσd

(‖ui − u‖) ,

where Ω is a local neighborhood, and fσ(x) ∝ exp(−x2
/2σ2) is

a Gaussian function defining neighborhood weights in spatial
and intensity domain. In the above equation, we omitted the
normalization factor N (u) for more compact notation.
Subsequently, the projection images are segmented using a
combination of morphological and Hessian-based filters [9].
Coronary arteries manifest as bright, small tubular structures
on a darker, slowly varying background. A circular top-hat
filter yields high responses for bright structures smaller than
its radius R and can, therefore, be used to remove all structures
larger than the structuring element [10]. Generally, in the
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Fig. 1. Schematic of the proposed method. Having obtained a binary segmentation of the object of interest, the background is estimated using an inpainting
method. The virtual mask image can then be subtracted from the original projection yielding the difference image.

top-hat filtered image ITH
a responses from non-tubular struc-

tures are not sufficiently suppressed. Therefore, we include a
vesselness-filtered version of the image IV

a . The filter uses the
Eigenvalues of the Hessian λ1,2 = λ1,2(u, s) at position u
and scale s such that |λ1| ≥ |λ2|. They enable the definition
of physically meaningful measures, the blobness Rb = λ2/λ1,
and the structureness S =

√
λ2
1 + λ2

2. Then if λ1 > 0, the
vesselness reads

V (u) = max
s

exp(−αRb) ∗ (1− exp(−βS)) , (1)

where α, and β are constants [11]. The enhanced images IE
a

are then obtained by combination of vesselness and top-hat
filtered images IV

a and ITH
a , respectively, yielding

IE
a (u) =

{
IV
a (u) if IV

a (u) > tV ∧ ITH
a (u) > 0

0 else
, (2)

where tV is an empirically determined threshold. A binary
segmentation mask Wa is then calculated from the enhanced
image IE

a using hysteresis thresholding. The mask will be used
as a binary defect window. Therefore,Wa(u) = 1 if u belongs
to the background and 0 otherwise.

B. Background estimation: Spectral inpainting

Masking the object of interest can be expressed as a mul-
tiplication of the projection with the defect window in spatial
domain, yielding a defective image Ga(u) = Ia(u) · Wa(u).
Inpainting of the defective image is equivalent to estimating
the measurement of defect detector pixels, where spatially
extensive regions do not carry information. Many estimation
techniques in spatial domain, such as Thin-Plate-Spline in-
terpolations, exist [5]. However, due to their locality they
only perform well for sufficiently small defects and change
the noise characteristic, which may lead to an unnatural
appearance of the image [12].
Frequency domain methods, such as spectral interpolation,
have been shown to work well for large defect areas and
noisy structures [5][12]. We seek to estimate the undistorted
background Ba from the observation Ga(u) = Ba(u) ·Wa(u).
In frequency domain the relation is expressed in terms of
convolution ga = ba � wa, where lowercase letters denote the
Fourier transform of its uppercase equivalent. The method tries

to iteratively deconvolve the unknown background spectrum ba
and the window spectrum wa, utilizing the symmetry property
of the Fourier transform of real valued signals [12].
To preserve the locality of image appearance, spectral inter-
polation is performed consecutively on patches rather than on
the whole projection at once. Patch-based processing, however,
implies weighting with a rectangular window that decreases
the dynamic range and sensitivity due to spectral leakage [13].
To mitigate such effects, an apodization window is applied to
the patches before converting to Fourier domain.
Finally, the estimated background image is then subtracted
from the projection, yielding the virtual digital subtraction
angiogram Da(u) = Ia(u)− Ba(u).

C. Intra-scan motion and its implications

The subtraction images Da are, in contrast to the original
projections Ia not truncated and can, therefore, serve as an
input to CoM- and ECC-based motion estimation algorithms.
The CoM ca in frame a is calculated from the pixel intensities:

ca =
1∑

u∈Da
Da(u)

∑
u∈Da

Da(u) · u. (3)

The method yields 2D shifts, corresponding to motion in the
plane orthogonal to the viewing direction.
Use of ECC relies on the epipolar geometry between views
a1 and a2 with projection matrices Pa1

and Pa2
, respec-

tively. Assuming a parallel acquisition geometry, integration
over corresponding epipolar lines la1

(κ) and la2
(κ) gives two

redundant ways of calculating the integral over the epipolar
plane E(κ) through the object, where κ defines the angle of
the epipolar plane [1]. There exists a pencil of such planes
around the baseline each with a different angle κ, allowing
for the definition of consistency conditions. For cone-beam
geometry the relationship outlined above has to be modified
using Grangeat’s theorem, yielding

d

dt
ρa1(la1)−

d

dt
ρa2(la2) ≈ 0, (4)

where d
dtρa(l) is the derivative of the integral over line la

in image Ia, and t is the distance of the line to the image
origin. Requiring mutual consistency among all images
Ia, a = 1, ..., N at multiple lines l allows the definition of a
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metric that can be optimized to estimate motion parameters
responsible for the inconsistencies [1].

D. Surrogate signal extraction

Respiratory and cardiac motion both are assumed to man-
ifest in a global translation in head-foot direction with low
and high frequency, respectively [14]. Therefore, we will
restrict the motion model to 1D translations in vertical detector
coordinate direction, that we will refer to as v-shifts. The
shifts v = (v1, ..., vN ) are transformed to Fourier domain
applying a Hann window for apodization [13]. Subsequently,
the signal is separated into two components vresp and vcard
containing frequencies below and above a certain threshold
fsep, respectively. Then, the heart rate fecg is extracted as the
dominant frequency in the power spectral density of vcard.
Using fecg as the heart rate, a normalized cardiac time is
calculated for each image a as ta,card =

aT fcard

N (mod 1), where
T is the scan duration.

E. Data and Experiments

The proposed methods were evaluated on Cavarev, an
XCAT-based phantom data set exhibiting respiratory and car-
diac motion [7], [15]. The data set consists of 133 projections
acquired over 5 s. The radius for top-hat filtering was 4 pixels,
the vesselness threshold tV = 0.5. The segmentation accuracy
was assessed using the Dice score. The patch size used for
spectral interpolation was 160 × 160, 100 iterations were
used. A Blackman window was applied to each patch. We
calculated v-shifts using CoM- and ECC-based methods. As
no mask scan is included in the Cavarev data set, the inpainting
and subtraction algorithm could only be evaluated implicitly
using the results of both motion estimation techniques. The
threshold for respiratory and cardiac signal separation was
chosen as fsep = 1Hz. We demonstrate the correlation of the
respiratory signal vresp with the ground-truth qualitatively, but
present quantitative results for the normalized cardiac time,
i.e. Pearson’s R.

III. RESULTS AND DISCUSSION

Representative results of the virtual single-frame subtraction
pipeline are shown in Fig. 2. The segmentation algorithm
described in Sec. II-A yielded a Dice score of 0.98±0.14 with
respect to a manual segmentation. Nevertheless, segmentation
errors were present (see Fig. 2b) indicating that a more
complex segmentation algorithm may be necessary to handle
real data. The virtual mask and difference image are shown
in Fig. 2c and 2d, respectively. While quantitative evaluation
of the background estimation is not possible with Cavarev,
the visual results suggest that spectral interpolation is able to
satisfactorily estimate the background for narrow structures
such as the coronary arteries. Larger scale structures,
however, may require different inpainting algorithms up
to a point where reliable background estimation becomes
impossible as too much information is omitted from the
image. Segmentation errors are not as prominent in the

resulting difference image or not visible at all, indicating that
background estimation may hamper artifact propagation if the
erroneously masked region is well explained by the remaining
image. This observation is encouraging, as the subsequent
motion estimation step then has to deal with fewer artifacts
which may lead to a more robust estimation.
The v-shifts v obtained from CoM- and ECC-based methods
are shown in Fig. 3a. Both shifts have a similar range on
the detector of 37.64mm and 39.24mm for CoM and ECC,
respectively. The offset, both in Fig. 3a and 3b, was adjusted
for better visualization. Shifts obtained using the ECC-based
method appear smoother than the ones extracted using CoM
tracking. An explanation for this behavior could be that CoM
calculation is more susceptible to remaining artifacts as it
directly uses image intensities of every image independently.
The ECC-based method on the other hand requires integration
over epipolar lines and bundle optimization [1], potentially
allowing more robust estimations. In the same figure it can
be observed that the extracted low frequency signal vresp is in
good agreement with the ground truth respiratory phase. An
attempt to directly assess the breathing frequency using the
power spectral density did not yield meaningful results. We
believe this shortcoming to be related to the low amount of
observed breathing cycles (fewer than 1.5).
The high frequency signal vcard, resulting normalized time
tcard, and the ground truth cardiac time are shown in Fig. 3b.
The periodic signals vcard visually correlate well with the
ground truth and support the assumption of global head-foot
motion during contraction at least for this phantom study.
Albeit different in spatial and frequency domain, both signals
exhibit the same dominant frequency of 1.41Hz yielding the
same normalized times tcard and, therefore, Pearson R of 0.91.
Hence, the shifts could be used as surrogate for the heart
phase allowing image-based gating. This may be beneficial
for gated reconstructions as the surrogate is derived from
the actual motion state rather than the electrophysiological
excitation.
Separation of low and high frequency components of v by
thresholding in Fourier domain worked well overall. However,
the separation does not seem optimal everywhere. For the
signals obtained using the CoM and the ECC the effect can be
observed at small and large projection numbers, respectively.
Although the effect was subtle and did not affect the heart
rate estimation in Fourier domain, it may become bothersome
when using the shifts for motion compensated reconstructions.
In such cases, however, the signal decomposition could be
performed in a reversed order if an ECG was acquired
simultaneously. Then frequencies related to the heart beat
could easily be omitted allowing for accurate respiratory
motion estimation.

IV. CONCLUSION

We discussed a generic pipeline for virtual single-frame
subtraction imaging enabling detector domain material de-
composition. We introduced a representative pipeline targeted
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(a) (b) (c) (d)

Fig. 2. Crop of the original projections (not shown here) to the region of interest. The original projection, the segmentation mask, the inpainted image, and
the DSA image are shown in Fig. 2a, 2b, 2c, and 2d, respectively.
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Fig. 3. 1D motion estimation of CoM- and ECC-based methods (solid lines)
and the low frequency respiratory signal (dashed lines) are shown in Fig. 3a
together with the ground-truth respiratory phase. Fig. 3b shows the high
frequency signal, the corresponding normalized time, and the ground-truth.

at coronary arteries and demonstrated its capabilities and
limitations in a phantom study. We argued that material
decomposition may void truncation for the object of interest
allowing for motion estimation techniques based on the CoM
or ECC. We demonstrated the applicability of such methods
and showed that v-shifts correlate well with both, the respi-
ratory and the cardiac phase. In future work we will evaluate
the method on real patient data including but not limited
to interventional coronary angiography. We see applications
in metal artifact reduction but most importantly in image-
based motion compensation. A natural next step would be the
extension of the motion model. Estimating 3D translations may
allow for respiratory motion compensation, which is hardly
feasible using vertical detector coordinate shifts only.
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Adaptive Multi Band Frequency Filter (aMBF) for
Noise Reduction in Dynamic CT Perfusion Dataset

Francesco Pisana, Thomas Henzler, Stefan Schönberg, Bernhard Schmidt, Ernst Klotz, and Marc Kachelrieß

Abstract—Dynamic CT Perfusion (CTP) provides voxel-related
functional information which has proven to be very useful in clin-
ical decision in many fields such as neuroradiology and oncology.
Radiation exposure is significantly higher than conventional CT
while the signal that has to be detected can be sometimes much
lower, making this technique very challenging. Many approaches
to reduce noise in CTP have been and are still investigated.
In this study we propose an improved version of the Multi
Band Frequency filter (MBF), which aims at discriminating
noise contribute from anatomical information in each voxel,
and adapting the filter’s temporal width accordingly. We named
our filter Adaptive Multi Band Frequency filter (aMBF). The
aMBF was compared to conventional MBF both on an in-house
developed digital phantom, and on different clinical datasets.
Results show that the aMBF is able to better preserve true
arterial input function (AIF), while improving the contrast to
noise ratio and keeping the same spatial resolution in comparison
to the MBF.

Index Terms—Dynamic CT Perfusion, Noise Reduction,
Multi Band Frequency Filter.

I. INTRODUCTION

DYNAMIC CT Perfusion (CTP) consists of repeatedly
scanning the same body section, during a compact and

short injection of contrast media. The goal is to measure the
changes of enhancement of each voxel due to contrast media
dynamics. All sources of CT value changes over time which
are not caused by contrast media dynamics, like motion or
other artifacts, have to be corrected or minimized [1] [2].
CTP is nowadays a well-accepted and established technique
which provides useful functional information for each voxel
at the expenses of higher radiation dose. Some of the most
commonly derived functional parameters are blood flow (BF),
blood volume (BV) and mean transit time (MTT), which
give important information related to tissue hemodynamics.
CTP has proven to be very useful in application such as
neuroradiology [3] [4] and oncology [5] [6].

While the same parameters can be obtained also with
dynamic MRI, CTP remains attractive for the higher spatial
resolution, faster acquisition times and higher availability. The
only drawback stays in the higher radiation dose compared
to conventional CT [7]. Dose reduction methods can only be
applied up to certain limits, since functional parameters are
normally obtained via deconvolution (or related) algorithms
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[8], which might fail when signal-to-noise ratio (SNR) be-
comes low. Moreover, depending on clinical application, the
enhancement to be detected can be sometimes very low.

The dynamic nature of CTP gives one additional degree
of freedom to be exploited (namely the temporal dimension)
and different methods have been and are still investigated
to be able to improve SNR specifically for dynamic CTP,
ranging from iterative reconstructions [9], high dimensional
image filters [10], wavelet transforms [11] and so on. Recently,
some interesting approaches have been developed which share
a common principle: low spatial frequency components of
each image in time fL(r, t) contain the signal that needs
to be detected, while high frequency components fH(r, t)
contain noise as well as small anatomical structures and edges.
Under the assumption of negligible motion between the images
acquired in different time steps, averaging over time only the
high frequency components would result in a reduction of
noise, while preserving anatomical information. To restore an
improved image, averaged high spatial frequencies are added
back to the original low spatial frequencies.

This approach might be carried out in slightly different
ways, of which the multiband frequency filter (MBF) is prob-
ably the most straightforward [12]. In this study we decided
to start from the original implementation of the MBF, and
to improve some of its features, in particular investigating
the contribution of noise and anatomy for each voxel in the
high spatial frequency images, and adapting the width of the
temporal average process as a consequence. We name our filter
the adaptive MBF (aMBF).

The present article is structured in the following way: in the
methods section we start with a theoretical explanation of the
MBF in II-A. In II-B we explain more in detail the algorithm
of our proposed improved version and justify its robustness
with some practical considerations. In II-C we discuss the
digital brain perfusion phantom implementation, the clinical
datasets specifications and the metrics according to which we
evaluated our results. Finally, in the results section we show
the improvements of the aMBF compared to the MBF both
qualitatively and quantitatively.

II. METHODS

A. MBF

In this subsection we will explain the theoretical background
of the MBF approach [12]. The high dimensionality of CTP
datasets offer some data redundancy, which can be exploited
for noise reduction. Particularly, it can be assumed that noise
is uncorrelated in temporal direction, and hence could be
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reduced simply by an average in this domain. To have a
representation of noise, a high-pass filter might be employed,
since the noise spectrum is shifted towards higher frequencies
compared to the signal. This assumption is in general more
robust in spatial domain rather than in temporal domain. In
fact some voxels’ temporal signal (time-attenuation curve,
TAC) has higher frequency components compared to noise, for
example vessels and tumors might have a very quick and high
enhancement. A low-pass filter in time direction would smooth
out vessels TAC, which would seriously bias the resulting
functional parameters. Low-pass filtering in spatial direction
would be safer: low spatial frequency components fL(r, t)
would contain the noiseless tissue which might or might not
enhance over time and which will thus not be averaged over
time, while high spatial frequency components fH(r, t) would
mainly contain noise but also the edges of the images and
possibly small anatomical structures (like arteries in the brain).
Assuming that motion is absent or compensated, the edges
would not be affected by an average over time, since they
would not change their position nor their enhancement. In
principle, noise could be reduced by a factor equal to the root
mean square of the number of time points averaged together.
In practice, also small vessels will be included in fH(r, t),
which should not be averaged over time. Decreasing the cutoff
frequency would make more anatomy fall into fH(r, t), while
increasing it would make less noise fall into fH(r, t). The
formula of the MBF is the following:

f∗(r, t) = fL(r, t) + f̄H(r, t). (1)

Where:

f̄H(r, t) =
1

2N + 1

N∑
δ=−N

fH(r, t+ δ).

and f∗(r, t) is the filtered image, r is a three dimensional
vector identifying a voxel position, t is the temporal index, δ
is the temporal shift and 2N + 1 is the total number of time
points averaged together for the high frequency components.
To reduce the inevitable smoothing of small vasculature, the
f̄H(r, t) is obtained from a running average process, instead of
a full average over time. In our implementation of MBF, N =
2. Simulated and clinical cases we used have total number of
acquired time points T ranging from 26 to 30.

B. aMBF

We propose an improved version of the MBF, where the
number of adjacent time points used for the running average
of the high spatial frequencies is not constant, but it is instead
a function of the voxel position N(r). We mentioned at the
beginning that fH(r, t) contains both noise and anatomical
structures like edges and small vessels. We decided to use the
temporal autocorrelation function of fH(r, t) to gain infor-
mation whether one voxel contains mainly noise or partially
contains edges or vessels. If a voxel mainly contains noise,
than a full temporal average might also be employed, resulting
in a stronger noise reduction compared to a fixed running
average. On the other hand, if a voxel partially contains
anatomical information, then we could shrink or potentially

avoid the temporal averaging process. The temporal autocor-
relation function of fH(r, t) has the following form:

ACH(r, δ) =

1

T

T∑
t=1

(fH(r, t)− f̄H(r)) (fH(r, t+ δ)− f̄H(r))

σ2
H(r)

.

where σ2
H(r) is the variance image of fH(r, t). As a second

step we created a guide g(r) = |
∑D

δ=1 ACH(r, δ)| where D
was chosen to be 10. g(r) is basically the sum of the autocor-
relation coefficients of each voxel’s TAC of the high spatial
frequency components. Since white noise has autocorrelation
coefficients centered around 0, g(r) was thresholded at 1.5,
and forced to be 0 for values lower than that. If a certain voxel
of fH(r, t) contains some non-stochastic change over time,
like the hemodynamics of a small vessel or steps associated to
motion, its temporal signal will contain some autocorrelation
and g(r) will drift away from 0. On the other hand, if a voxel
in fH(r, t) contains an edge, and its temporal autocorrelation
coefficients are centered around 0, it means that there is no
significant change over time in that voxel, meaning that there
is no motion and it is relatively safe to average that edge over
a wider temporal window to reduce noise. This theoretical
derivation was confirmed in our study as we will show in the
results and discussion.

The last step was to define a relationship between the guide
g(r) and the number of adjacent time points along which to
perform the running average. We first defined a maximum and
a minimum number of time points for the average, where
the maximum was defined as the total number of acquired
time points and the minimum was defined as 3 (meaning
only 1 time point before and 1 after the considered one).
We defined two corresponding Gaussian curves with a σmax
and a σmin respectively. Finally we decided to implement
a decreasing exponential function to shrink the σ(r) of the
Gaussian function starting from the σmax:

σ(r) = max(σmin, e
−g(r) σmax) (2)

After that, the aMBF formula was defined exactly like (1), but
with:

f̄H(r, t) =
1

2N(r) + 1
N(r)∑

δ=−N(r)

1

σ(r)
√
2π

fH(r, t+ δ)e−δ2∗/σ(r
2).

where with δ∗ we indicate that for the averaging process the
real measured delay was used and not the integer temporal
shift δ. In this way the temporal average become effectively a
weighted average, where closely acquired time points receive
higher weights compared to distant ones. The number of
adjacent time points to be used for the average N(r) was
directly derived from σ(r) truncating the Gaussian function
at a value of 0.05. In future works, another function might be
used instead of the exponential to calculate σ(r). Moreover,
a time-dependent σ(r) might be considered [13].
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Fig. 1. Unfiltered, MBF filtered, aMBF filtered, high frequency component and guide for phantom (upper row) and one clinical case (bottom row).

Fig. 2. Right column: phantom grey matter (GM), white matter (WM) and
arterial (AIF) TACS. Left column: similar TACs for one clinical case. aMBF
shows smoother and sharper TACs compared to MBF.

C. Phantom creation, clinical data and measurements

A digital phantom was developed starting from a brain atlas
[14]. Grey and white matter, cerebral spinal fluid and vessels
were defined. The signal in temporal dimension was obtained
defining a tissue-specific impulse response function (IRF) and
convolving it by an arterial input function (AIF) defined as:

AIF(t) =

{
0 if t < TTS
a
(
t−TTS

TTP

)b
eb(1−

t−TTS
TTP ) if t ≥ TTS

Where TTS and TTP stand for time to start and time to
peak respectively. The IRFs were defined according to Bredno
definition [15]. Poisson-distributed quantum noise was added
in the projection domain after forward projection and the noisy

images were obtained via filtered back-projection. Forward
and back-projection were performed assuming a monochro-
matic beam with a pencil beam geometry. Two concentric
squares of grey and white matter were introduced into the
phantom to be able to evaluate eventual loss in spatial resolu-
tion via line spread function (LSF). No motion artifacts were
simulated. We evaluated our approach also on 10 different
clinical cases retrospectively. All cases were acquired with a
Somatom Force dual source spiral cone-beam CT (Siemens
Healthcare GmbH, Forchheim, Germany). Images were recon-
structed with an effective slice thickness od 1.5 mm to have
higher noise.

For both MBF and aMBF, high spatial frequencies were
obtained convolving the original images with a Gaussian
kernel with σs = 2.5 mm and subtracting the low-passed
images from the original. The kernel was stopped at the voxels
with a weight equal to 0.05. This means that the kernel size
was actually a function of the voxel size, as expected to be.
Voxels size ranged from 0.4 mm to 0.7 mm. For MBF, the
high frequencies were averaged with a box car of a fixed
width, covering 5 adjacent time points (two before and two
after the central one). Contrast-to-noise ratio improvements
were evaluated for the clinical cases using MBF and aMBF.
For the phantom, also root-mean-square errors of TACs in
different tissues ROI compared to the ground truth were
evaluated. Results and further considerations are shown in the
next session.

III. RESULTS AND DISCUSSION

In Fig. 1 the original images, the filtered images, the high
frequency components and the guides g(r) are shown both for
the phantom and for one clinical case. It can be seen how the
guide g(r) is able to identify, in the high frequencies, only
the voxels which contain some sort of signal over time, being
it contrast enhancement (like for the vessels) or motion (like
for the anatomical edges). Since in the phantom no motion
was simulated, the guide has a 0 value for the edges, meaning
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TABLE I
CNR IMPROVEMENTS FOR MBF AND AMBF BOTH SEPARATELY AND

COMPARED TO EACH OTHER.

MBF aMBF aMBF/MBF

average 1.61 2.44 1.41

max 3.02 6.58 2.17

min 1.04 1.03 0.98

TABLE II
ROOT MEAN SQUARE ERRORS FOR DIFFERENT TISSUES AND FILTERS.

RMSE DESCRIBES THE DEVIATION OF FILTERED TACS FOR DIFFERENT
TISSUES (GREY MATTER GM, WHITE MATTER WM, ARTERIAL INPUT

FUNCTION AIF AND CEREBRAL SPINAL FLUID CSF) FROM THE GROUND
TRUTH DEFINED IN THE PHANTOM CREATION.

Unfiltered MBF aMBF

GM 3.95 1.64 1.5

WM 3.2 1.67 1.19

AIF 8 13.33 7.79

CSF 1.63 1.12 0.93

that a higher noise reduction can be achieved extending the
temporal average window. In clinical cases the guide gives
higher values to generally more voxels due to the presence of
motion artifacts.

In Table I the average improvements in the CNR for the
MBF and the aMBF are reported. In the last column it can
be seen that, on an average, the aMBF results in a CNR
of about 41% higher than the MBF. We noted that CNR
improvements are particularly higher in brain cases. In body
cases improvements of the aMBF over the MBF are less
significant; we think one reason for this might be the higher
presence of motion, which reasonably limits the σ(r) of the
aMBF for more voxels.

On the other hand, spatial resolution remains unchanged.
This result was expected since both the MBF and the aMBF
reduce noise only in temporal direction and do not involve
any spatial convolution. The FWHM of the LSF of the non
filtered phantom was 2.04 mm. For MBF and aMBF a value
of 2.02 mm and 2.08 mm was measured.

Fig. 2 shows the better preservation of AIF for the aMBF
compared to the MBF. Moreover, parenchyma TACs are
smoother, but peak is preserved. In Table II, also the RMSE
of different tissues TACs are reported (only for the phantom
study). The major benefit is, as expected, in the AIF fidelity,
which is of crucial importance for perfusion parameters cal-
culation.

IV. CONCLUSIONS

The aMBF filter is an improved version of the conven-
tional MBF. When compared to MBF, aMBF average CNR
improvement was 40% higher. Moreover, aMBF is able to
better preserve the original arterial input function and it is
more robust with respect to motion artifacts compared to MBF.
Spatial resolution is maintained and performance times are
comparable.
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Abstract— RayTracer is an X-ray imaging system simulator 

developed by the author at Reveal Imaging. It is designed to 
assist development of X-ray imaging systems at various design 
stages, as well as for image processing and reconstruction 
algorithms. Its usefulness has been demonstrated during 
development of several different security imaging computed 
tomography (CT) and non-rotational X-ray scanners, resulting 
in engineering validation and image quality improvements. 
RayTracer provides raw data for scanners prior to their actual 
manufacture, allowing study of how various hardware changes 
affect final image quality and permitting inexpensive 
development and testing of the image processing and 
reconstruction algorithms. This paper describes several 
potential applications of RayTracer and compares simulated 
data to raw data obtained using metrics based on existing 
image quality standards for actual security imaging systems.  
 

Index Terms— X-ray imaging system simulator, product 
design, image processing algorithms, image quality, security 
imaging systems.  
 

I. INTRODUCTION 
AYTRACER is an adaptable set of software tools that can 
be used to model various X-ray systems. General X-ray 

systems that are compatible with RayTracer include: fixed 
source and detection elements with objects moving in 
straight lines, rotating source and detection elements with 
fixed objects, rotating source and detection elements with 
objects moving in straight lines orthogonal to the plane of 
rotation of the source, rotating source and detection 
elements moving in the direction orthogonal to the plane of 
rotation of the source with fixed objects. 

To simulate an X-ray system using RayTracer, a user 
defines the parameters of the system using several input files 
describing: the geometric layout of detection elements of the 
system; the source X-ray spectrum; parameters (geometric 
and physical) of objects to be simulated; motion vectors 
describing the motion of the X-ray source and the objects; 
and other parameters related to system filters and channels.  

Comparing RayTracer’s simulation results with actual 
data obtained using real scanners showed good agreement 
between the simulated and actual data (less than 5% 
absolute error for most measures per ANSI N42.25 standard 
[16]). The high simulation accuracy made it possible to add 
a number of novel applications. Before an X-ray scanner is 
manufactured, RayTracer can be used to predict system 
performance and to test changes and improvements to the 
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system design, image processing and algorithms. After the 
scanner is manufactured, RayTracer can be used to generate 
quality assurance (QA) test data to validate system and/or 
image processing algorithm performance, or to generate 
useful synthetic data not yet available in the real database 
which might be beneficial to algorithm development and 
improvement.  

 

II. SIMULATION PROCESS, INPUT AND OUTPUT 
This section contains a general description of the 

simulation process, from input source spectra to A/D counts.  
 

A. Basic Processing Steps 
Basic processing steps could be described in the following 

pseudo-code:  
 
for   (temporal step = 1:end) 

for   (array element = 1:end) 
for   (ray per element = 1:end) 

        attenuation <- 0; 
for   (object = 1:end) 

find  
intersection of ray & object: thickness 

use  
thickness to calculate x-ray attenuation 

sum  
attenuation across objects, rays 

end 
end 
process  

attenuated x-ray intensity through  
element channel parameters to get A/D counts 

end 
end 

 

B. X-ray Source Model 
An X-ray system’s source spectrum can be directly 

measured and then supplied to RayTracer in an input text 
file, or it can be computed using any X-ray source modeling 
tool such as SpekCalc, a program for calculating the X-ray 
emission spectra from tungsten anodes [1], or XSPECW2 
[2]. For modeling heel effect in multi-row CT systems, 
several anode angle-dependent source spectra should be 
used. 

 
Focal Spot Size 
X-ray source focal spot size is modeled in RayTracer by 

defining the extent of the best-fit rectangle in the projected 
view of the anode surface looking back from the exit port 
where the X-ray emission from the anode surface falls to 
about 20% of the average emission.  
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 System Inherent Filtration  
The X-ray source may include several materials of 

various thicknesses placed between the tungsten target 
within the tube and the source’s exit port. These materials 
attenuate (i.e., filter) the X-ray intensity spectrum as 
generated by the X-ray tube at the tungsten target surface. 
The total filtration resulting from all these layers is defined 
as the source inherent filtration.  
 

C. Object Model 
Each object is modeled by precisely defining its material, 

geometric shape, three-dimensional (3D) location and 
orientation. To model the attenuation properties of various 
materials and compounds, RayTracer uses the National 
Institute of Standards and Technology (NIST) database of 
mass attenuation coefficients for 92 elements and 48 various 
materials [3]. Mixtures and compounds that are not in the 
database can be modeled if their densities and precise 
chemical compositions are known, as follows [3]: 

 
( ) 

 
where is the fraction by weight of the i-th atomic 
constituent, and  values are from NIST database.  

If a polychromatic beam is used, object attenuation can be 
described using well-known formulas such as [4]: 

 
(2) 

 
where  is mass thickness,  is incident spectrum, 

 is the output transmission spectrum, and  is the 
linear attenuation coefficient of the material.  
 
 
Modeling Complex Shapes 
 Basic shapes supported by RayTracer include 3D shapes 
that have a precise mathematical description, such as 
ellipsoids, cylinders, and parallelepipeds. To model objects 
that have more complex shapes, such as holes or objects 
within objects, a combined description in terms of basic 
shapes is created and supplied to RayTracer in an XML file. 
The combined effect on the spectra can be described by the 
following equation [4]: 
 

(3) 
 
 
Determining Thickness 

RayTracer provides an analytical solution for determining 
thickness by computing the intersection of each ray with 
each shape. As an example of computing an intersection of a 
ray with an ellipsoid, the ray can be defined by an initial 
point ( ), while the direction vector ( ) can 
be defined using well-known coordinate geometry textbook 
formulas [5]: 

 
 

         ( ) 
 

 

Consider the coordinate transformation  (where 
R and T are rotation and translation matrixes) into a 
coordinate system in which an ellipsoid is axis-aligned and 
given by [5]:  
 

              ( ) 
 
To find an intersection of a ray with an ellipsoid, equations 
(4) can be substituted into equation (5). A quadratic 
equation is thus obtained, which can be further solved for 
the case of two intersections ( ), or one intersection 
( ):  

 
where 

  

  

  

  
 

Finally, the resulting intersection points are transformed 
back to the original coordinate system, solving the problem.  
 Derivation of the intersections of a ray with other 3D 
shapes follows the same method described for finding an 
intersection of a ray with an ellipsoid described above.  
 
 
Computing Multiple Rays 

The transmitted and absorbed spectra through each object 
are computed for each simulated X-ray. RayTracer models 
several rays between the X-ray source and each detection 
element to account for blurring due to the finite size of the 
focal spot and each detection element. Each ray is given a 
weight corresponding to the measured distribution of the 
radiation intensity within the system’s focal spot. There is a 
trade-off between the number of rays needed to account for 
hardware limitations on the system resolution (due to the 
system geometry) and the computational speed. An example 
of a model using five rays to account for the hardware 
limitations mentioned above is shown in Fig. 1.  

 

 
Fig. 1.  A model using several rays from the focal spot to 

the detector element to account for hardware limitations.  
 
The following assumptions are used in computing the 

rays in Fig. 1. The central ray location is defined between 
the focal spot center and each detection element center. The 
four other rays are located between four opposite corners of 
the X-ray spot and the corresponding corners of the detector 
element, assuming that detector element surface is 
orthogonal to the central X-ray.  
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Modeling Motion of X-ray Source and Detection Elements 

Because the input parameters only define the initial 
location of X-ray source and each detection element, the 
location of each ray change with time. A description of the 
“motion vectors” in the system is supplied to RayTracer in a 
text file. The motion of the X-ray source and detector array 
is further computed; for example, for a rotational CT 
system, the dependence of source and detector array location 
on time is derived in a number of publications [6, 7].  

 

D. Scintillation, Amplifier and A/D counts 
Each channel can be characterized by its overall gain from 

X-ray photons to A/D counts. The overall gain is a product 
of a sequence of gains. For example, scintillator gain is 
defined as the ratio of the number of “green” photons to the 
unit energy input. The amplifier gain is defined as the 
analog voltage at the output to the integrated charge on the 
feedback capacitor, as shown in Fig. 2.  

 
 

 
Fig. 2. Sequence of data processing steps required to obtain 
A/D counts in each channel. 
 
 
Noise Model 

RayTracer’s noise model contains quantization noise to 
represent A/D counts or the number of photons as unsigned 
integers. Uniform noise is used for modeling the amplifier 
noise, while Gaussian noise is used for modeling the photon 
statistics noise.  

 

III. SIMULATION RESULTS 
Before an X-ray scanner is manufactured, RayTracer can 

be used to confirm analytical calculations on image quality 
[8]; to predict system performance; and to test changes and 
improvements to system design, image processing and 
algorithms. After the scanner is manufactured, RayTracer 
can be used to generate quality assurance (QA) test data to 
validate system and/or image processing algorithm 
performance. 

 
System Design  
RayTracer has been used successfully to simulate various 

aspects of X-ray scanner system designs prior to their 
manufacture. In particular, RayTracer has proved beneficial 
in studying the effect of changes in system geometry and/or 
inherent filtration on the resulting image quality and/or 
system performance. There are many reasons for testing 
various possible hardware configurations: reducing cost, 

avoiding radiation damage to electronics, improving image 
quality, etc. Simulations performed using RayTracer 
allowed the right choices to be made in system design long 
before resources are allocated to manufacture unnecessary 
prototypes. In the example shown in Fig. 3-Fig. 4, two 
hardware configurations were simulated using RayTracer: 
one with extra filtration added to the detector array and one 
with no extra filtration. The RayTracer simulation results 
yielded crucial reference points that illustrate the extent to 
which extra filtration improves the image quality of metal 
artifacts in the reconstructed slices while simultaneously 
reducing discrimination capabilities in the system.  

 

       
Fig. 3. RayTracer simulation of four different materials 
inserted into a uniform medium with physical properties 
very similar to that of the medium. Comparison of 
reconstructed slices using two possible system designs: 
Extra filtration added to the detector array (left); No extra 
filtration (right).  

 
 

        
Fig. 4.  RayTracer simulation of artifacts in a uniform object 
located between two metal rods. Comparison of 
reconstructed slices using two possible system designs: 
Extra filtration added to the detector array (left); No extra 
filtration (right). 
 
 

Reconstruction Algorithm Performance 
RayTracer can also be used to test the performance of 

various image processing (e.g., reconstruction) algorithms. 
Many different methods of evaluating image quality are 
described in the literature [9-15]. Two standard image 
quality phantoms are used to evaluate image artifacts and 
image quality in X-ray screening systems. Both phantoms 
were simulated in RayTracer, and an image quality analysis 
in compliance with American National Standards Institute 
(ANSI) N42.25 [16] was performed to evaluate the image 
quality obtained using four different reconstruction 
algorithms, as shown in Fig. 5.  
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Fig. 5. Testing the reconstruction algorithm performance: 
Visualization of the simulated Image Quality Type-B 
phantom in RayTracer (left); Comparison of MTFs obtained 
using four different reconstruction algorithms (right). 
 
 

Simulations vs. Real Data 
 Comparing RayTracer’s simulation results with actual 
data obtained using real scanners, image quality analysis 
performed using over a dozen measures defined in the ANSI 
N42.25 standard [16] showed good agreement between the 
simulated and actual data (less than 5% absolute error for 
most measures), as shown in Fig. 6.  
 

     
Fig. 6. Comparison to real data: Visualization of the 
simulated Image Quality Type-A phantom in RayTracer 
(left); Path length CT value test results [16], simulation (in 
blue) vs. real data (in green) (right). 
 
 

Limitations on System Resolution 
To improve image quality in X-ray imaging systems, it is 

important to understand where the limitations of 
performance arise and which hardware components or 
software algorithms must be improved to achieve better 
overall image quality. RayTracer simulations were used to 
selectively switch on and off certain physical effects to test 
and better understand various limitations on system 
resolution: heel effect, focal spot size, photon and amplifier 
noise, polychromatic beam, sampling rate, distance from the 
iso-center, reconstructed pixel size, etc. The effect of these 
variations is shown in Fig. 7.  

 
Fig. 7. Study of limitations on imaging system resolution: 
dependence of the system MTF on the angular data 
sampling rate at different distances from the system iso-
center.   

 

ACKNOWLEDGMENT 
The author wishes to thank Michael Litchfield, Robert 

Shuchatowitz and the Reveal research and development 
team for helping to validate RayTracer’s capabilities in real-
life applications.   

 

REFERENCES 
[1] G Poludniowski et al., “SpekCalc: a program to calculate photon 

spectra from tungsten anode x-ray tubes,” Phys. Med. Biol., 2009, vol. 
54, no. 433. 

[2] E. de Paula, “XSPEC,” Center for Instrumentation, Dosimetry and 
Radiation Protection (CIDRA), 1984. 

[3] J.H. Hubbel and S.M. Seltzer, “Tables of x-ray mass attenuation 
coefficients and mass energy-absorption coefficients from 1 keV to 20 
MeV for elements Z = 1 to 92 and 48 additional substances of 
dosimetric interest,” National Institute of Standards and Technology, 
1995, Report NISTIR 5632, Gaithersburg, MD.  

[4] A. C. Kak and M. Slaney, “Principles of computerized tomographic 
imaging,” IEEE Press, 1988.  

[5] D. V. Wood, “The elements of coordinate geometry: in three parts: 1. 
Cartesian geometry,” Willey Publication, 1879.  

[6] M. Kachelrieß, S. Schaller, and W.A. Kalender, “Advanced single-
slice rebinning in cone-beam spiral CT,” Medical Physics, 2000, vol. 
27, no. 4, pp. 754-772. 

[7] A. J. Wunderlich, "The Katsevich inversion formula for cone-beam 
computed tomography," Oregon State University, Department of 
Mathematics, MS Thesis, 2006.  

[8] G. D. Boreman, “Modulation transfer function in optical and electro-
optical systems,” SPIE Press, 2001.  

[9] E. Samei, “Performance of digital radiographic detectors: 
quantification and assessment methods,” In: Advances in digital 
radiography, RSNA, 2003, pp. 37-47. 

[10] E. Samei, N. T. Ranger, J. T. Dobbins III, and Y. Chen, 
“Intercomparison of methods for image quality characterization. I. 
Modulation transfer function,” Medical Physics, 2006, vol. 33, no. 5, 
pp. 1454-65. 

[11] J. T. Dobbins III, E. Samei, N. T.Ranger, and Y. Chen,” 
Intercomparison  of methods for image quality characterization. II. 
Noise power spectrum,” Medical Physics, 2006, vol. 33, no. 5, pp. 
1466-75. 

[12] K. M. Hanson, “Detectability in computed tomographic images,” 
Medical Physics, 1979, vol. 6, no. 5, pp. 441-51. 

[13] K. M. Hanson, “A simplified method of estimating noise power 
spectra,” Proc. SPIE, 1998, vol. 3336, pp. 243-250.  

[14] R. Grimmer, J. Krause, M. Karloczak, R. Lapp, and M. Kachelrieß, 
“Assessment of spatial resolution in CT,” Nuclear Science Symposium 
Conference Record, 2008, pp. 5562-66.  

[15] M. F. Kijewski and P. F. Judy, “The noise power spectrum of CT 
images,” Phys. Med. Biol., 1987, vol. 32, no. 5, pp. 565-575.  

[16] “American national standard for evaluation the image quality of x-ray 
computed tomography (CT) security-screening systems," ANSI 
N42.45-2011, 2011, pp.1-58. 

 
 

 
Serge Soloviev received the M.S. 
degree in Applied Mathematics and 
Physics from MIPT, Moscow, Russia in 
1991, and the M.S. degree in Computer 
Science from the Weizmann Institute, 
Rehovot, Israel in 1997 for his work on 
Modeling of the Shift Invariant 

Recognition. Currently, as a Principal Scientist in Reveal 
Imaging, a division of Leidos, he is responsible for image 
quality analysis, design of new image processing algorithms 
and simulations of x-ray security systems. He is an author of 
a number of publications in Computational Mathematics, 
Modeling, and in Biomedical Engineering.  

The 4th International Conference on Image Formation in X-Ray Computed Tomography

100



1

Algorithm-Enabled Half-Rotation Data
Reconstruction in Spectral CT
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Abstract—In this work, we apply a previously developed one-
step spectral CT reconstruction method to scanned data from
a physical phantom with iodine and calcium contrast inserts. A
flexible scanning configuration using only half-rotation data from
both low and high kVp scans, enabled by the one-step method
with its associated algorithm, are studied. Such configuration is of
practical interest for realizing spectral CT scanning with reduced
dose and time on conventional CT scanners. The results, consist-
ing of visual and quantitative assessment and a classification task,
suggest that the performance of the reconstructed images from
the half rotation data is close to that from the full rotation data.

I. INTRODUCTION

Spectral CT exploits the underlying spectral properties of
materials, with multispectral data sets. It is investigated mainly
in the interest of enhancing material contrast and reducing
beam-hardening (BH) effect. Basis material decomposition
model [1]–[3] has been used as the main method for spec-
tral CT reconstruction. However, most studies in spectral
CT separate the decomposition step with the reconstruction,
bringing limitation to the data acquisition schemes [2], [4].
As an example, in commercially available dual energy CT
scanners, it is required that two scans with different kVp
settings should each cover a full 2π angular range. On the
other hand, one-step reconstruction for spectral CT [5] is
flexible in scan configuration and allows direct constraints in
the image domain. We have been developing an optimization-
based method that integrates the decomposition into the re-
construction [6], [7]. Such method allows basis material maps
to be reconstructed directly from the measured data, enabling
flexible designs of the scanning configuration for spectral CT.
In this work, we apply the developed reconstruction method
and its associated algorithm to real scan data at 80 and 135
kV p of a physical phantom with contrast inserts. A flexible
scanning configuration is simulated by using only half-rotation
data from each of the two kVp scans, for reducing the imaging
time and radiation dose. Such scan configuration, enabled by
the algorithm, can be employed by conventional diagnostic CT
scanners without any special hardware upgrade.

B. Chen, Z. Zhang, and E. Sidky are with the Department of Radiology,
The University of Chicago, Chicago, IL 60637, USA

Y. Liu, Z. Yu, and R. Thompson are with the Toshiba Medical Research
Institute USA, Inc., Vernon Hills, IL 60061, USA

X. Pan is with the Departments of Radiology & Radiation and Cellular
Oncology, The University of Chicago, Chicago, IL 60637, USA

II. MATERIALS AND METHODS

A. Data Acquisition

The dual energy phantom from GAMMEXTM (model 472)
was scanned. It has 16 insert chambers allowing for 7 rods of
iodine with concentrations ranging from 2.0 to 20.0 mg/ml,
7 rods of calcium with concentrations from 50 to 600 mg/ml,
and 2 rods of solid water. In this study, the rods were arranged
such that the inner circle holds 7 iodine rods with 1 solid water
and the outer circle holds 7 calcium ones with 1 solid water.
More detail about the phantom can be found on the website
[8].

The AquilionTM (Toshiba Medical Systems Corporation,
Tokyo, Japan) 16-slice CT scanner was used to scan the
phantom in circular mode. Two full-rotation scans over 2π
range were performed at 80 and 135 kV p, with 360 and
100 mA respectively. From the two full-rotation scans, half-
rotation data within each kVp scan were extracted, as the 0-to-
π-rotation data from the 80 kV p and the π-to-2π-rotation data
from the 135 kV p are joined together. The ensemble of data
from the two full-rotation scans at two kVps is referred to as
the full-rotation spectral scan or full-rotation data, while the
ensemble of data from the two half-rotation scans, extracted
in the way described above, is referred to as the half-rotation
spectral scan or half-rotation data. Both full-rotation and half-
rotation data are used for basis image reconstruction, and the
results are compared with each other.

In addition, the phantom was scanned at a higher mA level
for multiple times at both kVps to acquire very-low-noise data
as the benchmark. The full-rotation data from the very-low-
noise scan, after average, are reconstructed into basis images
as the reference in the quantitative evaluation.

B. Optimization-Based Reconstruction

1) Linearized Data Model: The material decomposition
model is combined into the polychromatic attenuation model
to form the forward model as

gm = − ln

∫
S(E)exp

[
−
∫
L

2∑
t=1

ct(�r )μt(E)dl

]
dE, (1)

which can be rewritten, after linearization, as

g = gm − gBH =
2∑

t=1

μ̄t

∫
L

ct(�r)dl, (2)
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where gBH is the non-linear beam-hardening (BH) term de-
fined as

gBH ≡ − ln

∫
S(E)exp

[
−

2∑
t=1

Δμt(E)

∫
L

ct(�r )dl

]
dE,

(3)
and

Δμt(E) = μt(E)− μ̄t & μ̄t ≡
∫

S(E)μt(E)dE. (4)

As a result, a linearized data model is formed as

g = Hc, (5)

where gᵀ = (gL ᵀ, gH ᵀ) = ((gLm − gLBH)ᵀ, (gHm − gHBH)ᵀ),
cᵀ = (c ᵀ

1 , c
ᵀ
2 ) (ᵀ indicates matrix or vector transpose), and

H =

(
μ̄L
1A

L μ̄L
2A

L

μ̄H
1 AH μ̄H

2 AH

)
. (6)

Here, AL and AH describe two discrete X-ray transforms that
correspond to the 0-to-π rotation scan with the low-kVp (80)
and the π-to-2π rotation scan with the high-kVp (135). gL and
gH are the corresponding data vectors, as defined in Eq. (2),
from the low and high kVp scans. c1 and c2 are basis image
vectors representing two bases materials used in the study,
water and bone. Each basis image vector is of size 512×512 to
denote the discrete image in a concatenated form. All vectors
are column vectors unless otherwise indicated.

2) Reconstruction Program and Algorithm: A constrained
total variation (TV)-minimization program is formulated as

(c ᵀ
1 , c

ᵀ
2 ) = argmin(‖c1‖TV + ‖c2‖TV )

s.t. D(gm − gBH , c) ≤ ε and c1, c2 � 0,
(7)

where

D(gm − gBH , c) = ‖Hc− (gm − gBH)‖2

=
H∑

s=L

∥∥∥∥∥As ·
2∑

t=1

μ̄s
t�ct − (gsm − gsBH)

∥∥∥∥∥
2

2

is the l2-norm of data vector difference between the model
data Hc and the BH-corrected measured data (gm − gBH).
ε is a positive parameter accounting for the inconsistencies,
including noise and residual BH effect that are not corrected
for by the estimation of gBH .

It is observed that D(gm− gBH , c) becomes non-convex in
the presence of gBH , which is a function of c, as defined in
Eq. (3). For the lack of mathematically converging algorithm,
we use an strategy previously developed [6], [7] to solve
the reconstruction program numerically. The approach, in
addition to the ASD-POCS algorithm [9], includes notably
estimating gBH from c in the current iteration using Eq. (3),
and subtracting it from the measured data to correct for the
BH effect feeding into the POCS step. In other words, the
constraint D(gm − gBH , c) ≤ ε is updated by iteration and
rendered into a convex form after each update.

C. Evaluation

1) Visualization: Water and bone basis images recon-
structed from both the full- and half-rotation data are com-

pared visually. Monoenergetic imagee at 40 and 120 KeV are
composed from the basis images and converted to HU values.
In addition, a separate reconstruction program is employed
using Eq. (7) with D(gm, c) replacing D(gm − gBH , c), in
combination with the ASD-POCS algorithm sans the BH cor-
rection step. The monoenergetic images from the half-rotation
data reconstructed in this way are presented to contrast those
reconstructed using the proposed method with BH correction,
demonstrating the effectiveness of the BH correction step in
the proposed reconstruction.

2) Quantification: A series of monoenergetic images are
composed from basis images from three reconstructions, in-
cluding the full-rotation data, the half-rotation data, and the
half-rotation data without BH correction in the reconstruction.
ROIs of the same size are drawn to cover the background and
each of the rods. Within each ROI, mean pixel value (MPV)
and standard deviation (STD) are calculated. Next, biases of
the MPV are calculated with respect to the image reconstructed
from the very-low-noise benchmark data. The bias and STD
are plotted against energies ranging from 40 to 140 KeV.

3) Classification: The inserted rods in the phantom include
two materials, iodine and calcium, that are usually not well
differentiated using single HU value. However, using spec-
tral information, for example, HU values from two different
monoenergetic images, the two material may potentially be
distinguished. Such classification task is illustrated by mapping
the MPV from 80 and 140 KeV monoenergetic images for
each ROI [10], [11]. The results from both the full-rotation
and half-rotation data are presented and compared.

(a) water, full rot. (b) bone, full rot.

(c) 40 KeV, full rot. (d) 120 KeV, full rot.

Fig. 1: Basis images (first row (a) and (b)) and monoenergetic
images (second row (c) and (d)) reconstructed from the full-
rotation data. The display windows are [0,1] for basis images
and [-200,200]HU for monoenergetic images.
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III. RESULTS

A. Visualization

The reconstructed images from the full-rotation data are
presented in Fig. 1. Most of the rods are separated from the
water background as they appear bright in the bone basis
image (Fig. 1b). The rods with low concentrations, iodine
or calcium, display low contrast in the bone image in the
[0,1] display window, while distinct contrast in both the
monoenergetic images are observed. Some streak artifacts can
be observed around the high concentration rods in the 40 keV
image (Fig. 1c), that are likely from remaining uncorrected
BH effect or the partial volume effect.

The reconstructed images from the half-rotation data are
presented in Fig. 2. There is no significant visual difference
observed as compared to their counterparts in Fig. 1. The
images are slightly noisier, due to the reduction of data to
half, but the impact is alleviated by the control of TV strength
in the reconstruction. Fig. 3 shows monoenergetic images
composed from basis images that are reconstructed without
the BH correction step. The images are visibly darker, under
the same display window, as compared to (c) and (d) in Figs. 1
and 2. There is also a decrease of contrast in the images,
especially for the inner circle rods in the 120 KeV image on
the right (Fig. 3b).

It shall also be marked that, in all monoenergetic images in
Figs. 1- 3, the iodine rods in the inner circle and the calcium
rods in the outer circle have an overlap of HU values that
makes them difficult to be differentiated using the HU value
from a single kVp image.

B. Quantification

The bias and STD results from two of the ROIs, iodine rod
(no. 6) and calcium rod (no. 14) as indicated in Fig. 1c, are
presented in Fig. 4. Both bias plots indicate that monoenergetic
images are quantitatively more accurate with increasing energy
level, when the STD plots show a decrease of noise level. The
bias results also show that images from the half-rotation data
are as unbiased as those from the full-rotation data within
the selected ROI, when the STD results demonstrate that the
images are indeed noisier. It is also observed that the images
reconstructed without the BH correction step display bigger
bias than the other two reconstruction results, largely due to
the DC shift from the BH effect. It shall be noted that the plots
from the two ROIs selected to be shown here are representative
of those from all other ROIs.

C. Classification

HU pairs from 80 and 140 KeV monoenergetic images for
each iodine and calcium ROIs are mapped in Fig. 5, with the
results from the full-rotation data on the left (Fig. 5a) and the
half-rotation data on the right (Fig. 5b). Different labeling are
used to differentiate the iodine and calcium groups. It is clear
that the two groups of data points lie on two lines, making it
possible to differentiate them. The results from half-rotation
data are almost identical to those from the full-rotation date.

(a) water, half rot. (b) bone, half rot.

(c) 40 KeV, half rot. (d) 120 KeV, half rot.

Fig. 2: Basis images (first row (a) and (b)) and monoenergetic
images (second row (c) and (d)) reconstructed from the half-
rotation data. Same display windows are used as in Fig. 1.
No significant difference is observed as compared to the
counterparts in Fig. 1.

(a) 40 KeV, half rot. w/o BHc (b) 120 KeV, half rot. w/o BHc

Fig. 3: Monoenergetic images from the half-rotation data
without the BH correction step in the reconstruction. The
images are visibly darker as compared to (c) and (d) in Figs. 1
and 2. There is also a decrease of contrast for the inner circle
rods in the 120 KeV image.

IV. CONCLUSIONS

In this work, we have applied a recently developed recon-
struction algorithm for spectral CT to a dual energy phantom
scan data and simulated a flexible scanning configuration with
half-rotation data, for reducing the imaging time and radiation
dose. The half-plus-half rotation scan with low and high kVps
can be used by conventional diagnostic CT scanners without
any special hardware upgrade. The reconstructed images dis-
play no significant visual difference with those from the full-
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(a) Bias, ROI 6 (b) Bias, ROI 14

(c) STD, ROI 6 (d) STD, ROI 14

Fig. 4: Biases (first row (a) and (b)) and STD (second (c)
and (d)) results from a water background ROI no. 0 (left
column) and a iodine rod ROI no. 6 (right column). The bias
results indicate that images from the half-rotation data are
quantitatively very close to those from the full-rotation data,
when the STD results demonstrate that the images are noisier.
It also shows that the images reconstructed without the BH
correction step have larger biases.

(a) full rot. data (b) half rot. data

Fig. 5: Distribution of iodine and calcium rod ROIs’ HU value
pairs from the full-rotation data (left (a)) and the half-rotation
data (right (b)). It is clear that the two group of material data
points, with different labeling, lie on two separate lines in the
plots. The two plots show almost identical results.

rotation data, except for slightly elevated noisy level. These are
confirmed by the quantitative analysis of bias and STD over
inserted rods. The reconstruction results are further assessed
with a classification task, where the half-rotation data perform
almost identically to the full-rotation data, with the iodine
and calcium materials separated on two lines in a mapping
with their HU value pairs from monoenergetic images at two
different energy levels.

ACKONWLEDGMENT

This work was supported in part by NIH R01 Grant Nos.
CA158446, CA182264, and EB018102. The contents of this
article are solely the responsibility of the authors and do

not necessarily represent the official views of the National
Institutes of Health.

REFERENCES

[1] R. E. Alvarez and A. Macovski, “Energy-selective reconstructions in x-
ray computerised tomography,” Phys. Med. Biol., vol. 21, no. 5, p. 733,
1976.

[2] Y. Zou and M. D. Silver, “Analysis of fast kv-switching in dual energy
ct using a pre-reconstruction decomposition technique,” in Medical
Imaging. International Society for Optics and Photonics, 2008, pp.
691 313–691 313.

[3] P. R. Mendonça, P. Lamb, and D. V. Sahani, “A flexible method
for multi-material decomposition of dual-energy ct images,” Medical
Imaging, IEEE Transactions on, vol. 33, no. 1, pp. 99–116, 2014.

[4] C. Maaß, M. Baer, and M. Kachelrieß, “Image-based dual energy ct
using optimized precorrection functions: A practical new approach of
material decomposition in image domain,” Med. Phys., vol. 36, no. 8,
pp. 3818–3829, 2009.

[5] Y. Long, J. Fessler et al., “Multi-material decomposition using statistical
image reconstruction for spectral ct,” Medical Imaging, IEEE Transac-
tions on, vol. 33, no. 8, pp. 1614–1626, 2014.

[6] X. Pan, B. Chen, Z. Zhang, E. Pearson, E. Sidky, and X. Han,
“Optimization-based reconstruction exploiting spectral information in
ct,” in The Third International Conference on Image Formation in X-Ray
Computed Tomography, 2014, pp. 228–232.

[7] B. Chen, Z. Zhang, E. Pearson, E. Sidky, and X. Pan, “An investigation
of regularization for basis image reconstruction in spectral ct,” in IEEE
Nucl. Sci. Sym. & Med. Imaging Conf., 2014.

[8] GAMMEX Dual Energy CT Phantom, 2016 (accessed Jan.
10, 2016). [Online]. Available: http://www.sunnuclear.com/snc site/
solutions/diagnostic/subcat/ct solutions/ct dual energy phantom

[9] E. Y. Sidky and X. Pan, “Image reconstruction in circular cone-beam
computed tomography by constrained, total-variation minimization,”
Phys. Med. Biol., vol. 53, pp. 4777–4807, 2008.

[10] T. Johnson, C. Fink, S. O. Schnberg, and M. F. Reiser, Eds., Dual
Energy CT in Clinical Practice, ser. Medical Radiology. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011. [Online]. Available:
http://link.springer.com/10.1007/978-3-642-01740-7

[11] K. M. Brown, S. Zabic, and G. Shechter, “Impact of spectral separation
in dual-energy ct with anti-correlated statistical reconstruction,” in The
13th International Meeting on Fully Three-Dimensional Image Recon-
struction in Radiology and Nuclear Medicine, 2015.

The 4th International Conference on Image Formation in X-Ray Computed Tomography

104



First in-vivo Experiments with a Large field-of-view
Flat Panel Photon-Counting Detector
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Abstract—In the recent years, dual-energy CT becomes of more
and more interest in clinical practice. The ability to distinguish
different materials and tissue provides additional information to
the clinician to make treatment decisions. Material decomposition
for example allows to separate iodinated contrast agent from soft
tissue due to its stronger enhancement at low photon energies
compared to other materials that do not show this behavior.
In conventional CT imaging several techniques are investigated
for dual-energy imaging, whereas dual-energy imaging has not
found its way into interventional C-arm CT imaging, yet. In
the angiographic suite, discrimination of iodine from soft tissue
would for example allow the generation of digital subtraction
images without any motion artifacts. In this work, the first images
generated with a large field-of-view photon-counting detector
integrated into a clinical C-arm system have been investigated.
The acquired 2D and 3D images of an in-vivo pig study look
promising and open up the way for dual-energy imaging in the
angiographic suite.

I. INTRODUCTION

A. Purpose of this Work
One major goal in medical CT research today investigates

the decomposition of the scanned object into its different
materials. Dual-energy imaging allows to exploit the different
absorption behavior of distinct materials and tissue under
varying X-ray photon energies. For example, the attenuation of
iodine, which is broadly used as intravascular contrast agent,
decreases less than the attenuation of soft tissue with increas-
ing photon energy. Possible clinical applications that benefit
from this are, e.g. improved detection of a hyperenhancing
malignancies in abdominal imaging [1], detection of endoleaks
after endovascular aneurysm repair [2], distinguishing tumor
bleed from pure hemorrhage [3] or coronary atherosclerotic
plaque characterization [4]. In order to acquire images with
different photon energies, multiple techniques can be applied:
(i) acquisition of two consecutive scans with two different
tube voltages, (ii) acquisition of a single scan using one X-
ray tube with fast voltage switching, (iii) using a dual-or
multilayer detector, (iv) acquisition with two (or more) X-ray
tubes simultaneously with different voltage settings, and (v)
using a photon-counting energy-discriminating detector with
two or more energy thresholds [5]. In conventional CT, most
of the previously mentioned approaches are integrated into
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clinical CT scanners from different vendors. However, photon-
counting detectors are still on-going research in dual-energy
CT and not clinical applicable, yet [6], [7].

In this work, the first setup of a customized manufactured
large filed-of-view photon-counting detector mounted on a
research clinical angiographic C-arm CT system is presented.
The setup allows to acquire 2D energy discriminating images
during 2D static and 3D rotational scans.

B. State of the Art
Photon-counting detectors (PCDs) divide the transmitted X-

ray spectrum into a number of different energy bins. The num-
ber of bins is highly dependent on the design and application
of the distinctive detector. This principle varies completely
from the conventional energy integrating detector that does not
allow for energy differentiation. PCDs can help to overcome
certain limitations of the current available detector technology,
e.g. tissue-specific images to distinguish blood from contrast
agent and/or to improve the signal-to-noise ratio by exploiting
energy dependent image properties. The two most used materi-
als to convert the absorbed photon energy of the emitted X-ray
spectrum into an electrical signal are cadmium telluride (CdTe)
and cadmium zinc telluride. The magnitude of the electrical
signal is proportional to the incident photon’s energy. In order
to build a clinical applicable PCD for X-ray and CT imaging,
some hardware design challenges need to be addressed. One
major challenge is the pulse pileup due to the high peak X-
ray flux in CT imaging. This means that pulses generated by
coincident photons might be piled up and observed as one.
This leads to a wrong detected energy, and a loss in the number
of overall counts. There are many more challenges and a more
detailed description can be found in [5], [7].

II. METHODS AND MATERIALS

A. Photon-Counting Detector
In this paper, we investigated a large field-of-view dual-

energy photon-counting detector for its application in in-
terventional radiology. The detector is a customized OEM
product manufactured by XCounter AB (Danderyd, Sweden),
hereafter referred to as ”XCD” (Fig. 1a). In this detector, 1 mm
cadmium telluride (CdTe) is used as conversion material from
the X-ray energy to an electrical signal. The detector covers
an active area of 30×5 cm2 made up of several individual
modules, each having a size of 1.25×2.5 cm2. Overall the 2D
image matrix is 3072×512 pixel with an isotropic resolution
of 100 μm. The exposure integration range is from 100 μs-5 s.
The XCD features two energy bins per pixel with adjustable
thresholds with each counter on the pixel has a counter depth
of 12 bit. Therefore, synchronous acquisition of a total energy
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(a) (b)

Figure 1: (a) Large field-of-view photon-counting detector
(XCD) and (b) mounted to an Artis zeego system (Siemens
Healthcare GmbH, Forchheim, Germany).

(TE) and a high energy (HE) image can be performed. The
detector also features a charge sharing correction feature to
restore the energy that may spread over several neighboring
pixel due to fluorescence or charge dispersion and to count the
event only once. The detector design is similar to the small
PCD presented in Ullberg et al. [8]. The readout is performed
over a gigabit ethernet connection and the generated 2D
images are visualized and stored on an external workstation.

In order to perform 2D and 3D clinical imaging, the
XCD was “piggy-back” mounted to the flat panel detector
(FD) of an Artis zeego system (Siemens Healthcare GmbH,
Forchheim, Germany) (Fig. 1b). The clinical system’s X-ray
tube (MEGALIX CAT Plus) was used. A software application
enables manual control of the tube current (mA), pulse width
(ms), and voltage (kV).

B. 2D Image Processing

The XCD provides the ability to acquire either 2D im-
ages from one static view or 2D images during a rotational
scan. Both image stacks need to be processed to correct for
gain variations, defect pixels, geometric deviations between
individual detector modules, and count rate linearization. A
rough overview of the image processing pipeline is given in
Fig. 2. The first step is to correct for pixel wise variations
in efficiency. For conventional FDs a flat-field correction can
be applied, where multiplicative coefficients characterizing the
relative efficiency of each pixel to the mean pixel efficiency
can be found. However, the efficiency of each pixel is energy
dependent, and this dependence is unique for each of them
[9]. Hence, the detection efficiency depends individually on
the local attenuation properties of the imaged sample, and
consequently, a simple flat-field correction is not sufficient.
Here, the signal-to-equivalent thickness calibration (STC)
method presented by Vavrik et al. is applied to correct for
variations in pixel efficiency [10]. The method also works for
slightly different calibration and sample materials [9]. As a

Homogenization 2D Geometric 
Correction

Count Rate
Linearization

raw 
data

(TE, HE)

PMMA 
slab 

scans

corrected 
data

(TE, HE)

Figure 2: Overview of the image processing pipeline.

“calibrator” different thicknesses of polymethyl methacrylate
(PMMA) slabs (1.18 g/cm2) were used and imaged with spe-
cific exposure parameters equivalent to the later acquisitions.
Additionally, a defect pixel correction step is applied. As a
next step, minor gaps at the module edges are removed and
the modules might be shifted in whole pixel steps to fit to the
adjacent modules. Additionally, the butting zones around each
module show high signal variations. These are homogenized
by detection of the modules and whole butting pixel from
neighboring pixels are introduced to approximate the gaps.
Afterwards, a specifically designed count rate linearization
algorithm is performed. Overall, this results in corrected TE
and HE image stacks. The low energy (LE) image stack is
generated by simple subtraction LE = TE-HE.

C. 3D Image Reconstruction
The XCD mounted on the C-arm CT system provides the

ability to acquire simultaneous photon-counting 2D images
or image series from static projections or to reconstruct
volumetric data from a cone-beam CT run. Since the mounting
of the XCD onto the FD changes the pre-calibrated system
trajectory, new 3D projection matrices need to be computed
[11]. Due to the different extent of the XCD and the FD, a
customized PDS-3 phantom was manufactured with slightly
varying phantom diameter, height and adapted helical slope
of the bead inserts (Fig. 3).

For 3D imaging a scan protocol with a duration of 10 s and
30 fps was used to acquire 248 (TE and HE) imaging stacks,
distributed over 200◦ with an angular distance of 0.8◦. The
XCD projection images have a size of 3072×512 pixel with an
isotropic pixel size of 100 μm. The source-to-detector distance
measured 120 cm. For a preliminary image comparison, the
same image protocol has been performed without the XCD
mounted to the FD. The 2D FD projection images have a size
of 1240×960 with an isotropic pixel size of 0.308 mm.

For 3D XCD image generation using the TE stack, the
Feldkamp-Davis and Kress (FDK) algorithm with a shepp-
logan ramp filter with a cut-off frequency of 0, quadratic
cut-off strength, and a slope cut-off of 4.0, available in the
CONRAD software package was used[12]. The FD images
were sent to the external workstation from the clinical system
and reconstructed with a matrix size of 5123 and a voxel
size of 0.425 mm. One XCD reconstruction was performed
using 1×1 native detector pixel size on a 5122×140 matrix
with an isotropic voxel size of 0.2125 mm. Another XCD
reconstruction mimics the acquired FD data, with a 3×3
binning on the XCD and a reconstruction of a 5122×70
volume with a voxel size of 0.425 mm.
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Figure 3: (a) PDS-2 and customized PDS-3 phantom. (b) TE
image of PDS-3 phantom.

III. RESULTS

Stanford University’s Administrative Panel on Laboratory
Animal Care approved the protocol for this in-vivo animal
study. One Yorkshire pig (approximately 50 kg) was used for
this study. A self-expanding nickel–titanium, single-wire braid
LVIS Jr stent (Microvention/Terumo, Tustin, California, US)
was placed into the transverse facial artery. The LVIS Jr outer
wire diameter is 0.0024” (≈0.06 mm). The 3D acquisition was
performed with requesting 81 kV, 12.5 ms and 150 mA from
the X-ray tube and the thresholds of the XCD were set to 8 keV
for the lower and 39 keV for the higher energy threshold. An
example of one in-vivo corrected 2D image (TE, HE, and LE)
from a rotational run is illustrated in Fig. 4. It can be seen that
the image noise increases with a lower photon count rate. The
butting zones are slightly visible in the HE and LE images. In
Fig. 5 the 3D reconstructions of the in-vivo pig acquisitions
are presented. The XCD data set shows the superior spatial
resolution of the stent. But it also shows the impact of the
visible butting zones transitions.

IV. CONCLUSION

In this paper, the first setup of a large field-of-view photon-
counting detector with an angiographic C-arm CT system
has been presented. The acquired in-vivo pig images look
promising and are a major step towards dual-energy imaging
within the angiographic suite.

Disclaimer: The concepts and information presented in
this paper are based on research and are not commercially
available.
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Figure 5: 3D reconstructions of the in-vivo pig dataset. From left to right, volume rendered image, axial slice, and sagittal view.
The first row shows the FD, the second row the 3×3 binned FD-mimicked, and the third row the 1×1 XCD reconstruction.
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Abstract—In this paper, we develop an efficient noise reduction 

scheme for low-dose CT by using nonlocal means (NLM) on local 
principle components (PC-NLM). In the PC-NLM denoising 
scheme, PCA on local neighbor patches is utilized to derive a 
locally adaptive basis set and to decorrelate data signal 
correlation among a patch, and then the NLM-mechanism is 
employed to average the corresponding principle components of 
local neighbor patches based on the similarity of the target patch 
and its neighbor patches. Through extracting redundancy 
information from corresponding principle components of 
neighbor patches with such a NLM operation, each principle 
component of the target patch can be properly regularized so that 
the inherent noise can be efficiently mitigated after inverse 
transformation. In addition, the principle neighborhood 
dictionary (PND) technique is introduced to the PC-NLM scheme 
to increase the accuracy of similarity calculation between patches, 
as well as to reduce the computational load. The effectiveness of 
the proposed method is validated by the experimental studies. 
 

Index Terms—low-dose CT, noise, artifact suppression, 
principle component analysis (PCA), nonlocal means (NLM).  
 

I. INTRODUCTION 
OW-DOSE  CT  technique can efficiently reduce the x-ray 
radiation exposure to patients. However, this approach is 

highly detrimental to image quality, resulting in images with 
significant noise and streak artifacts [1]. Up to now, many noise 
reduction strategies have been proposed to address this problem, 
including statistic-based iterative reconstruction (SIR) 
approaches [2-3], pre-processing methods [4-5] and 
post-processing algorithms [6-7]. In the present work, we focus 
on the third strategy, post-processing approaches, which 
mitigate noise and artifacts of the FBP reconstructed CT image 
directly. Post-processing methods can utilize priori structural 
information of objects with less computational demands. 
Another advantage of post-processing methods is that they 
have a wide applicability considering that only reconstructed 
images are available in most equipped CT scanners.  
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Principle components analysis (PCA) is a classical 
decorrelation technique in statistical signal processing which 
provides the best locally adaptive transformation basis set. PCA 
on local image patches has previously been used for image 
denoising. Muresan et al. [8] proposed a PCA-based scheme for 
image denoising, which computed the locally fitted basis to 
transform the image and preserved only the several most 
significant principal components to remove the noise. Zhang et 
al. [9] improved Muresan’s method and presented a two-stage 
LPG-PCA denoising strategy. Their result shows 
state-of-the-art denoising performance for the Gaussian noise 
corrupted image where the noise variance is known or can be 
well estimated. However, for the FBP reconstructed low-dose 
CT image, the noise are non-stationary and do not obey to any 
specific statistics model. Hence, it is necessary to investigate 
superior PCA-based noise and artifacts mitigation methods for 
low-dose CT image. In this work, we propose a low-dose CT 
noise reduction scheme by using nonlocal means (NLM) [10] 
on local principle components (PC).  

II. METHODS 
The proposed PC-NLM denoising method adapts the NLM 

mechanism to extract the redundant information from 
corresponding PCs of local neighboring patches. The PC-NLM 
method contains three major steps: (a) Sorting and selecting 
patches similar to the central one in the local search window as 
the training samples; (b) Decompose sample patches into 
uncorrelated PCs by locally fitted PCA basis set computed from 
training samples; (c) NLM weighted averaging of 
corresponding PCs of local neighboring patches to estimate the 
central patch. In the following subsections, we describe each 
step in detail. 

A. Training Patches Grouping 
For a target pixel to be denoised, we set a K×K square 

neighborhood centered on it, called a patch and denoted by 
0 0 0

0 1 2[ , , , ]T
Mx x xx , 2M K . Also, we define an L×L (L>K) 

search window centered on the target pixel. By sliding inside 
the window pixel by pixel, we can extract (L-K+1)2 overlapped 
patches from the search window, denoted by 

2, 0,1, , ( ) 1i i L - K +1x . Then we compute the distance 
between the central patch and the other patches for patch 
similarity measurement, which can be expressed as:  

2 2
0 2,

, 0,1,2, , ( 1) 1i i a
i L Kx x                 (1) 
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where the notation ||·||2,a denotes a Gaussian weighted 
Euclidean distance between two patch vectors with a being the 
standard deviation of the Gaussian kernel. Finally, we sort the 
distance in ascending order and select the most similar N 
patches (including the central patch x0) as the training samples 
to compute the PCA transformation matrix. We denote these 
training patches as x0, x1, ···, xN-1, with i being the 
corresponding distance between x0 and xi, which will be used in 
the following NLM weights calculation in Subsection II.C. 
Then the training patch set for x0 is formed by 

        X=[ x0, x1, ···, xN-1 ]                               (2) 
where 

21[ , , , ] , 0,1, , 1i i i T
i Mx x x i Nx . 

Here, we take the number of training patches N=C·M with 
constant C=8~10 as in [8], which can guarantee the robust 
estimation of the local statistics.   

B. PCA Transformation of Local Patches  
Given the training patch set X, the PCA transformation is to 

seek a basis set that minimizes the sum of the square errors 
between the first M bases and the training patches. Denote the 
ith row of training matrix X as 

0 1 1, , , , 1, 2, ,N
i i i iX x x x i M                       (3) 

We compute the mean value of Xi  as 
1

0

1 N
j

i i
j

x
N

 ,                                         (4) 

and then centralize Xi  as 
i i iX X                                             (5) 

Accordingly, the centralized matrix of X is  
0 1 10 1 1[ , , , ] , , ,T T T T

N -NX X XX x x x               (6) 

where jx  is the centralized result of x j. Next we compute the 
covariance matrix of the centralized dataset as 

1 T

N
XX  ,                                         (7) 

and decompose  as  
T                                            (8) 

where  = diag{ 1, 2, ···, M } and  = [ 1 2 ··· M ]. The 
terms 1, 2, ···, M are the eigenvalues of  with 1  2  ···  

M and the terms 1 2 ··· M are the eigenvectors of  that 
are exactly the desired basis set for transformation.  

We decompose the centralized patches through applying T 
to X  and have 

TY X                                               (9) 
where Y=[y0, y1, ···, yN-1] represents ordered principle 
components of X .  

Without loss of generality, the noise in the local search 
window with a small window size can be assumed to follow 
approximately an independent and identically distribution. 
Though the covariance matrix  is calculated from the noisy 
training patches, the eigenvectors of  would not change in any 
noticeable way, based on the fact that principal directions of a 
multivariate probability distribution function are not altered by 
addition of independent and identically distributed noise [11]. 

C. NLM Weighted Average of Principle Components  
The NLM concept was first proposed by Buades et al. [10] 

which can extract the redundancy information from 
neighborhood through a weighted average scheme. In the 
PC-NLM scheme, the NLM mechanism is employed to 
regularize the target patch in the PCA domain through weighted 
averaging the corresponding principle components of local 
neighbor patches based on the similarity of the target patch and 
the other local patches.  

Denoted the ith row of decomposition matrix Y by
0 1 1, , , N

i i i iY y y y , where l
iy  is the ith principle component 

of the local patch , 0,1, , 1.l l Nx The ith principle 
component of the centralized target patch can be regularized as  

1
0

0
0

ˆ ( , )
N

l
i l i

l
y w yx x  , 1, 2,i M                         (10) 

where 0( , )lw x x  is the weight assigned to l
iy . The weight   

w(x0, xl), l=1, 2, ···, N-1 depends on the similarity between 
patch x0 and xl, and satisfies the conditions of 0 w(x0, xl) 1 

and 
1

0
0

( , ) 1
N

l
j

w x x . It can be computed as  

2
0 2,

0 2
0

2
0

1( , ) exp
( )

1 exp
( )

l a
l

l

w
Z h

Z h

x x
x x

x

x

                    (11) 

Here, l is the Gaussian weighted Euclidean distance between 
the patches x0 and xl, as calculated by (1) in the Subsection II.A. 

The term 
1

2
0

0
( ) exp

N

l
l

Z hx  is a normalizing factor. In 

(11), the exponential function converts the distances to weights, 
determined by the filtering parameter h  which controls the 
overall smoothness of the filtering.  

Accordingly, all the principle components of the centralized 
target patch can be regularized as 

1

0 0
0

ˆ ( , )
N

l l
l

wy x x y                                        (12) 

By transforming 0ŷ  back to the time domain, we obtain the 

denoising result of the centralized target patch 0x  as 

0 0
ˆ ˆx y                                                       (13) 

Denoted by 1 2[ , , , ]T
M  the mean vector of the training 

matrix X , then the denoising result of the target patch 0x  can 

be obtained by adding the mean vector  back to 0x̂  as 

0 0
ˆx̂ x                                                    (14) 

Applying such procedures to each pixel and finally 
averaging the corresponding values in the overlapped patches 
at a given location, the whole image can be denoised. The 
PC-NLM procedure should be iterated two times for complete 
removal of the noise artifacts.  

The 4th International Conference on Image Formation in X-Ray Computed Tomography

110



D.

hi
co
in 
ne
[1
be
pr
pa
su
co
th
fu
d-
of
pa

40
co
co
fu

E.

K=
ar
re
de
no

th
th
fil
He
ar
PC
pr
of
be
th
be
by
ex
sa

A.

va
mu
QA
th
tra

. Fast and Eff
A straightforw
ghly computa

ost spends on t
 the local se

eighborhood d
1] to reduce t

etween patche
rojected onto a
atches similar
ubspace rather
omputational s
at this approa

ull-dimensiona
-dimensional p
f using (1), dis
atches are com

, ,d i d if

In [11], Tasd
0% principle 
omponents. In
omponents d

ull-dimensiona

 Parameter S
In implement

=3 and L=15  f
rtifacts, and b
latively high l

enoising resu
oise/artifacts s

In the NLM 
e overall smoo
e standard de
ltering parame
ere, we set h

rtifacts residua
C-NLM proce
rocedure shoul
f the noise an
een much mitig
e filtering par

e reduced to ad
y h(i)

 the filte
xperimentally 
atisfying denoi

 Data Acquis
The effective

alidated with 
multislice CT sc

A phantom. T
ickness was 1
adition FBP m

fficient Realiza
ward impleme

ationally dema
the computatio
earch window
dictionary (PN
the computatio
es. In the PN
a lower dimen
rities are com
r than the fu
savings. More 
ach results in i
al ambient 
projection vec
stances betwee

mputed by  
2

,0 2,
,d a

f
   

i

dizen experime
components c

n this paper, w
0.4M , w

al space.  

Selection 
tation, we exp
for images wit
by setting K
level of noise a
ult in both
uppression.  
mechanism, t
othness of the 
eviation of th
eter h can also
h empirically. 
als in the proce
edure describe
ld be iterated 

nd artifacts. Si
gated in the fir

rameter h used
dapt for the ne
ering paramet

found that s
ising results fo

III. EXPER

sition  
eness of the 
a low-dose sc
canner at 120 
The time per g
1.25mm. A st

method was em

ation  
entation of the 
anding. Most o
on of similarit

w. Here, we 
ND) method pr
onal load of si

ND method, a
nsional subspac
mputed using
ll space, resu
importantly, T

increased accu
space [11]. 

ctor of the patc
en the central 

0,1, 2, , (L

entally showed
can be chosen

we take the nu
where M is 

perimentally fo
th relatively lo

K=5 and L=2
and artifacts c

h structures 

the filtering pa
filtering. Typ

he image noi
o be empiricall

There are st
essing result af
d above. Ther
once more fo
ince the noise
rst round of PC
d in the followi
w noise level 
er used in th
setting h(2) =0
or low-dose C

RIMENT RESUL

proposed PC
can acquired 
kVp, 10 mAs 
gantry rotation
tandard recons

mployed to rec

PC-NLM met
of the computa
ties between p
adapt the pri

roposed by Ta
imilarity calcu
all patches ar
ce using PCA

g distances in
ulting in sign
Tasdizen has 
uracy over usi

Let fd,i be
ch ix . Then i
patch and the

21) 1K     

d that about th
n as the sign
umber of sign

the size o

found that by s
ow level of noi
1 for images

can lead to sati
preservation

arameter h co
pically, h depen
se. In practic
ly selected, as 
till many nois
fter one round
refore, the PC
or complete re
e and artifacts
C-NLM, the va
ing iterations s
of the result. D

he ith iteration
0.17h(1) can le
T images.   

TS 

-NLM metho
by a GE Hi-
protocol from
n was 1s. The
struction kern
onstruct the im

thod is 
ational 

patches 
inciple 

asdizen 
ulation 
re first 

A. Then 
n this 

nificant 
shown 
ing the 
e the 
instead 
e other 

   (15) 

he first 
nificant 
nificant 
of the 

setting 
ise and 
s with 
isfying 
n and 

ontrols 
nds on 
ce, the 
in [7]. 

se and 
d of the 
-NLM 

emoval 
s have 
alue of 
should 
Denote 
n. We 
ead to 

od was 
-Speed 

m a GE 
e slice 

nel and 
mages. 

Bes
to s

B.
T

LPG
show
phan
resp
Fig.
algo
show
algo
NLM
supp
obsc
muc
the 
(ple

Fig.1.
F

Fig.
of th
prop
refe

     
0

250

300

350

400

450

500

550

600

650

C
T 

V
al

ue
 (H

U
)

 

t

(a) R

(c) N

sides, a scan ac
erve as the ref

Visual Evalua
The FBP algo
G-PCA [9] alg
ws the proces
ntom and the F

pectively. Sev
.1(c)-(d) give 
orithm and the
ws the proc
orithm with pa
M and LPG-
pressing strea
curity. Instead
ch better in bo
green arrow in

ease see the blu

. Processing resul
Fig.2 shows th
.1(a) by the af
he reference p
posed PC-NL
erence image (

                   (a)
20 40 6

Pixel Lo

Refe
NLM

target profile  

Reference 

NLM 

(e) P

cquired with 1
ference image

ation  
orithm, the N
gorithm were 
ssing results. F
FBP reconstru

vere noise/arti
the results of

e LPG-PCA a
cessing result
atch size of 5×
-PCA method
ak artifacts, bu
d, the propose
oth suppressin
n the Fig.1(e))
ue arrows in F

     

     

ts of the QA phan
he intensity p
forementioned
phantom. Here
LM algorithm
(please see the

)                           
60 80 100
ocation

erence phantom
M

(b) 

(d) L

PC-NLM  

120 kVp and 1
. 

NLM algorith
adopted for c

Fig.1(a)-(b) sh
uction of the lo
ifacts can be 
f Fig.1(b) filt
algorithm, resp
t by the pr
×5. As shown i
ds are not on
ut also lead to
ed PC-NLM a
ng noise and ar
 and preservin

Fig.1(e)). 

  
ntom. The display 
profiles along
d algorithms as
e too, the inten

m match bette
e blue arrows i

                           

 

0 20 40
250

300

350

400

450

500

550

600

650

C
T 

V
al

ue
 (H

U
)

 

FBP 

LPG-PCA 

190 mAs was 

hm [10] and
comparison. F
how the refer
ow-dose sinog

seen in Fig.
tered by the N
pectively. Fig
roposed PC-N
in Fig.1(c)-(d)
nly ineffectiv

o obvious struc
lgorithm perfo
rtifacts (please

ng subtle struct

 

 

window is [0,600
g the blue lin
s compared to
nsity values o
er to that of
in Fig.2). 

     (b) 
60 80 1

Pixel Location

Reference phantom
LPG-PCA

used 

d the 
Fig.1 
rence 
gram, 
1(b). 

NLM 
g.1(e) 
NLM 
), the 

ve in 
cture 

forms 
e see 
tures 

0] HU. 
ne in 
o that 
of the 
f the 

 00

The 4th International Conference on Image Formation in X-Ray Computed Tomography

111



 
                                                 (c) 
 Fig.2. Intensity profiles along the vertical blue line labeled in Fig.1(a).                                                     

C. Quantitative Evaluation 
The performance of aforementioned algorithms was 

quantitatively evaluated using the correlation coefficient (CC) 
and the structural similarity index comparisons (SSIM) metrics 
[13]. These metrics are defined as  

  

2 2

1 1 1
CC ( )( ) ( ) ( )

I I I

i i i i
i i i

x x r r x x r r          (16)
 

1 2
2 2 2 2

1 2

(2 )(2 )
SSIM

( )( )
xr

x r

x r c c
x r c c

                      (17) 

where, r and x denote the reference phantom and the processing 
result, respectively, r and x  are the mean intensities, r and x 
are the standard deviations, and xr is the covariance between 
the phantom and the processed image. I represents the number 
of pixels. c1 and c2 are small constants with c1=(K1Ls)2 and 
c2=(K2Ls)2, where Ls is the dynamic range of the image (was set 
as 610 for the range from 0 HU to 610 HU in our phantom 
study), and K1 and K2 were set to 0.01 and 0.03 based on [13]. 
The quantitative results were list in Table I. Quantitatively, the 
PC-NLM methods outperformed NLM and LPG-PCA 
methods. 

TABLE I  
NUMERICAL COMPARISON OF THE RESULTS OBTAINED FOR THE QA PHANTOM 

VIA VARIOUS METRICS 
Metric FBP NLM LPG-PCA PC-NLM

CC 0.686 0.822 0.808 0.899
SSIM 0.302 0.589 0.536 0.793

D. Computation Costs  
Table II shows the run times (in seconds) of the PC-NLM 

algorithm to process one 512×512 slice with/without using the 
PND technique. Table I also shows the average run times of the 
PC-NLM algorithm with different sizes of the local patch and 
the local search window. The algorithm was coded in Matlab on 
3.6G Intel Core i7 CPU. It shows that the run times of the 
PC-NLM method can be greatly reduced by using the PND 
technique. 

TABLE II 
THE AVERAGE RUN TIME (IN SECOND) FOR PC-NLM ALGORITHM 

WITH/WITHOUT PND TECHNIQUE  
 PC-NLM 

without PND  
PC-NLM  
 with PND  

Average run time for one 512×512 
slice, with K=3 and L=15. 44.31 34.72 

Average run time for one 512×512 
slice, with K=5 and L=21. 103.53 84.91 

IV. CONCLUSION 
This paper presents a noise reduction scheme for low-dose 

CT by using nonlocal means on local principle components. In 
this scheme, the PCA technique on local neighbor patches was 

employed to derive a locally adaptive basis set and to 
decompose the strong data signal correlation among a patch. 
Thus the NLM operation can be utilized to extract redundancy 
information from corresponding principle components of 
neighbor patches. To speed up the implementation of the 
proposed PC-NLM method, we further employ the principle 
neighborhood dictionary (PND) technique to reduce the 
computational load in patches similarity calculation.  
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Characterization of the previous normal-dose CT scan 
induced nonlocal means regularization method for  

low-dose CT image reconstruction 
Hao Zhang, Jianhua Ma, William Moore, and Zhengrong Liang* 

Abstract—Repeated computed tomography (CT) scans are 
required in some clinical applications such as image-guided 
radiotherapy and follow-up observations over a time period.  To 
optimize the radiation dose utility, a normal-dose (or full-dose) 
CT scan is often first performed to set up reference, followed by a 
series of low-dose scans.  Using the previous normal-dose scan to 
improve follow-up low-dose scans reconstruction has drawn 
great interests recently, such as the previous normal-dose 
induced nonlocal means (ndiNLM) regularization method.  
However, one major concern with this method is that whether it 
would introduce false structures or miss true structures when the 
previous normal-dose image and current low-dose image have 
different structures (e.g., a tumor could be present, grow, shrink 
or absent in either image).  This study aims to investigate the 
performance of the ndiNLM regularization method in the above 
mentioned situations.  A patient with lung nodule for biopsy was 
recruited to this study.  A normal-dose scan was acquired to set 
up biopsy operation, followed by a few low-dose scans during 
needle intervention toward the nodule.  We used different slices 
to mimic different possible cases wherein the previous normal-
dose image and current low-dose image have different structures.  
The experimental results characterize performance of our 
ndiNLM regularization method. 

I. INTRODUCTION 

-ray computed tomography (CT) has been widely 
exploited in clinic for different applications.  Recent 

discoveries regarding the potential harmful effects of X-ray 
radiation including genetic and cancerous diseases have raised 
growing concerns to patients and medical physics community 
[1].  Repeated CT scans are required in some clinical 
applications such as image-guided radiotherapy and follow-up 
observations over a time period, and the accumulated radiation 
dose could be significant.  To optimize radiation dose utility, a 
normal-dose scan is often first performed to set up reference, 
followed by a series of low-dose scans.  In these applications, 
the previous normal-dose scan can be exploited as prior 
information due to the similarity among the reconstructed 
image series of the scans.  While somewhat misalignment 
and/or deformation may occur among the image series, they 
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can be mitigated through registration of the image series.  
Using the reconstruction from previous normal-dose scan to 
improve the follow-up low-dose scans reconstruction has 
become a research interest recently, some of which exploited 
the previous normal-dose image as a penalty for regularized 
iterative image reconstructions.  For instance, Nett et al. [2] 
incorporated a registered normal-dose image into their prior 
image constrained compressed sensing (PICCS) framework 
for iterative reconstruction of subsequent low-dose CT images.  
Stayman et al. [3, 4] presented a PICCS-type penalty term, but 
the high-quality normal-dose image was formulated into a 
joint estimation framework for both image registration and 
image reconstruction in order to better capturing the 
anatomical motion among different scans.  Zhang et al. [5, 6] 
predicted MRF coefficients from previous normal-dose CT 
image and exploited this prior information to improve the 
follow-up statistical Bayesian low-dose image reconstruction.  
Moreover, Ma et al. [7, 8] proposed previous normal-dose 
image induced nonlocal means (ndiNLM) penalty terms to 
improve the following low-dose CT image reconstruction for 
perfusion and interventional imaging, wherein the previous 
normal-dose scan was also pre-registered with the low-dose 
scans.  Because of the patch-based search mechanism, this 
approach does not heavily depend on the accuracy of 
registration, and a rough registration would be adequate in 
practice [7, 8].  However, one major concern with the ndiNLM 
regularization method is that whether it would introduce false 
structures or miss true structures when the previous normal-
dose image and current low-dose image have different 
structures (e.g., a tumor could be present, grow, shrink or 
absent in either the previous or current image).  This study 
investigates the different scenarios wherein the previous 
normal-dose image and current low-dose image have different 
structures, and characterizes the performance of the ndiNLM 
regularization method in these situations. 

II. METHODS 

A. Statistical model 
The noise property of the calibrated line integrals has been 

investigated by analyzing experimental data of a physical 
phantom from repeated scans.  The statistical analysis showed 
that the calibrated line integrals can be fitted approximately by 
a Gaussian distribution with a nonlinear signal-dependent 
variance [9, 10]: 

2( , )
ii i yy Gaussian y                        (1) 

X 
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With the 'Poisson+Gaussian' noise model for the transmitted 
photons, it has been shown in that the variance of the line 
integral yi can be given by [11, 12]: 

2 2

0 0

2
2

1 exp( ) 1 exp( )
i

i

i

e e
i i

i i
y y y

N N
N

N
    (2) 

where 0iN  represents the mean number of X-ray photons just 
before entering the patient and going toward the detector bin i, 
and 2

e  denotes the variance of the electronic noise. 

B. PWLS image reconstruction 
The penalized weighted least-squares (PWLS) cost function 

in the image domain can be written as: 
1( ) ( ) ( ) ( )T Ry A y A            (3) 

where 1( ,..., )T
Iy yy  is the vector of measured line integrals, 

and I is the number of projection measurements; 
1( ,..., )T

J  is the vector of attenuation coefficients of the 
object to be reconstructed, and J is the number of image pixels; 
A is the projection matrix with the size I×J, and its element Aij 
is typically calculated as the intersection length of projection 
ray i with pixel j.  In our implementation, the system matrix is 
pre-calculated by a fast ray-tracing technique and stored as a 
file to serve as a lookup table during iterations.   is the 
covariance matrix, and since the measurement among different 
detector bins are assumed to be independent, the matrix is 
diagonal and 2=diag{ }

iy .  The symbols T and -1 herein are 
transpose and inverse operators, respectively.  ( )R  denotes 
the penalty term and  is a smoothing parameter which plays a 
role of controlling the tradeoff between the data fidelity term 
and the penalty term.  Eq. (3) is the well-known PWLS 
criterion in the image domain. 

The goal for CT image reconstruction is to estimate the 
attenuation coefficients  from the noisy measurement y : 

0
ˆ arg min ( )                              (4) 

Minimization of Eq. (4) could also be efficiently achieved 
with the Gauss-Seidel update strategy, and the details can be 
found in a previous paper [8]. 

C. ndiNLM regularization 
The ndiNLM penalty in the image domain can be 

described as [7]: 
2( ) ( )

j

ND
j jk k

j k SW
R w                       (5) 

where 1( ,..., )ND ND ND T
J  denotes the vector of attenuation 

coefficients for the previous normal-dose image (ND is short 
for normal-dose), SW denotes a search-window, and the 
NLM-based weighting coefficients jkw  are given as: 

2 2

2

2 2

2

exp - ( )- ( ) /

exp - ( )- ( ) /
j

ND
j k ,a

jk
ND

j k ,ak SW

PW PW h
w

PW PW h

           (6) 

where PW denotes a patch-window, and h is the filtering 
parameter. 

III. RESULTS 

A. Data acquisition 
To evaluate the ndiNLM regularization method in a more 

realistic situation, a patient with lung nodule for biopsy at 
Stony Brook University Hospital was recruited to this study 
under informed consent after approval by the Institutional 
Review Board.  The patient was scanned using a Siemens CT 
scanner.  The X-ray tube voltage was set to be 120 kV, and the 
tube current was set to be 100 mAs.  The raw data was 
calibrated by the CT system and outputted as sinogram data or 
line integrals.  We regarded this acquisition as the previous 
normal-dose scan, and simulated the corresponding low-dose 
sinogram data by adding noise to the normal-dose sinogram 
data using the simulation method in [13].  The noisy 
measurement Ni at detector bin i was generated according to 
the statistical model: 

2
0Poisson( exp( )) Gaussian(0, )i i i eN N y     (7) 

Then the corresponding noisy line integral {yi} is calculated 
by the logarithm transform. 

B. Scenario 1: low-dose CT image having nodule 
Fig. 1 illustrates one transverse image of the patient from 

the simulated low-dose sinogram data, reconstructed by the 
FBP method.  The red arrow indicates a lung nodule.  Fig. 2 
(P1)-(P3) illustrates three transverse images of the patient 
from the acquired normal-dose sinogram data, reconstructed 
by the FBP method.  They serve as the previous normal-dose 
image for the PWLS-ndiNLM method, to mimic the different 
cases wherein the previous normal-dose image and current 
low-dose image may have different structures.  Fig. 2 (R1)-
(R3) show the corresponding reconstructed images from the 
simulated low-dose sinogram data, by the PWLS-ndiNLM 
method.  It should be noted that the =1×105, SW=34 34, 
PW=5 5, and h=0.005 for all of our implementations.  We 
can see that Fig. 2 (R2) and (R3) still retain the lung nodule 
even though the corresponding previous normal-dose image 
has shrinking nodule (P2) or no nodule (P3). 

 
FIG. 1. One transverse image of the patient with a lung nodule, reconstructed 
by the FBP method from simulated low-dose sinogram data. 

 

The 4th International Conference on Image Formation in X-Ray Computed Tomography

114



 

     
                                               (P1)                                                                        (P2)                                                                      (P3)       

     
                                              (R1)                                                                      (R2)                                                                         (R3) 

FIG.2. Transverse images of the patient.  (P1)-(P3) -- three transverse images of the patient from the normal-dose sinogram data, reconstructed by the FBP 
method;  (R1)-(R3) -- one transverse image of the patient reconstructed by the PWLS-ndiNLM method, from the simulated low-dose sinogram.  All the images 
are displayed with the same window. 

C. Scenario 2: low-dose CT image having no nodule 
Fig. 3 illustrates another transverse image of the patient 

from the simulated low-dose sinogram data, reconstructed by 
the FBP method.  It can be observed that this image has no 
lung nodule.  Again, Fig. 4 (P1)-(P3) illustrate three transverse 
images of the patient from the acquired normal-dose sinogram 
data, reconstructed by the FBP method.  They serve as the 
previous normal-dose image for the PWLS-ndiNLM method, 
to mimic the different cases wherein the previous normal-dose 
image and current low-dose image may have different 
structures.  Fig. 4 (R1)-(R3) shows the corresponding 
reconstructed images from the simulated low-dose sinogram 
data, by the PWLS-ndiNLM method.  We can observe that Fig. 
4 (R1) and (R2) does not introduce false lung nodule when the 
corresponding previous normal-dose image has lung nodule. 

  
FIG. 3. Another transverse image of the patient without lung nodule, 
reconstructed by the FBP method from simulated low-dose sinogram data. 

     
                                               (P1)                                                                        (P2)                                                                      (P3)       

     
                                               (R1)                                                                       (R2)                                                                       (R3) 
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FIG.4. Transverse images of the patient.  (P1)-(P3) -- three transverse images of the patient from the normal-dose sinogram data, reconstructed by the FBP 
method;  (R1)-(R3) -- another transverse image of the patient reconstructed by the PWLS-ndiNLM method, from the simulated low-dose sinogram.  All the 
images are displayed with the same window. 

IV. DISCUSSIONS AND CONCLUSIONS 

In this work, we investigated the performance of the 
ndiNLM regularization when the previous normal-dose image 
and current low-dose image have different structures, for 
example, the normal-dose image has lung nodule but the low-
dose image has no nodule, or vice versa.  This preliminary 
study relieves the concern of introducing false information 
when the previous scan has or does not have small 
abnormalities into the current scan by demonstrating that the 
ndiNLM regularization does not introduce false nodule or 
miss true nodule.  This is an important characteristic for the 
ndiNLM regularization.  However, further quantitative 
evaluations may be  needed to illustrate the reconstruction 
quality of whole image and lung nodule, and is currently under 
progress. 

Compared with the generic NLM regularization [14, 15] 
which only utilizes current low-dose image, the ndiNLM 
regularization may need a larger search-window to take into 
account the structure difference between the previous normal-
dose image and current low-dose image.  Therefore, a 17×17 
search-window was used in [14, 15] for the generic NLM 
regularization, but a 34×34 search-window was used in this 
study for the ndiNLM regularization.  Otherwise, the ndiNLM 
regularization may have an inferior performance and generate 
undesirable results.  This is another finding for this study. 
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� 
Abstract—X-ray fluorescence computed tomography based on 

sheet-beam can save a huge amount of time to obtain a whole set 
of projections using synchrotron. However, it is clearly 
unpractical for most biomedical research laboratories. In this 
paper, a benchtop x-ray fluorescence computed tomography 
system with polychromatic source with sheet-beam geometry is 
implemented, the feasibility of this kind of setup is tested by 
Monte Carlo method. Acquired data is reconstructed by Fliter 
Backprojection (FBP) and maximum likelihood expectation 
maximization (MLEM), and contrast-to-noise ratio (CNR) is used 
to evaluate image quality. Our results may provide necessary 
justification and impetus for future development of a benchtop 
XFCT for in vivo imaging. 

Index Terms—Monte Carlo, polychromatic fluorescence x-ray, 
computed tomography, CNR 
 

I. INTRODUCTION 
-RAY fluorescence computed tomography (XFCT), 

which combines x-ray fluorescence measurements and 
tomographic reconstruction algorithms, can obtain the 
distribution of trace elements within samples in a 
nondestructive and noninvasive manner [1-3].  Synchrotron 
x-ray sources are ideal for XFCT because their tunable energy 
can easily maximize the fluorescence-to-background ratio for 
interrogated material[4]. However, it is clearly unpractical for 
most biomedical research laboratories. 

With the recent emergence of various biomedical 
applications using gold nanoparticles (GNPs), it has been 
suggested that a benchtop XFCT system can be developed. In 
recent years, simulation and experimental demonstration of 
benchtop x-ray XFCT and based on cone beam geometry were 
implemented to reduce dose and scan time[4-6]. Although 
XFCT based on sheet beam geometry using synchrotron x-ray 
source were also developed, fewer researches were done using 
polychromatic x-ray source. 
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In this paper, we developed a Monte Carlo model of 

benchtop polychromatic sheet-beam XFCT using the Monte 
Carlo N-particle (MCNP).  Two phantoms contained several 
GNP-loaded regions were used in this current model. Acquired 
data was reconstructed using FBP and MLEM algorithm, then, 
contrast-to-noise ratio (CNR) was used to evaluate image 
quality. Our results may provide necessary justification and 
impetus for future development of a benchtop XFCT for in vivo 
imaging. 

II. PRINCIPLE AND METHOD  

A. Imaging system  
The schematic diagram of Sheet-Beam CT system is shown 

in figure 1. The system consists of polychromatic sheet beam 
x-ray source, collimator and array detectors.  

 

 
Fig.1. Schematic diagram of XFCT imaging system using sheet-beam and 
linear detector arrays  

 
 Incident polychromatic sheet beam generated from x-ray 

tube then paralleled using collimator impinges on the object to 
cover the cross-section. GNPs are thus excited and isotropically 
emit x-ray fluorescence photos on de-excitation. Linear array 
photon-counting detectors with energy resolution are 
positioned perpendicular to the beam propagation direction for 
x-ray fluorescent spectra[7].  

B. Monte Carlo model  
In order to improve simulation efficiency, X-ray source in 

the system above was replaced by a virtual source, whose 
spectrum was calculated by SpekCalc program. SpekCalc is a 
software tool used to calculate, display and store the X-ray 
source spectrum, which simulates X-ray spectra emitted from 
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thick-target tungsten anode X-ray tubes [8]. In current model, 
X-ray spectrum obtained by SpekCalc was shown in figure 2. 
Tungsten excited by 120keV electron beam generated X-rays 
and then filtered by 1mm Sn.  

 

 
Fig.2. Spectrum of incident polychromatic X-ray source 

 
Two GNP-loaded PMMA phantoms are shown in figure 3. 

The PMMA phantom is 6.4cm in both height and diameter. The 
phantom on the left side contained several GNP-loaded regions, 
which has the same size (10mm) in height and diameter but 
different gold concentration ranging from 0.3% to 1.8%. The 
GNP-loaded regions in right phantom has the same 
concentration (1.5%) but different diameter ranging from 1mm 
to 9mm. 

 

 
Fig.3. Phantoms contained GNP-loaded regions. (a) GNP-loaded regions 
with same size in height and diameter but different Au weight concentration; 
(b) GNP-loaded regions with same Au weight concentration but different 
diameter 

 
MC data were acquired by a series of energy-sensitive tallies 

are shown in Fig.1. They were positioned 1mm behind lead 
collimator with a series of pinhole openings of diameter 0.6mm. 
In order to simulate the entire XFCT scanning procedure, an 
independent simulation was performed for each projection 
angle. The deterministic point detector tally (F5) and E card 
were used to simulate energy sensitive detectors (64 detectors 
and each detector with same sensitive area) and acquired x-ray 
fluorescent spectrum. The uncertainty in each simulation was 
less than 5% for relevant photon energies (50-75keV) using 
10M histories. 

C. Data acquisition and imaging reconstruction   
The spectrum of photons arriving at the detectors mainly 

stem from both Compton scatter and characteristic x-ray 
fluorescence. Considering fluorescent  field and the attenuation 

of low-energy photon in the phantom, the gold K lines (67.0 
and 68.8keV) are the best candidates in our system setup. In 
order to extract the fluorescence peak height from the Compton 
background, a third degree polynomial was fit to the points on 
either side of the gold fluorescence peaks. The fluorescence 
signal counts at that detector for that projection angle was then 
given by the difference of the measured signal and the 
polynomial fit[9, 10]. A sinogram of the gold fluorescence 
signal counts was reconstructed using the extracted gold 
fluorescence signal intensity from each detector at each 
projection. 

 
Fig.4. Schematic diagram of XFCT imaging geometry using sheet-beam 

 
The physics and imaging model of sheet-beam XFCT were 

well known[7] and its geometry is presented in Fig.4. While the 
xy-coordinate system is attached to an object, the st-coordinate 
system is spun with the data acquisition system, and can be at 
any instant obtained by rotating the xy-coordinate system by an 
angle θ counterclockwise. That is, the relationship between the 
two coordinate systems can be expressed as follows: 
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According to the results of previous research[7, 11-13], the 
total photons of fluorescent x-ray reaching the ith detector is 
represented as follows: 
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�  and � are the yield of the fluorescent x-ray and the solid 
angle at which the point, Q, is viewed by the by the ith detector, 
respectively. ph�  is the photoelectric linear attenuation 

coefficient of Au. The ( , )d x y , � �,I s t� , � �,F s t� are the 

distribution of Au weight concentration, linear attenuation 
coefficient of incident x-ray energy and linear coefficient of 
fluorescent x-ray. Here, in order to simplify reconstruction, the 
equation (4) can be expressed approximately as follows: 
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Thus, the measurement process by the XFCT based on sheet 
beam geometry can be viewed approximately as Radon 
transform. XFCT images (64 64) were reconstructed using 
FBP and MLEM respectively.  

 

III. RESULT AND DISCUSSION  
Reconstruction images are shown in fig.5. Images on the left 

column are obtained by FBP and the right column images 
obtained using MLEM. Obviously, grey values of GNP-loaded 
regions decrease with reduction of Au weight concentration 
shown in first row of Fig .5.  

 

 
Fig.5. Reconstruction images by FBP and MLEM of phantoms with 
loaded-GNPs. (a) and (c) acquired using FBP. (b) and (d) acquired using 
MELM 
 
The reconstructed XFCT images are evaluated as CNR by 

calculating the ratio of difference between the mean value of 
each GNP-loaded region and background (PMMA) and square 
root of sum of variance of GNP-loaded region and background. 
CNR is defined as follows[14]: 

Re

2 2

gion BK

ROI BK

CNR
� � �

	
� � �

    (6) 

Where Re gion� and BK�  are mean reconstructed values of 

GNP-loaded region and background, 2
ROI� and 2

BK� are 
corresponding variances of GNP-loaded region and 
background. The CNR of XFCT images are shown in Fig.6 and 
Fig.7.  Both of bar charts show us that most values of CNR in 
our setup has lower than 4, which means that the setup needed 
be modified including length and diameter of collimators, 
spectrum of x-ray source, distance from x-ray source to the 
center of phantom, and so on[15]. Reconstruction algorithm 
may influence CNR as shown in Fig.6 and Fig.7. For each 
GNP-loaded region, different algorithm may result different 
CNR.  

The reconstructed relative fluorescent counts (left phantom) 
calculated from the mean value of each GNP-loaded region as a 
function of true contrast concentration in Fig.8. The figure 
shows that relative fluorescent counts of GNP-loaded region is 
linear proportional to Au weight concentration. 

In Fig.9, the reconstructed relative fluorescent counts (right 
phantom) calculated from the mean value of each GNP-loaded 
region as a function of their size. The reconstructed counts 
acquired by FBP are distributed near the linear fitting curve 

while the counts acquired by MLEM fluctuate largely, which 
may mean that MLEM algorithm is required to optimized to 
improve image quality. However, the reconstructed counts by 
both algorithms are stable when the size of GNP-loaded region 
is ranging from 4mm to 9mm. The phenomenon illustrates that 
size of GNP-loaded region can influence counts acquired when 
incident x-ray width is invariant. 

 

 
Fig.6. CNR for reconstructed XFCT image using FBP and MLEM as a 
function of Au weight concentration. 

 
Fig.7. CNR for reconstructed XFCT image using FBP and MLEM as a 
function of GNP-loaded region size 
 
The feasibility of a polychromatic sheet-beam XFCT device 

described in this MC study may not be fully established without 
a successful demonstration by an experimental study. However, 
the simulation results may provide valuable method for 
reducing overall scanning time, compared to the pencil-beam 
XFCT[9].  

Although the current Monte Carlo results may provide an 
encouraging outlook for a drastic reduction of scanning time, 
improvement of detection limit and CNR will be a technical 
challenge in our design[9]. They may be improved further by 
additional modifications to the current setup such as quasi- 
monochromatization of incident x-ray spectrum, further 
optimization of detector collimation and further optimization of 
reconstruction algorithm. The loss of sensitivity in the detector 
collimator seems severe, but more sensitive detectors may be 
used to improve it.  

IV. CONCLUSION  
In this investigation, the feasibility of polychromatic 

sheet-beam XFCT setup was test by Monte Carlo method. Two 
phantoms contained several GNP-loaded regions were imaged 
using MCNP. Accurate images were reconstructed by FBP and 
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MLEM respectively. Relative fluorescent count of GNP-loaded 
region is linear proportional to Au weight concentration. Our 
results may provide necessary justification and impetus for 
future development of a benchtop XFCT for in vivo imaging. 

 

 
Fig.8. The reconstructed relative fluorescent counts using FBP and MELEM 
calculated from the mean value of each GNP-loaded region as a function of 
Au weight concentration  

 

 
Fig.9. The reconstructed relative fluorescent counts using FBP and MELEM 
calculated from the mean value of each GNP-loaded region as a function of 
their size. 
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Abstract—To reconstruct high quality spectral images from 

low-dose projections, an adaptive image reconstruction algorithm 
is proposed assuming a known reference image (RI). It is 
implemented by minimizing the patch-wise correlation between 
the object image and the RI. Extensive numerical simulations 
demonstrate the feasibility and merits of the proposed algorithm. 
It also performs well for truncated local projections, and the 
surrounding region of the region-of-interest can almost be 
accurately reconstructed. Furthermore, a method is introduced 
in the implementation for adaptive step length, making the 
algorithm more feasible and easier for applications.  
 

Index Terms—Spectral CT, image reconstruction, anti-noising,  
reference image, adaptive step length 
 

I. INTRODUCTION 
ince Godfrey Hounsfield invented the first prototype in 
1971, the x-ray computed tomography (CT) has been 

extensively employed in many fields. Among all the available 
nondestructive medical imaging modalities, x-ray CT 
possesses the highest spatial resolution and temporal 
resolution. However, there are also some drawbacks, such as 
low contrast resolution and beam hardening artifact [1], etc. 
To overcome the aforementioned drawbacks, the dual-energy 
(DE) CT was proposed [2-6]. Because most of the DECT also 
employ the energy-integrating detectors, there also exists a 
significant spectral overlap between two x-ray sources. This 
implies that the DECT hasn’t fully exploited the spectrum 
information and there are lots of rooms for improvements. 

To make full use of the spectrum information, the concept 
of spectral CT was proposed by extending the idea of DECT 
along the energy dimension. Till now, the state-of-the-art 
spectral CT system is based on a photon counting detector 
which can divide the whole x-ray spectrum into several 
channels [7]. The photon counting detector is characterized by 
high signal-noise-ratio (SNR) because the thresholds 
corresponding to each channel can block low-energy noise. 
Furthermore, it has been demonstrated that the spectral CT 
system has higher dose efficiency than the conventional one 
[8]. These merits make the spectral CT a hot field in recent 
years and inspire many research topics on different aspects of 
the spectral CT and its applications. Although the spectral CT 

 
 

techniques have made a big progress in recent years, there still 
exist many technical problems that need to be conquered. If 
we assume the same amount of total photons as that for a 
corresponding energy-integrating detector, the smaller amount 
of photons in each channel implies higher noise in the 
projections of each channel and the reconstructed image 
quality will be degraded. However, increased photon numbers 
will result in excessive radiation dose.  

For practical clinical applications, the aforementioned 
weakness of spectral CT can be partially overcame by the 
interior reconstruction technique, because we are always 
interested in smaller internal regions-of-interests (ROIs) for 
diagnosis. This motivates us to develop a new spectral CT 
reconstruction algorithm to improve the image quality in each 
individual channel, and apply it for spectral interior 
reconstruction.  

By comparing the reconstructed images from different 
channels for the same object, we notice some common 
features among them especially for the relative locations 
between different materials, that is, the reconstructed images 
from different channels are highly correlated. If a high quality 
image of the object is known, it can be used to serve as a RI to 
improve the low-dose reconstruction of each individual 
channel by incorporating the aforementioned correlation 
relationship. The steepest descent method (SDM) and adaptive 
step length (ASL) [9] are introduced to optimize the results. In 
this paper, we will also demonstrate that the proposed 
algorithm performs well for spectral CT, especially for the 
interior problem. 

The rest of this paper is organized as follow. In Section II, 
the proposed algorithm and implementation details will be 
presented. In Section III, both numerical simulation and 
preclinical experiments will be performed to evaluate the 
proposed algorithm. Finally, some related issues will be 
discussed and conclusions will be made in Section IV. 

II. METHOD 
As aforementioned, although the reconstructed images from 
each channel are different in spectral CT, they are highly 
correlated. Thus, if a high quality image is available, it can be 
treated as the RI to help to reconstruct the relevant images in 
different channel from low-dose projections or truncated 
projections. Here, the RI can be reconstructed from a set of 
pre-existing normal dose projections. If there are no pre-
existing projections, we can always combine all the photons in 
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different channels to synthesize a set of projections of energy-
integrating detector and reconstruct a high-quality RI.  

A. Imaging Model 
Usually, one CT system is consist of three main components, 
which are image, projection and system matrix. A 2D digital 
image can be rearranged into a vector 

, where N is the number of image 
pixels. The projection dataset can be presented as 

, where M represents the total 
amount of ray integration that equals to the product of the 
number of projections and the number of detector elements, 
and  denotes a measured line integration along the   x-
ray path.  In the projection procedure, the contribution of  
pixel   to the  ray path can be denoted as . As a 
result, we have a system matrix   and 
the CT system can be modelled as the following linear matrix 
equation: 

,efAg ��� �	                   (1) 
where  is measured noise. To recover the original 
image vector , one can make full use of the system matrix   
and the measured projection dataset  based on (1). 
Generally speaking, we can employ an iterative approach to 
solve this problem. In this work, one method called ordered-
subset simultaneous algebraic reconstruction techniques (OS-
SART) is selected [10]. 

B. Regularization Function 
To solve the illposed problems uniquely, especially for 
spectral CT, an additional constraint  should be 
introduced. For the spectral CT reconstruction problem, the 
reconstructed images from projections of different channels 
are highly correlated. For a given high-quality RI , we can 
define a regularization function for one target image (TI)  in 
any individual channel, 

.)cos()(~
uf
uff

T

��
���

�	�	� �            (2) 

Because both TI and RI are treated as vectors in high-
dimensional space, (2) can be interpreted as the minus cosine 
of the space angle (SA)  between the two vectors. To 
improve the sensitivity, we further modify (2) as                       
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where  and  are the means of  and  , respectively. 
Because the main common features hidden in different 
channels come from the alternating current components, (3) 
should be an excellent regularization function for the 
correlation. 

C. Reconstruction Algorithm  
To minimize the regularization term, we choose the SDM. 
During the inner iteration process, the updating of the TI can 
be described by  
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where  denotes the iteration index,   is a constant parameter 
indicating the outer loop number,  and  represent the 
step length and a normalized direction vector to update the 
estimated image in  iteration. The direction vector can be 
obtained by calculating the gradient of . 

In this work, the step length in (4) plays an important role to 
control the convergence of the inner iteration. To improve the 
computing efficiency, we propose to employ one adaptive step 
length method. For that purpose, the strong Wolfe conditions 
based method is chosen [9]. It is a typical inexact line search 
condition described as follow 
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where and  are constants satisfying , and 
 is short for . To implement the strong Wolfe 

conditions, we first need to set an initial step length  for 
each inner iterating. Actually, this initial step length is always 
the same for all the outer iterations. The implementation step 
can be found in [9]. 

To keep the image details and suppress the effect of direct 
current component, a patch processing method is adopted. We 
first set the patch size (PS) as . A pair of patches 
would be treated as RI and TI and processed by the 
aforementioned strategy if they are extracted from the original 
RI and TI exactly at the same position. To distinguish different 
patches, a new index  is introduced to represent the  patch. 
One patch works like a window, which keeps moving in 
images. In practice, we can traverse the image pixel by pixel 
to extract patches. In this way, each tiny structure in the RI 
could be used to guide the update of the reconstructed image. 
After one patch has been corrected with a certain step length, 
the resulting patch is normalized to ensure the same module 
value as the original one, and the DC component is added 

TABLE I 
PSEUDO-CODES FOR THE PROPOSED ALGORITHM 

Initialization  
Setting , , , , ; 
Initializing ; 
Obtaining an RI ;  

Reconstruction procedure (for any channel) 
while  

; 
Updating  to  using the OS-SART method; 
Initializing the patch index ; 
Repeat (until patch window move over all the image) 

Subtracting the DC component to get  and ; 
Determining the update direction with  and ; 
Determining the step length  using , and 

according to conditions (5) and (6); 
Updating  patch using equation (4); 
Normalizing the patch and adding back the DC component 
to get ; 

; 
end (Repeat) 
Averaging different values for the same pixel to get the image 
estimate ; 
Accelerating the result by using FISTA; 

end (while) 
Output:  
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back. Because the patches have overlaps, each pixel may have 
multiple values in different patches. For the same pixel, all the 
values are uniformly weighted to generate the mean as the 
final result of the regularization term. The aforementioned 
procedure is referred to as adaptive space angle (AdSA) 
method. 

In this paper, a simple maximum iteration number   is 
selected as the stopping criterion. By combining the OS-SART 
based CT reconstruction and the AdSA based regularization, 
we obtain a new reconstruction algorithm as summarized in 
Table 1. 

III. RESULTS 
The proposed algorithm is implemented according to the 
pseudo-codes summarized in Tables 1. To demonstrate the 
feasibility and evaluate the proposed algorithm for spectral 
CT, extensive numerical simulations are performed. In the 
numerical simulation studies, the classical filtered 
backprojection (FBP) is first used to reconstruct images from 
noise-free projections as benchmarks, which are compared 

with the results reconstructed by the proposed method for both 
global and truncated projections.  

A 2D analytic phantom (see Fig.1.) containing 17 disks is 
constructed, whose parameters are listed in Table 2. To 
analytically generate projections of the 2D numerical 

phantom, we assume fan-beam geometry with an equidistant 
detector, and the detector element size is 0.08 mm. 512 and 
256 detector elements are assumed to simulate a long and a 
short detector to collect global and truncated projections, 
respectively. The distance between the x-ray source focal spot 
and the origin (the center of the phantom) is assumed to be 
5cm. We also assume that the detector is perpendicularly to 
and symmetric with the line passing the origin and the x-ray 
focal spot, and the distance between the focal spot and the 
detector is 10cm. 720 projections are uniformly acquired  over 
a range of full scan. To simulate a polychromatic x-ray source, 
an x-ray tube produced by GE is selected. According to the 
attenuation curves of different materials, four k-edges among 
the material attenuation coefficients around 33, 37.4, 50.2 and 
80.7KeV for Iodine, Barium, Gadolinium and Gold can be 
found, respectively. To optimize the channels for the best 
image quality, it is better to make the total photons in each 
channel as equal as possible and the difference between 
different channels as great as possible. According to the 
aforementioned principles, eight spectral channels are set: 
25~32KeV, 32~37KeV, 37~43KeV, 43~50KeV, 50~58KeV, 
58~65KeV, 65~80KeV, 80~120KeV. After the projections at 
all energy levels are collected, exponential, weighted 
summation and logarithmic operations are performed to 
produce linearized projections for the polychromatic x-ray 
spectrum. To further evaluate the performance of the proposed 
algorithm, different photon numbers are assumed. Here we 
mainly use  and   incident photons to simulate two 
different dose levels. 

A. Global Reconstruction 
Because there are few features in the phantom, the 
reconstructed images are set as  matrix to cover a 

 cm2 region which is sufficient to cover the biggest 
TABLE II 

PARAMETERS FOR 17 DISKS OF THE 2D PHANTOM 
Obj. Center(cm) Radius 

(cm) 
Material 

0 (0.000,0.000) 0.9 Soft Tissue 
1 (0.550,0.000) 0.15 12.4%Ca + 87.6%Water 
2 (0.275,-0.4763) 0.15 6.2%Ca + 93.8%Water 
3 (-0.275,-0.4763) 0.15 1.2%Iodine + 98.8%Water 
4 (-0.550,0.000) 0.15 1.4%Barium + 98.6%Water 
5 (-0.275,0.4763) 0.15 1.5%Gadolinium + 98.5%Water 
6 (0.275,0.4763) 0.15 1.6%Gold + 98.4%Water 
7 (0.275,0.000) 0.08 12.4%Ca + 87.6%Water 
8 (0.1375,-0.23815) 0.07 6.2%Ca + 93.8%Water 
9 (-0.1375,-0.23815) 0.06 1.2%Iodine + 98.8%Water 
10 (-0.275,0.000) 0.05 1.4%Barium + 98.6%Water 
11 (-0.1375,0.23815) 0.04 1.5%Gadolinium + 98.5%Water 
12 (0.1375,0.23815) 0.03 1.6%Gold + 98.4%Water 
13 (0.000,-0.100) 0.02 1.2%Iodine + 98.8%Water 
14 (0.100,0.000) 0.015 1.2%Iodine + 98.8%Water 
15 (0.000,0.100) 0.01 1.2%Iodine + 98.8%Water 
16 (-0.100,0.000) 0.005 1.2%Iodine + 98.8%Water 

 
Fig. 1. Sketch map of the 2D phantom, in which different colors represent 
different materials. 

 
Fig. 2. Spectral reconstruction results from projections with 105 incident
photons. From top to bottom rows, the images are reconstructed by the StTV,
AdSAand FBP, respectively. From left to right columns, the images are 
respectively for the 1st, 4th and 8th channels, and the display windows are 
respectively [0 1], [0 0.5] and [0 0.3] cm-1. 
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disk of the phantom. The AdSA method is terminated after 
100 iterations. The coefficients c1 and c2 are respectively set as 
0.0001 and 0.01, and the PS is set as . In this work, the 
filtered FBP method is adopted to reconstruct an image from 
the noise-free projections as the RI. For comparison, a soft-
threshold filtering based TV (StTV) minimization [11] method 
is also implemented, which is stopped after 200 iterations.  

Figure 2 shows the reconstructed images of representative 
channels.  It can be seen that the FBP images have heavy 
noise. While the major information is retained in the low 
photon energy channel (1st channel), only some outlines could 
be recognized in the high energy (8th channel). With the 
increase of the photon energy, the StTV images also become 
seriously blurred. However, the AdSA reconstructs almost all 
the details, and even the smallest spot in the images can be 
recognized. 

B. Interior Reconstruction 
In interior reconstruction experiments, only the central 256 
detector elements are used to collect projections. The 
reconstructed image size and the corresponding region are the 
same as the global reconstruction. For the AdSA, the main 
loop is terminated after 200 iterations and the RIs are the 
corresponding global images reconstructed by the StTV 
method. The StTV is also implemented with compact support 
information and it is terminated after 300 iterations. The rest 

of other parameters concerning with the AdSA and StTV are 
the same as the previous subsection for global reconstruction. 

 
The RMSE (see Table 3) and SSIM (see Table 4) are used 

to quantitatively evaluate the AdSA and StTV for interior 
reconstruction. Because only the ROI can be theoretically 
exact reconstructed from truncated projections, we calculate 
the indices only using the pixels inside the ROI. From Table 3, 
one can see that the AdSA outperforms the StTV, especially 
for the heavy noise condition. This is because although a 
compact support can be given, the strong noise makes an 
obvious attenuation coefficients shift that the StTV cannot 
suppress.  The SSIM values in Table 4 further verify that the 
AdSA performs well for interior problem. When the photon 
energy increases, the corresponding SSIM values increase to 
close 1. Furthermore, the SSIM indices for the AdSA are not 
sensitive to noise. On the other hand, the performance of the 
StTV is worse and worse, no matter when the photon energy is 
increased or the incident photon number is reduced. 

IV. DISCUSSION AND CONCLUSION 
In conclusion, an algorithm is proposed for spectral image 

reconstruction by incorporating the information of a RI. Both 
the extensive numerical simulations demonstrate that the 
proposed algorithm has a strong capability for anti-noising. It 
is also robust and stable for interior reconstruction. This can 
help to advance the spectral CT to improve the accuracy of 
material decomposition from low-dose projections. 
Furthermore, the strategy to adjust the SL makes the proposed 
algorithm more competitive. 
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TABLE III 
QUANTITATIVE EVALUATION RESULTS OF INTERIOR RECONSTRUCTION IN 

TERM OF RMSE (UNIT: CM-1) 
Noise-free  photons  photons 

Channel StTV AdSA StTV AdSA StTV AdSA 
1st  0.007 0.006 0.015 0.007 0.026 0.011 
2nd  0.005 0.004 0.014 0.005 0.023 0.008 
3rd  0.005 0.003 0.012 0.005 0.021 0.007 
4th  0.003 0.002 0.011 0.003 0.019 0.005 
5th  0.003 0.002 0.010 0.003 0.017 0.004 
6th  0.002 0.001 0.009 0.002 0.016 0.003 
7th  0.001 0.001 0.009 0.001 0.015 0.002 
8th  0.001 0.001 0.009 0.001 0.015 0.002 

TABLE IV 
QUANTITATIVE EVALUATION RESULTS OF INTERIOR RECONSTRUCTION IN 

TERM OF SSIM 
Noise-free  photons  photons 

Channel StTV AdSA StTV AdSA StTV AdSA 
1st  0.997 0.997 0.989 0.996 0.973 0.989 
2nd  0.996 0.997 0.985 0.995 0.960 0.985 
3rd  0.997 0.997 0.988 0.995 0.962 0.985 
4th  0.997 0.998 0.985 0.996 0.941 0.987 
5th  0.998 0.998 0.984 0.996 0.942 0.989 
6th  0.998 0.998 0.981 0.997 0.930 0.990 
7th  0.998 0.999 0.972 0.997 0.914 0.991 
8th  0.999 0.999 0.964 0.997 0.893 0.992 
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Abstract—We propose a novel metal artifact reduction algorithm
that completes corrupted data of the metal trace, which generates
a severe deteriorated image. When metal implants are located
inside of the field of view, metal traced sinogram is corrupted due
to high attenuation of the metal. In this work, we propose a novel
metal artifact reduction algorithm which completes corrupted
data by metal implants. The proposed algorithm utilizes the idea
of sinogram decomposition, where we consider sinogram curves
corresponding to image points near metal implants. We introduce
to estimate the metal traced sinogram based on the minimum
value along the sinogram curve. It ensures efficient reduction of
metal artifacts at high image quality with enhanced preservation
of details close to metal implants. The proposed algorithm is
based on the sinogram completion algorithm by using minimum
estimated sinogram as a structure of the whole sinogram. We
propose to estimate the corrupted data by minimum estimation.
Both 2D numerical and 3D experimental phantoms are simu-
lated to show the superiority of the proposed algorithm. Both
quantitative and visual evaluations are presented.

I. INTRODUCTION

Metal artifact is one of the most common problems in com-
puted tomography. Various metal implants are inserted in the
human body such as dental filling, orthopedic implants, hip
prostheses, implanted marker bins, and branchy-therapy seeds.
High attenuation of metal generates dark and bright streaks
which degrades CT image quality and mislead to inaccurate
diagnosis. Most of the clinical CT scanners use the filtered
backprojection with monochromatic X-ray assumption. The
streaking artifacts appear along tangent lines of the boundary
of metallic objects [1]. Over several decades, metal artifact
reduction (MAR) algorithms have been developed but none of
them has been treated as a gold standard. The metal artifact
reduction algorithms can be classified into two groups: the
projection completion methods and the statistically iterative
methods. The former case is intuitive such that the projections
through a metal region are treated as missing data. The
incomplete data are filled using the neighboring measured
data. Linear [2], higher order [3], [4], [5], or wavelet [6]
interpolation methods were used. But simple interpolation may
generate new artifacts. To overcome, projection completion

with filtering technique [7], [8], [9] has been proposed. The
second categorized algorithms attempt to reduce the mismatch
via iterative reconstruction algorithm, dealing with the image
domain to reduce the artifact in the iterative reconstruction
algorithm [10], [11], [12], [13]. Excluding metal trace in
the sinogram, iterative algorithms reconstruct image with
incomplete projections using model based regularization term.
Compared to the first categorized algorithms, the iterative
technique utilizes prior knowledge of the image to solve an
ill-posed problem. Besides expensive computational cost, the
second categorized algorithms are sensitive to the system
configurations, parameters, and noise. In addition, wrong prior
information or any problem of parameter setting may not
guarantee the good performance of the algorithm.

Recently, majority of the first categorized algorithms complete
the metal trace using forward projection of a prior image [14],
[15], [16], [17], [18], [19], [20], [21]. Generally, a prior
image is obtained by a simple thresholded CT image. It is
very obvious that better prior image will generate the better
performance. On the other hand, wrong prior will generate
the worse performance with a new artifact. Comparing with
the second categorized algorithms, metal artifact reduction
algorithm with a prior image is computationally simple. More-
over, pixel values do not vary substantially within materials,
facilitating segmentation in these kinds of images.

The proposed metal artifact reduction algorithm is designed
to satisfy 1)stability, 2)robustness, and 3) can be applied to
the sinogram before reconstruction. It can be used with any
reconstruction method, and thus, does not depend on the recon-
struction algorithm. Inspired by the sinogram decomposition
algorithm [22], [23], the proposed MAR algorithm combines
a priori information for projection completion without a prior
image. Zamyatin and Nakanishi [22] proposed a truncation
correction algorithm using minimum value along the sinogram
curve. Corresponding to a single voxel in the image space,
a sinogram curve is a function of radon transform with the
variable of rotation angle. Similar to the work in [22], we
estimated unmeasured data using the information of minimum
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Fig. 1. Flowchart of the proposed algorithm: The original raw data are
obtained. Metal segmentation is done by thresholding the corrupted image
and forward projected metal sinogram is computed. By using the original
sino with metal sinogram, compute the min sinogram. DA-MLS interpolation
is done based on the shape information of MinEs.

estimate. In the proposed algorithm, we estimate the metal
corrupted sinogram by taking the minimum of the uncorrupted
data over the sinusoidal curve. Unlike to the work of [22],
[23], we only use the structural shape of minimum estimated
sinogram. The proposed algorithm approximate the missing
data using data-adapted moving least squares [24].

II. METHODS

The main idea of our approach is to complete sinogram
without creating prior image. It is not always possible to
create good prior with metal implants. If the image is a
piecewise constant phantom, good prior can be made by simple
thresholding. Unfortunately, human body is more complicated
than the piecewise constant phantom data. Furthermore, bad
prior may generate unwanted artifact. To avoid error from
wrong prior, we use Minimum Estimate Sinogram (MinES)
based on the original sinogram of the uncorrupted part.

A. Minimum Estimated Sinogram (MinES)

The original sinogram is decomposed to estimate the metal
corrupted part of the sinogram. To approximate the corrupted
sinogram on the metal part, we adapt the minimum value
estimate motivated by [22], [23]. Let x ∈ X be a point in
FOV and X be the subset of the FOV which has nonzero CT
number. The function γ be the radon transform over the ray
defined by a fan angle θ and a view angle φ . Define a single
curve s(x) as a set of the projection γ(θ ,φ) corresponding
to an image point x. The original sinogram is the summation
of the s(x) for all x ∈ X . If the x is in the metal, the whole
sinusoidal curve s(x) is corrupted. If the x is in non-metal part
but the curve s(x) intersects with the metal trace, some portion
of the curve s(x) is corrupted. This corrupted portion needs to
be completed. To estimate the corrupted portion, we take the
minimum value of the s(x) in the un-corrupted part as

γmin(θ ,φ) = min
(θ̃ ,φ̃)∈s(x)

γ(θ̃ , φ̃ )

To obtain γmin(θ ,φ), we search the minimum value in the
s(x). The advantage of this approach is that it doesn’t need
to find the proper prior image, and only computed with un-
corrupted part of the sinogram and the system geometry. Since
the obtained minimum estimate γmin(θ ,φ) is measured by the
line integral along the line of least attenuation, the minimin
estimated sinogram needs to be normalized by the ray path
and integrate over all rays.

B. Data-adaptive moving least squares (DA-MLS) approxima-
tion using MinES

Moving least squares (MLS) is one of the most efficient
methods of data approximation algorithms. DA-MLS [24]
adaptively gathers the neighboring points to estimate unknown
data. Using the structural shape by the gradient of the image,
we compute data adapted penalty function and estimate the
corrupted data. The data-adapted penalty function is given by

θ (x,xi) := exp((x− xi)
T H(x− xi))− 1,

where H is a 3× 3 matrix so that xT Hx = 1 is an ellipsoid
defined by

〈x,v3〉2

a2 +
〈x,v2〉2

b2 +
〈x,v1〉2

c2 = 1,

where the vector v1 indicates the gradient direction of the
image, and forms the minor axis of the ellipsoid. The vectors
v2 and v3 indicate the median and the major axes of the
ellipsoid, respectively. If a = b = c = 1 and the vectors
v1 = (0,0,1)T , v2 = (0,1,0)T , and v3 = (1,0,0)T , then DA-
MLS is identical to the classical MLS method. The size of
the ellipsoid depends on the local data feature. Since our
application is to the sinogram data, we fixed a = 2, b = 0.5,
and c = 0.5, which produce elongated shape along the main
direction, which the data is relatively homogeneous.

The classical DA-MLS approximation algorithm estimates the
gradient of the image data and uses to estimate the shape
structure. Since the sinogram is a complicated image, it is
hard to estimate the shape structure by moving least squares
estimation. Moreover, metal trace is in the form of thick curved
band with width related to the size of the metal. Simple
approximation may mislead to generate a new artifact due to
the lack of the neighboring data in the middle of the metal
trace. Instead, we used MinES in subsection II-A and its
gradient. With using the sinogram shape in the metal trace
part in MinES, we use DA-MLS to approximate missing data
with neighboring data.

Flow chart of the whole process is illustrated in the figure 1.
The brief steps are described as below.

1) For a given original sinogram p, a metal artifact image
is reconstructed.

2) Metal image is segmented by simple thresholding and the
metal sinogram is computed by forward projection.
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(a1)

(b1)

(a2)

(b2)

(a3)

(b3)

Fig. 2. Result of the MAR algorithms of the 2D tooth phantom. First column:
(a1) Original image, and (b1) Metal artifacted image. Other four images are
metal artifact corrected by (a2): LIN, (a3) CUB, (b2) NMAR, and (b3) DA-
MLS

3) Minimum estimated sinogram pmin is computed by taking
minimum over the sinusoidal curve of the un-corrupted
sinogram.

4) DA-MLS approximation is done on the metal corrupted
part of the sinogram. Gradient of the MinES is used for
the gradient of the sinogram.

5) Reconstruct corrected image by FBP.

III. EXPERIMENTS AND RESULTS

To evaluate the performance of the proposed algorithm, the
numerical simulations were performed with a fan beam CT ge-
ometry with a monochromatic spectrum using two dimensional
CT phantom images; abdomen, and tooth images. FBP algo-
rithm is used for all image reconstruction. We compared the
proposed algorithm DA-MLS with linear interpolation (LIN),
cubic polynomial interpolation (CUB), and classical normal-
ized metal artifact reduction (NMAR).

A. Numerical Phantom Simulation

Two numerical simulations were done using 2D CT phantom
images; abdomen and tooth phantom. In our numerical simula-
tions, tooth phantom have 256×256 pixels with size 1.9mm2,
and abdomen has 300×300 with 1.67mm2. We computed 360
forward projections. Figure 2 show the result of 4 different
MAR algorithms of the 2d numerical tooth phantom. In the
first column, (a1) original image without metal, (b1) FBP
reconstruction result with the presence of metals. The images
(a2) and (a3) are those corrected by LIN and CUB, (b2) and
(b3) are those corrected by NMAR and DA-MLS, respectively.
The corresponding corrected sinograms are shown in figure 3.
The proposed algorithm outperforms other algorithms in both
imaging space and the sinogram space. Corrected sinogram by
NMAR seems similar to the result of the proposed algorithm.
But unexpected trace is presented, which generate artifact

(a1) (a2) (a3)

(b3)(b2)

Fig. 3. Result of the MAR algorithms of the 2D tooth sinogram related to
figure 2. First column: (a1) Original sinogram. Other four sinograms are metal
artifact corrected by (a2): LIN, (a3) CUB, (b2) NMAR, and (b3) DA-MLS

(a1)

(b1)

(a2)

(b2)

(a3)

(b3)

Fig. 4. Result of the MAR algorithms of the 2D abdomen image. First column:
(a1) Original image, and (b1) Metal artifacted image. Other four images are
metal artifact corrected by (a2): LIN, (a3) CUB, (b2) NMAR, and (b3) DA-
MLS

in the image. Abdomen phantom (figure 4) has the similar
result. As shown in the figure 4, in the presence of two
metals. All other results except the proposed algorithm has a
streak after MAR applied. For the quantitative evaluation, we
computed mean squared errors for 2D numerical phantoms in
both image and sinogram spaces. Error is computed on the
non-metal image for the imaging space. Let X0 be the FBP
reconstruction without metal, which is the ground truth, and
p0 be the sinogram without metal implants. Mean square error
is computed as

EImg = ‖X0−X‖, ESino = ‖p0− p‖.

Table I shows the result of the mean squared errors. The
proposed algorithm achieves the lowest error among other
algorithms in both image and sinogram spaces.

IV. CONCLUSIONS AND DISCUSSION

We introduced a new metal artifact reduction (MAR) algorithm
using minimium estimated sinogram and data-adapted MLS
interpolation and successfully applied to 2D phantoms. The
proposed algorithm combines DA-MLS interpolation with
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LIN CUB NMAR DA-MLS
using MinES

Tooth EImg 5.0224 4.906 4.7724 3.3630
ESino 51.8489 51.5621 51.4093 28.9054

Abdomen EImg 4.6052 4.6200 4.6038 3.5545
ESino 117.9404 117.4622 117.0720 116.5964

TABLE I
MEAN SQUARED ERROR OF NUMERICAL PHANTOMS. BOTH IMAGE AND

SINOGRAM MEAN SQUARES ERRORS ARE COMPUTED.

minimum estimated sinogram (MinES). To overcome the
limitation of the simple interpolation strategy, we estimated
the shape of the sinogram in the corrupted part by MinES. A
quantitative evaluation was performed using two experimental
examples of 2D phantoms. For metal-free images as ground
truth were compared to images corrected with MAR methods.
By computing the normalized mean square error on the non-
metal area, we showed the DA-MLS outperformed other MAR
algorithms. We compared mean squared errors both on the
image and sinogram space. On both spaces, the proposed
algorithm outperformed other MAR methods. In conclusion,
we showed that MinES can be used as a sinogram structure
for the corrupted part of the sinogram, that is, it allows to
obtain accurate outline of the sinogram.
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Ultra-fast cone-beam SIR on 2k-cubed data
Andreas Fehringer, Korbinian Mechlem, Michael Epple,

Sebastian Allner, Lorenz Hehn, Franz Pfeiffer, and Peter B. Noël

Abstract—We demonstrate an integral concept to make sta-
tistical iterative reconstruction (SIR) feasible for large datasets.
The maximum volume size investigated is 2048 (2k) cubed with
corresponding projection data to fulfill the Nyquist criterion.
We investigate how to exploit a heterogeneous computing system
consisting of multiple GPUs and CPUs to perform the task
within a fraction of the total data acquisition time of a micro
CT. We employ and extend several data splitting techniques
that enable GPU-accelerated forward- and backprojections for
large cone-beam datasets. Furthermore, we split the data and
regularization term of the SIR cost function in a way to make
state-of-the-art solvers, in our case the OS-mom, perfectly suited
for heterogeneous computing. In a test study, SIR was used to
recover the details of a 2k-cubed micro-CT dataset for a reduced
exposure time of one sixth. The total reconstruction time for
that study could be pushed down to two hours involving 32
subiterations in total.

I. INTRODUCTION

X-ray micro CT is a powerful tool in non-destructive testing.
It can deliver detailed information about the interior of a
sample without the need for disassembling or destroying
it. Hence it is used on a daily basis for many industrial
applications. The downside of the high-quality measurements
are however very long acquisition times. One single CT scan
can take up to several days.

Statistical iterative reconstruction (SIR) is capable of mod-
eling physical properties and noise statistics for solving tomo-
graphic problems. [1] Its vast image improvements especially
for drastically reduced x-ray dose make it more and more
common in medical CT. [2] Likewise it could be a great asset
for micro CT in order to reduce the acquisition time.

For medial applications, the high computational effort of
SIR can be compensated with parallel high-performance com-
puting. Suitable hardware found its way into compact and
affordable computing systems in form of GPU devices. [3],
[4] However, when it comes to high-resolution x-ray CT,
the limited memory and bandwidth of these devices is soon
stretched to the limit.

We demonstrate a heterogeneous multi-GPU and -CPU
framework for SIR including a very fast forward- (FP) and
backprojection (BP) implementation capable of handling large
amounts of data in decent time. We show furthermore how to
efficiently use one of the currently fastest specialized solver for
tomographic problems, the OS-mom, within a heterogeneous
computing environment.

A. Fehringer, K. Mechlem, M. Epple, S. Allner, L. Hehn and F. Pfeiffer
are with the Chair of Biomedical Physics, Technische Universität München,
Munich, Germany.

P. B. Noël is with the Department of Radiology, Technische Universität
München, Munich, Germany.

Table I
DATA SIZES OF THE DIFFERENT COMPONENTS

IN THE COST FUNCTION FOR A 2K-CUBED DATASET.

variable dimensions size

x: reconstruction guess 20483 32GB

p: measurement (same for the weights w) 3217× 20482 50GB

A: system matrix [x]× [p] 402EB

All sizes are computed for values in single floating-point precision.

II. METHODS

SIR is based on a cost function including a statistical model
for the measured data and a regularization term pushing the
result into a realistic noise realization. Within this work, a
Gaussian noise model was assumed. It holds well for the pho-
ton statistics in our kind of measurements and is furthermore
easy to compute. Our regularization is the Huber penalty [5].
It favors a smooth solution with sharp edges by evaluating the
difference of each voxel to each of its 26 neighbors in the 3D
environment. The problem can be stated minimizing the cost
function

L = w [Ax− p]
2
+ λRγ (x)

where x is the vector containing all voxel values in the current
guess of the reconstruction, A is the system matrix containing
the forward model, p the vector of all measured projection
pixels in all views and w the vector of their correspond-
ing statistical weights. The square brackets indicate that the
squaring operation is applied element-wise. The parameter
λ determines the strength of the regularization and Rγ (x)
is the Huber regularization penalty. The Huber parameter
defining the transition between noise and signal is indicated
with the subscript γ. The first addend of the cost function will
be referred to as data term in the following, the second as
regularization term.

The data sizes of the different components for a 2k cubed
dataset can be found in table I. The sparse system matrix
obviously has to be computed on the fly. For maximum speed
we use a simple GPU-accelerated voxel-driven back projector
(BP) and a ray-driven forward projector (FP) with bilinear
hardware interpolation. [6]

We chose the ordered-subset separable quadratic surrogates
solver (OS-SQS) with momentum acceleration (OS-mom) [7].
It is currently one of the fastest in convergence. Convergence
is however not the only advantage over the usual OS-SQS.
OS-mom also favors larger numbers of views per subset. This
asset becomes especially visible for smaller datasets, where the
data throughput of the GPU-based FP and BP is significantly
higher if more views can be processed at once [6].
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A. SIR on heterogeneous multi-GPU and -CPU hardware

A heterogeneous system consists of several computing de-
vices which differ in architecture and thus capabilities. The
idea of heterogeneous computing is to split up a task into
several parts and distribute them over the different devices in
order to maximize performance.

The key concept for best exploiting our multi-GPU and -
CPU system is splitting up the cost function into data term and
regularization. For computing an update, the solver requires
the gradient of the cost function for the current guess and its
curvature. Both can be split up in the same way as the cost
function itself.

Although the curvature for the data term can be precom-
puted once for all updates [8], the FP and BP required for the
gradient make the data term still much more expensive than
the regularization. This is why we use the GPU devices for that
task. As stated above their highly superior computing power
can be exploited very well for the required operations. How-
ever, large datasets require sophisticated splitting techniques
in order to deal with the limited memory resources. For cone-
beam datasets this can be quite challenging as the next section
shows.

Our choice of hardware for the data term leaves two options
for the gradient and curvature of the regularization. One
is to compute them subsequently also on the GPUs. The
mathematically simple and spatially local operations required
would go very well with the capabilities of a GPU. We
decided however for the other option, namely using the CPUs
for the regularization. Although the execution time is most
likely a little longer, it can be hidden behind computing the
data term. Apart from joining the two results of gradient and
curvature respectively in the end, this approach delivers the
regularization for free. The only premise is that computing
the regularization on the CPUs does not take significantly
longer than computing the data term on the GPUs. The results
presented below show that this premise is fulfilled very well.

B. Data splitting for GPU projectors

Splitting the huge data volume into pieces of manageable
size for the GPU memory is a crucial part for operating the
presented framework successfully. Therefore we combined two
already known concepts [6] with an additional third one.

The splitting into slice chunks and angular wedges works
with both, FP and BP. Slice chunks split up the output volume
into equidistant parts perpendicular to the axis of rotation, i. e.
the set of projection views for the FP and the image volume
for the BP. The sections of the input volume corresponding to
each slice chunk is then calculated according to the cone-beam
geometry. The main advantage of this way of splitting are
completely distinct subtasks that can also be distributed over
several GPU devices without any computational overhead.

Angular wedges is a splitting technique working indepen-
dently of the cone-beam geometry. It reduces the data size per
device by subsequently processing subsets of the projection
views while keeping the image volume chunk constantly in
GPU memory.

measurement

view in

SNR

figure 2

5
m

m
−→

←
−

F
u

ll
sl

ic
e

of
th

e
hi

gh
-s

ta
tis

tic
s

FB
P

1.0

-0.1

cm−1

Figure 1. A full slice of the FBP-reconstructed high-statistics scan.

The sample investigated is a plastic ball pen. The slice shows the plastic
housing, the refill in the middle and parts of the mechanical system. On a
closer look the plastic includes several small impurities in all parts.
The white rectangle marks the region shown in figure 2. The green rectangles
highlight the two areas taken for the SNR measurement.

We found however that for the FP the two techniques were
not yet sufficient for 2k cubed data. That is why we added
a third splitting approach called ray chunks. It splits up the
image volume chunk into additional equidistant chunks along
the main ray direction and loads them subsequently.

All three concepts are designed in a way that they produce
no additional computational overhead. Together they guarantee
that the GPU devices do not run out of memory and that, apart
from negligible transfers at the very beginning and end, all data
transfers between host memory and device are hidden behind
computations.

C. Benchmark conditions

Before being able to prove the feasibility of SIR for large
datasets and the resulting benefits in acquisition time, we first
have to define a realistic reconstruction task to be solved.
Therefore we carried out two high-resolution micro CT mea-
surement providing each the data for a 2k cubed reconstruction
volume as given in table I. The first measurement uses an
exposure time of 30 s per view in order to receive a filtered
backprojection (FBP) reconstruction of good quality. It will
be referred to as the high-statistics, or reference scan in the
following. Subsequently a second, low-statistics measurement
was taken by reducing the exposure time by a factor of six, i. e.
to 5 s per view. The task we defined for our benchmark is now
a SIR that reaches the same level of detail at a comparable
or lower noise level in the reconstruction for the low-statistics
scan than FBP does for the high-statistics one.

The investigated sample is a plastic ball pen. The micro CT
was operated with a cone-beam opening angle of 19.4 deg and
a voxel size 6.83μm. The system has a flat detector. Figure 1
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shows a slice of the high-statistics measurement reconstructed
with FBP.

The compute system used for reconstruction is equipped
with

• four NVIDIA Titan X GPU devices providing 12GB of
memory and 3072 threads each,

• two Intel Xeon E5-2667 v3 CPUs at 3.20GHz providing
32 threads in total (including hyperthreading), and

• 512GB of DDR4 RAM operating at 2133MHz.
The regularization parameters λ and γ were tuned by hand
on the subvolume of the 32 innermost slices and rescaled
accordingly to apply them on the whole dataset. For simplicity
all weights w were set to one. The initial guess was a low-
pass filtered FBP. The splitting parameters for FP and BP were
chosen as suggested previously [6]. We chose a random set of
views for each subiteration. The OS-mom required four full
iterations involving eight subsets each until the desired level
of detail is reached. The quality measures applied were visual
inspection of the small impurities and the signal-to-noise ratio
(SNR) as shown in figure 2.

III. RESULTS

The results of the benchmark for the suggested SIR al-
gorithm applied to the 2k dataset introduced in the previous
section can be seen in figure 3. They show that it is possible to
carry out the whole reconstruction within 2:07 h. This is less
than half the total exposure time of 3217 × 5 s = 4:28 h and
only about one third of the total acquisition time. The profiling
plot clearly makes visible the 4 × 8 subsets resulting in 32
total subiterations. Each consists of a multi-GPU FP and BP
for computing the gradient of the data term. Concurrently the
gradient and curvature of the Huber regularization is computed
on the CPUs. The curvature of the data term is precomputed
only once for all subiterations. The only idle times for the
GPUs are required for three short tasks marked as other
CPU tasks. The first is adding the gradient and curvature
of data term and regularization, respectively, the second is
computing the momentum and updating the volume, and the
third is choosing the views for the next subset. All three take
approximately equally long.

The memory consumption is high but still manageable for a
single computer. Surely there is room for improvements in the
future. The main contributions are the measured data (50GB
as shown in table I), the reconstructed volume or momentum,
respectively (32GB), and the arrays to store the gradient and
curvature of data term and regularization (4× 32GB).

We also tried the presented methods on smaller datasets to
test their scalability. The result can be seen in figure 4. There
is no obvious reason why the suggested techniques should
perform better on powers of two but it seemed to be a natural
choice for our test. The number of corresponding projection
views fulfills the sampling criterion, namely π/2 times the
number of voxels on each side of the volume. [9] For a fair
comparison, the number of full iterations is constantly kept at
four and the number of subsets at eight. In practice it might
however be more advantageous to adapt the latter individually
for each volume size.
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Figure 2. Quality evaluation of the benchmarked SIR.

The three figures in row show the result of the FBP for the high-statistics
measurement as well as FBP and SIR applied to the low-statistics data. The
purpose of this comparison is to show that the benchmarked SIR reaches the
same level of detail despite the sixfold reduced exposure time.
Therefore we look exemplarily at five impurities marked with the green arrows
in the top image. They are well visible in the high-statistics reference, get
mostly lost in the noise of the low-statistics FBP and can be recovered by the
suggested SIR as shown at the bottom.
Although the patchy structure of the noise pattern in the SIR result gives an
equally rough visual impression as the noise in the reference, the signal-to-
noise ratio is strongly improved.
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Figure 3. The profiling of suggested SIR approach.
The combined plot shows on the same timeline the memory usage as lineplot in the upper part and a profiling of the computational tasks displayed as bars
in the lower part. The units for the memory can be found on the right axis. The benchmarked algorithm is the suggested SIR applied on the 2k-cubed dataset
described in the methods part. The time measurement starts with the first iteration and does not include loading the dataset, saving the result or computing
the initial guess. The total reconstruction time is 2:07 h.
The recurrent equal chunks of the profiling mark the 4× 8 subiterations executed. The single longer pair of FP and BP after the first subset is for computing
the constant curvature of the data term. The profiling shows that the regularization comes almost for free as its computation is completely hidden behind
processing the data term. The only offset is a very short operation for adding the two results which is about one third of the other CPU tasks. The memory
bar shows an expectedly high but relatively constant memory consumption over the whole process.

IV. CONCLUSION

We demonstrated a way to make statistical iterative recon-
struction possible for 2k-cubed cone-beam datasets on current
heterogeneous hardware. Therefore we showed how to use one
of the fastest solvers for CT, the OS-mom, within a multi-GPU
and -CPU environment by combining several data splitting
technologies for GPU-driven forward- and backprojection with
a clever way to hide virtually the whole compute time of the
regularization.

We found that our approach makes SIR not only feasible
within a current workflow at micro-CT systems but still
when exploiting its great power to drastically reduce the
total acquisition time. As an example we reconstructed a
2k-cubed dataset with a total acquisition time of about six
hours within about two hours. The example shows that there
is even still quite some room left for weaker hardware or
more complex algorithms in the future. The details visible in
a reference measurement with six-fold longer exposure time
could be recovered successfully by SIR. We also showed that
our concept works well for smaller datasets.
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Bone-Enhanced Small-Animal Microtomography
with Single-Shot Dual-Energy Sandwich Detectors

Seung Ho Kim, Daecheon Kim, Hanbean Youn, Seungryong Cho, and Ho Kyung Kim

Abstract—Single-shot dual-energy x-ray sandwich detector can
produce sharp images because of its inherent unsharp masking
effect on the subtracted images. Inspired by this observation, the
authors have developed a microtomography system with the sand-
wich detector in pursuit of high-resolution bone-enhanced small-
animal imaging. The preliminary results show that the bone-
enhanced images reconstructed with the subtracted projection
data are better in visibility of bone details than the conventionally
reconstructed images. In addition, the bone-enhanced images
obtained from the sandwich detector are relatively immune to
the artifacts caused by photon starvation. The microtomography
with the single-shot dual-energy sandwich detector will be useful
for the high-resolution bone imaging without use of elaborate
equipment such micro-focus x-ray source and high-resolution x-
ray imaging detectors.

Index Terms—Computed tomography, microtomography,
micro-CT, sandwich detector, dual-energy imaging, single-shot
dual-energy imaging, mouse imaging

I. INTRODUCTION

S
INCE the physical characteristics of bone are affected by nu-
merous factors, such as age, hormones, arthritis, and exercise
[1], a preclinical study with small animals with respect to
those various factors would be helpful for theoretical and
computational models of bone [2]. Moreover, longitudinal,
histological studies without sacrificing animals are essential
[3], [4]. In this regard, the x-ray microtomography (or micro-
CT) has been popular for small-animal bone studies [5], [6],
[7], [8].

In previous studies [9], [10], the authors described the
multilayer (“sandwich”) detector by stacking two flat-panel
detectors (FPDs) and demonstrated its prospect for “motion-
artifact-free” single-shot dual-energy imaging (DEI) by obtain-
ing bone and soft-tissue images of a postmortem mouse. In
addition, it was observed that the single-shot method showed
better visibility at higher spatial frequencies (e.g. edge regions
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Fig. 1. Conceptual illustration of the sandwich detector operation.

and bone details) than the conventional double-shot method
(e.g. switching the applied tube voltages). The reason can be
explained by the inherent “unsharp masking” effect of the
sandwich detector [10]; the rear FPD with a thicker scintillator
provides a blurrier image than the front FPD, hence subtraction
of the two images enhances edges in the resultant image.
Inspired by this observation, the authors have applied the
sandwich-detector concept to the micro-CT for small-animal
“bone” imaging.

II. BACKGROUND

While the front FPD measures relatively low energy, as
shown in Fig. 1, the rear one measures relatively high energy
because of x-ray beam hardening through the front FPD.
Onto the same photodiode platform, thus, a thicker scintillator
in the rear FPD is preferred to that in the front FPD to
achieve high quantum efficiency for the relatively higher-
energy x-ray spectrum. It is noted that an intermediate filter
layer, as described in Fig. 1, can be used to further increase
spectral separation between the two FPD measurements, which
may provides a better contrast-to-noise performance in the
subtracted images.

From weighted subtraction, a bone-enhanced projection can
be obtained

pbone = wpF − pR, (1)

where pj denotes the projection obtained from the jth FPD
layer (i.e. front or rear). The optimal w can be determined by
minimizing contrast between the soft tissue to be subtracted
and background [10].
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Fig. 2. Schematic views describing two different approaches for bone-
enhancing image recontruction: (a) projection-based and (b) image-based
subtraction methods.

Fig. 3. Picture describing the micro-CT system with the sandwich detector.
The enlarged views show the sandwich detector and a postmortem mouse
phantom.

In a similar way, bone-enhanced tomographic images may
be obtained by reconstructing bone-enhanced projection data

fproj(r) = FDK{WPF −PR} , (2)

where Pj denotes the projection data in a matrix form obtained
from the jth FPD layer and W is a diagonal matrix consisting
of weighting factors determined at each projection angle w(θ).
The operator FDK{· · ·} implies the approximate filtered
backprojection operation [11] with the Hann filter. If the
weighting factor is independent upon the rotation angle, W
becomes a scalar w. The procedure is schematically described
in Fig. 2(a).

III. MATERIALS AND METHODS

As shown in Fig. 3, a bench-top micro-CT system has been
developed using the sandwich detector. During continuous x-
ray irradiation, the object rotated on its axis by an amount
of prescribed step angle and then the rotation stayed until
the sandwich detector produced two projection images. These

motion and image readout were computer-controlled and lasted
till a single rotation completed. The distances from the x-
ray focal spot to the detector (dSD) and to the axis of rota-
tion (dSA) were computer-controlled variables. The traveling
ranges of the object jig were 600, 300, and 75 mm along the
x, y, and z directions, respectively.

The x-ray source (Series 5000 XTF5011, Oxford Instru-
ments, Inc., US) employed a tungsten (W) anode and could
operate up to the maximum power of 50 Watts. The W
x-ray spectra were further tailored by an additional 1-mm
thick aluminum (Al) filter. According to the manufacturer, the
nominal focal-spot size was 0.035 mm.

Each FPD layer constituting the sandwich detector em-
ployed a combination of a Gd2O2S:Tb phosphor screen for
conversion of x-ray into optical quanta and a photodiode array
for detection of them. The thicknesses of the front and rear
phosphors were ∼ 34 and ∼ 67 mg cm−2, respectively.
The same photodiode arrays (RadEye1TM, Teledyne Rad-
icon Imaging Corp., Sunnyvale, US) were used for the front
and rear FPDs. The pixel pitch of the photodiode array was
0.048 mm, and the magnification of the pixel pitch of the
rear detector was negligible. The active area of the sandwich
detector was ∼ 25× 50 mm2.

For a small-animal imaging, a postmortem mouse phantom
(∼ 40 g) was prepared, as shown in Fig. 3, by replacing
blood by paraformaldehyde. Head part of the mouse phantom
was scanned using two different designs of sandwich detector;
one design used no intermediate filter and the other used a
copper (Cu) filter with a thickness of 0.3 mm. Irradiation x-
ray spectrum was from a W target at 50 kVp/1 mm Al filter.
360 projection views were obtained for a single circular scan
and they were used for reconstruction. All the reconstructed
images were calibrated into the Hounsfield units (HU) using
separate scans of water phantom.

IV. RESULTS

Figure 4 compares projection images obtained from the each
FPD layer of the two designs of sandwich detectors (i.e.,
one design included a 0.3 mm-thick Cu filter and the other
did not) and their resultant DE images for the postmortem
mouse phantom. The images were displayed with the level
of their mean value (μ) and a window of two times their
standard deviation (σ) (other images below were displayed
with the same level and window). It was observed that the
projections from the front FPD were sharper than those from
the rear FPD as the font FPD employed a thinner phosphor
than the rear FPD. Comparing Figs. 4(b) with (e), use of the
intermediate filter resulted in higher noise in the rear FPD
image, and the reason could be explained by the reduction
in the number of x-ray photons reaching the rear FPD due
to the additional attenuation through the filter layer. Weighted
logarithmic subtraction successfully provided bone-enhanced
images as shown in Figs. 4(c) and (f).

Figure 5(a) shows a response function (or edge-spread
function, ESF) extracted from the subtracted image for an
edge-knife phantom. The subtraction operation resulted in a
characteristic of a processed impulse response. The corre-
sponding modulation-transfer function (MTF) result is shown
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Fig. 4. Projection images obtained from the each FPD layer of the sandwich
detectors without and with a Cu filter layer and their resultant DE images for
the postmortem mouse phantom. (L/W = μ/± 2σ).
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Fig. 5. Impulse response functions of the sandwich detector for an edge-knife
phantom: (a) edge-spread function and (b) modulation-transfer functions.

in Fig. 5(b). Unlike the low-pass characteristic of the conven-
tional MTF curve, a band-pass characteristic was observed.
While the contrast performance for low-frequency object
content was decreased with increasing weighting factor, the
contrast performance for specific spectral information (e.g.,
∼ 3 mm−1 in this example) was enhanced. These MTF
characteristics can support the analysis of subtracted images
as shown in Figs. 4(c) and (f).

Tomographic images reconstructed using each projection
dataset, as exemplarily shown in Fig. 4, are summarized in
Fig. 6. The characteristics observed from the projection data
were well reflected into the tomographic images. Comparing
Figs. 6(c) with (f), use of the intermediate filter gave rise to
a more reduction of soft tissues. It was also observed that the
DE tomographic images showed less streak artifacts due to
photon starvation compared to the images obtained using the
front FPD.

Fig. 6. Comparison of tomographic images reconstructed from the corre-
sponding projection dataset.

Fig. 7. Enlarged images indicated by the boxes Fig. 6(d) for more detailed
displays of tomographic images.

As shown in Fig. 7, the regions indicated as boxes in Fig.
6(d) have been investigated in detail. The rear FPD with a
thick phosphor provided a blur image as shown in Fig. 7(b),
and it became noisier, as shown in Fig. 7(e), when the Cu filter
was additionally used. The DE tomographic image obtained
form the sandwich detector without any filter layers showed
the best visual performance for bone details.

Figure 8 compares profiles extracted along the line A−A′

(as possible as the authors can), as designated in Fig. 6(a), for
each reconstruction image. Bone signal in the reconstructed
image with projections from the front FPD was the largest,
the rear FPD the second, and then the DE results. Although
the DE tomographic image signals were noisy, they consisted
mostly of only bone signals. As observed from Figs. 4(e) and
6(e), the images obtained from the rear FPD of the sandwich
detector with the Cu filter were noisy.

Fig. 8. Profiles extracted along the line A− A′, as designated in Fig. 6(a),
for each corresponding reconstruction image.
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V. SUMMARY AND FUTURE WORK

Bone-enhanced tomographic images have been obtained
using dual-energy sandwich detectors for a postmortem mouse
phantom, and they outperformed the tomographic images ob-
tained from the conventional detectors (i.e., the front and rear
flat-panel detectors constituting the sandwich detectors) for
bone details. Although use of an intermediate filter, which was
placed between the front and rear flat-panel detectors, resulted
in less residual soft tissues in the reconstructed bone-enhanced
images, it degraded the visual image quality of bone details
because of increased noise. Optimal filter design in terms of
material and thickness is required for a more tissue separability
and less noise performance in images. This study shows a great
potential of microtomography with a sandwich detector for
high-resolution bone-enhanced small-animal imaging without
use of elaborate equipment such as micro-focus x-ray source
and high-resolution x-ray imaging detectors.

In the present work, the bone-enhanced tomographic image
was obtained by reconstructing weighted-subtraction sino-
gram. Alternatively, the bone-enhanced images may also be
obtained by subtraction of two tomographic images recon-
structed with projections separately obtained from the front
and rear FPDs, as shown in Fig. 2(b),

fbone(r) = wFDK{PF } − FDK{PR} . (3)

This approach is under progress and comparison with the
present method will be made. Furthermore, the bone-enhanced
DE tomographic images may be combined with the images
reconstructed with projections obtained from the front FPD as
the conventional unsharp masking digital image processing.
The authors anticipate the resultant images will be similar
to conventional tomographic images for low spatial-spectral
contents but better for high spatial-spectral contents. These
further studies will be a future study.
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Abstract—Computed tomography at micrometer scale often
suffers from unknown misalignments of the axes resulting in a
loss of image quality. In iterative reconstruction methods the
cost functions need a forward projection for every view. These
projections can be used to calculate the cross-correlation between
the measured and forward-projected data to get improved geo-
metrical data for the next iteration step. We present simulations
and measurements reconstructed with in a maximum-likelihood
framework including the proposed alignment-correction step.

Index Terms—computed tomography, reconstruction, align-
ment correction

I. INTRODUCTION

UNKNOWN misalignments or wobbling of the rotational
axis, focal spot movements and variable detector shifts

lower the resolution in CT systems. While detector shifts
usually produce double edges in the reconstructed volume
and can - as long as they are non-varying over the pro-
jections - easily be compensated, wobbling of the axes or
focal spot movements are not easy to be seen. Moreover
sample movements like thermal drifts lower the resolution
of CT scans at high magnifications. Mayo et al. [1] used an
iterative Feldkamp algorithm ( [2]) to improve the geometrical
information by the cross-correlation of forward projected and
measured data. Since they used a X-ray microscope scanning
at voxel sizes below one micron, their main goal was to
correct the temperature-drift of their manipulation system.
Other methods to compensate alignment problems are the
evaluation of the image sharpness (as in Kingston et al. [3])
or the search for sinogram symmetries (see [4]).
In iterative CT reconstruction forward projections are calcu-
lated at every iteration to perform an update equation on the
volume. A cross-correlational comparison of the computed
and the measured projections can be included between the
update steps at low computational cost. This results not only
in improved sharpness of the reconstruction but also gives the
chance to detect misalignments in the manipulation system.
The unknown geometrical information can be evaluated for
one of the three components of the CT systems: source,
rotational axis or detector.

II. METHOD

As iterative reconstruction algorithm we use a total-variation
regularized maximum-likelihood method. The forward projec-
tion ȳ is computed as detector intensity and gets compared

Contact: kdremel@physik.uni-wuerzburg.de

to the measured intensities y by cross-correlation. The cross-
correlation y†i of two discrete signals with index i is given
by

y†i = F−1
2D (F2D(yi)

∗F2D(ȳi)) (1)

where F2D denotes the two-dimensional Fourier transform.
The position of the maximum of y† defines the deviation
(Δ�x) of the computed projection from the measurement. To
find the maximum a bilinear interpolation is used to get sub-
pixel accuracy. Although the correlation is fast compared to
the iterative steps of the reconstruction in most instances it is
possible to use only a small part of the projection matrix for
the correlation. In cases of low contrast, before correlating the
signals an optional edge filter (for example a simple image
gradient) can be applied to both projection and measurement.
The update of the geometrical information can be performed
for the detector, the rotational axis or the source coordinates,
but at each view only in the corresponding detector plane. The
detector( �D)- source(�S)- and rotational axis(�R)-coordinates are
updated by:

�D = �D + λΔ�xΔd (2)

�R = �R+ λ
Δ�xΔd

m
(3)

�S = �S + λΔ�xΔd
1

m− 1
(4)

with the detector pixel-size Δd and the magnification m in a
cone-beam setup. To avoid divergence in the case of strongly
uncorrelated projections the coefficient λ can be set to values
< 1. If correction of an uniform offset is required only, a mean
deviation can be calculated before applying them to the geo-
metrical setup. If the projections are processed independently,
the following steps are performed at each iteration:

1) Forward projection
2) (Edge filter on both projection and measurement)
3) Cross-Correlation of the signals
4) Search for the maximum of y†i
5) Computation of the deviation with sub-pixel accuracy
6) Back projection
7) Update of the geometrical information

III. PHANTOMS AND SETUP

Both simulations and measurements have been performed
to test the algorithm. The simulations show one slice of a
hole plate used as calibration phantom in NDT applications
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(see [5], [6]). It consists of a solid aluminium block (5 cm x
5 cm x 0.8 cm) with 28 drill holes. To show the operational
capability and to evaluate the influence of poisson noise on the
projections, we used a virtual mono energetic source at 225
kV in the simulations. The magnification m was set to 3.6.
The poisson noise was calculated for 1000 photons per pixel.
The reconstruction started after the third iteration with the
correlation to make sure the iterative reconstruction converged
enough to get higher frequencies in the forward projection. The
reconstruction was performed with 200 subsets in the case of
noiseless projections and 50 subsets in the case of projections
including noise, so the convergence speed of the datasets can
differ.
The simulated deviations were incorporated by shifting the
projection image by a random floating point value of pixels
in horizontal and vertical direction. The random value was
allowed to be positive or negative limited by a maximum value
of 4, 8 or 16 pixels. The projections were interpolated in the
shift.
For the measurements we used a calibration phantom from
PTB (Physikalisch-Technische Bundesanstalt) consisting of
four spheres of ruby building a triangular pyramid (see [7]).
The spheres have a diameter of 500μm. The measurements
were performed with a high magnification of m = 99.2 with
a Comet micro focus tube at a voltage of 80 kV . Although
detector and source were well aligned, the rotational axis oper-
ated imprecise at the measurements. Therefore the coordinates
of the rotational axis were chosen to be corrected during
the reconstruction. The reconstructions have a voxel size of
2.1μm and a size of 5123 voxels. Each iteration, containing
the update of 800 projections, was divided into 40 subsets.
The correction process started at iteration 5 with a coefficient
λ = 1.0.

IV. RESULTS
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Fig. 1. On the left: Phantom used for the simulations. On the right:
Geometrical aberrations of the first 20 iterations for a maximum shift of 4
pixels on the detector.

Fig. 1 shows the simulated and computed shifts after 50
iterations for the first 20 projections. The iterative evaluated
shifts correspond with the simulated shifts. The middle
slices of the reconstructed volumes are shown in Fig. 3
for the Filtered-Back-Projection (FBP) and the alignment
corrected maximum-likelihood method. The uncorrected
reconstructions show a worse signal-to-noise-ratio (SNR)

inside the material than the corrected slices. Although a
few visible discrepancies remain in the reconstructions the
image quality is improved. Fig. 2 shows the mean deviation
of the simulated and computed detector positions. With
larger maximum aberrations the remaining offset increases,
because the incomplete correction of a few projections gains
more influence. The mean deviation after 50 iterations is
lower than the pixelsize in all cases. The mean-squared-error
(MSE) of the difference between the reconstructions and
the reference reconstruction without shift or noise is shown
in Fig 4. For the reconstructions without noise as well as
for the noisy data the dataset with a maximum shift of 4
pixels in each direction converges to a better solution than
the other datasets, but the improvement from iteration 3 to
4 clearly shows the corrections starting in iteration 3. The
difference between the noisy and noiseless datasets exists
due to the reference data which was build from noiseless
projections. The non-monotonic behaviour of some datasets
MSE shows the iterative changes of the geometry information.
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Fig. 2. Mean deviation of the detector position. The plots start at iteration
3 when the correction was started. The larger the maximum alignment offset
gets, the bigger is the remaining offset after 50 iterations, because the
contribution of a single projection rises.

The measurements were reconstructed with and without
activated alignment correction with 50 iterations. For all
reconstructions the iterative maximum-likelihood method with
a slight total-variation regularization was used. The uncor-
rected slices (see Fig. 6) show double edges only in particular
directions. While symmetric double edges could result from
a constant detector shift, this asymmetry indicates aberrations
in the assumed geometry-setup.
In Fig. 5 the three parts of the correction are shown: The
forward projected image, the measurement and the cross-
correlated image. The use of an edge filter before executing
the correlation was not necessary in this case, because the
projections showed high contrast.

Fig. 6 also shows the results of the 50th iteration with
alignment correction. With the alignment correction not only
the double edges disappear but also the SNR inside the ruby
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Fig. 3. Middle slice of the reconstructed volume with maximum shift of 8
pixels. First row: FBP with Shepp-Logan filter without corrections. Second
row: Iterative reconstruction with corrections. Left: without noise. Right: with
noise. Same range of grey values for all images.
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Fig. 4. Mean-squared-error of the reference reconstruction and the recon-
structed data of the simulations. The trend to lower values for larger maximum
deviations shows the influence of non-sufficiently corrected projections. The
rising values of noisy data at higher iterations is caused by the sharpening of
the noise in the reconstruction.

spheres rises because the projections become more consistent
to each other. The computed deviation of the rotational axis
is shown in Fig. 7. While the movement in the XY plane (or-
thogonal to the rotation) shows jitter movement, the ascending
trend of the Z direction - the direction of the rotational axis -
can be interpreted as thermal drift.

Fig. 5. The three parts of the correction after the beginning of the correction
process at iteration 5. In the first row the correlation is processed on the
forward projected image. Left: Forward projected image, middle: measured
projection, right: cross-correlation.

(a) Reconstructed volumes after 50 iterations - XY slice. Left side: without
correction, right side: with correction.

(b) Reconstructed volumes after 50 iterations - XZ slice. Left side: without
correction, right side: with correction.

Fig. 6. Reconstructed volumes of the measured datasets.
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Fig. 7. Deviation of the rotational axis in μm from the originally assumed
geometry.
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V. CONCLUSION AND FUTURE WORK

The alignment correction using cross-correlation on the
projections is a simple and easy-to-use method to correct
geometry misalignments in computed tomography. If itera-
tive reconstruction methods are used, this requires nearly no
additional computational effort. In the case of projection-
dependent alignment problems not only the sharpness of the
reconstruction is improved but also the correction data can be
used to adjust the setup. Since problems with region-of-interest
(ROI) scans appear using the cross-correlation in an iterative
approach with FBP, an iterative reconstruction method also
gives the chance to improve the convergence of the alignment
correction. This behaviour and a quantitative analysis of the
resolution-loss will be evaluated in future research.
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Abstract—This study was conducted to demonstrate the 
feasibility of using a new type beam filter for low-dose CT in the 
many-view under-sampling (MVUS) framework. We have earlier 
proposed a rotating disk type filter that has open spokes and 
demonstrated its feasibility of dual-energy imaging at low-dose. In 
this work, we propose a new rotating disk that has a spiral shaped 
opening. The spiral MVUS filter is supposed to provide 
advantages over the spoke-type one in that the x-ray beam 
divergence angle can be kept constant during the scanning and 
that the image processing dealing with the penumbra effects 
would be easier to implement. We have shown in this study that 
using such a spiral MVUS filter can produce sparsely sampled 
data for image reconstruction in the compressed sensing theory 
inspired approach.  Sampling density was investigated to optimize 
the design of the spiral MVUS filter. We also performed a 
comparative study considering various tube currents and opening 
rates of the spiral MVUS.  

Index Terms—Sparse sampling, many-view under-sampling, 
MVUS, Low dose CT reconstruction, Spiral beam filter 

I. INTRODUCTION

Low-dose imaging capability of a CT system is now 
becoming a must rather than an option. Lowering x-ray tube 
current as well as optimizing tube voltage is considered the 
primary approach to such low-dose CT in the community. 
Although not actively incorporated in commercialized CT 
systems yet, sparse sampling approach would also be possibly 
contributing to the advancement of low-dose technology alone 
or in combination with the low-tube current method. Sparse 
view sampling is a straightforward way of sparse sampling and 
it has shown its potentials in various tasks. However, to our best 
knowledge, sparse view sampling has not been realized in a fast 
gantry-based diagnostic CT perhaps due to challenges of 
preserving stable x-ray output for quite a short pulse duration 
time. We have earlier proposed a moving beam-blocker-based 
sparse sampling approach which we named many-view 
under-sampling (MVUS)[1], and demonstrated its feasibility in 
cone-beam CT[2, 5] and in diagnostic CT system as well[4]. 
We have particularly used a rotating disk filter for MVUS 
which consists of apertures of spokes shape. Through the 
spoke-type apertures, the x-ray beam is irradiated with its full 
intensity; the beams are blocked elsewhere. During a gantry 
motion, the MVUS filter is rotating and creates sparsely 
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sampled x-ray projection data. One critical caveat of the MVUS 
approach is the sacrifice of the data due to penumbra. A finite 
focal spot size of the x-ray, a finite thickness of the MVUS 
filter, and a geometric magnification would lead to an unsharp 
edge images of the MVUS filter. This penumbra would limit 
the full use of the data in the entire projection space. Instead, 
one has to select penumbra-free regions only for image 
reconstruction. It is desirable if the data in the penumbra 
regions can be actively utilized, or if it can be minimized unless 
avoidable. In this work, we propose a new MVUS filter that has 
a spiral aperture. In order to minimize the effects of penumbra, 
we propose to place the MVUS filter in front of the x-ray tube 
such that the fan-beam covers the central portion of the rotating 
disk. By doing so, one can keep the penumbra shape consistent 
in the entire field-of-view and can make the projection data 
processing easier and more efficient. To demonstrate its 
feasibility for low-dose CT imaging, we have performed a 
numerical study that includes various combinations of rotation 
speed and number of apertures in the MVUS filter. 
Additionally, a hybrid approach to low-dose CT that combines 
with the low tube current method has been investigated. 

II. METHODS

A. Spiral filter for many-view under-sampling(MVUS) 
A schematic of spiral MVUS filter is shown in Fig 1. On the 

mid-horizontal line, one pair of opening and blocking regions is 
called one slit in this work. The ratio of the aperture length to 
the blocked part is defined by the opening rate of the proposed 
filter. X-ray fan-beam of a diagnostic CT penetrates through the 
central horizontal part of the spiral MVUS filter. Sinogram 
acquired by use of the rotating spiral MVUS filter would show 
constantly changing blocked region in a straight line fashion 
with respect to the scan angle as shown in Fig 2. For comparing 
performances, we have varied the number of slits and also the 
rotation speed of the MVUS filter per gantry rotation. Table 1 
summarizes the parameters in the numerical study. The opening 
rate was fixed by 20%, which implies about 80% of dose 
reduction. We have not considered penumbra in the numerical 
study and it would impair the reduction of dose by a certain 
factor. Even though the proposed MVUS filter is largely 
motivated by minimizing the penumbra, we have assumed that 
such fabrication is feasible and the penumbra effects would 
thus be minimized. 

Feasibility study on many-view 
under-sampling(MVUS) using spiral beam filter 

Sunhee Wi, Hoyeon Lee, and Seungryong Cho
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B. Sampling density 
Sampling density was calculated to explain the reconstructed 

image quality from the sampling point of view. It is one of the 
assessment tools for validating a scanning scheme and 
represents the sum of weighted intersection lengths of the rays 
for a given pixel. This metric has been discussed in more detail 
in Ref. 2. 

MVUS technique provides various scanning schemes with 
different shapes of beam filters and other control parameters. 
Therefore, sampling density must be considered when deriving 
an optimal condition. For a linear type MVUS, Abbas et al
carried out a comparative study between static and moving 
beam filter[2]. They employed sampling density and data 
incoherence to analyze the image quality in terms of filter 
designs. 

In this study, sampling density was employed to optimize the 
spiral MVUS filter.  

C. Numerical simulation  
A low contrast phantom was used for numerical phantom in 

the simulation study as shown in Fig. 3. For image 
reconstruction from sparsely sampled data, we employed a 
projection-onto-convex-sets constrained total variation 
minimization algorithm(POCS-TV)[3]. Poisson noise and 
electronic noise(Gaussian noise) were considered to simulate 
low current projection data. In the first simulation study, we 
varied the number of slits and rotation speed of spiral MVUS 
filter while the opening rate was fixed by 20%. After 
optimizing of the spiral MVUS filter, we considered the quality 
of reconstructed image from a combination of different x-ray 
tube current and opening rate of the spiral MVUS filter in the 
second simulation study. The distance between the source and 
the object was set to be equal to that between the source and the 
detector in the simulation study. 

III. RESULTS

A. Optimization of spiral MVUS 
Spiral MVUS filter produced various 2D sampling density 

patterns in the image domain depending on the filter parameters 
as shown in Table 2. Higher rotation speed of the spiral MVUS 
filter is necessary for higher number of slits. From the results of 
sampling density calculation, a combination of 8 slits and 30 
rotation/scan appears to be the optimal condition for spiral 
MVUS. One thing to note is that a higher rotation speed is not 
always preferred as shown in the 8 slits and 40 rotation/scan 
case.

Rotation
/ 1scan 8silts 12silts 16slits 

10

20

30

40

>25.0<32.0 

Fig. 1.  Spiral beam filter for MVUS technique. 

Fig. 2.  Sinogram of mid-plane from spiral MVUS.  
(# of slits : 12, opening rate : 20)

Fig. 3. Selected ROI on numerical low contrast phantom.

TABLE I. CONDITIONS OF DATA ACQUISITION

# of slits 8, 12, 16 
Rotation speed 10, 20, 30, 40 rotation/scan
# of projection 720 
Source to object [mm] 500 
Source to detector [mm] 500 
Detector size [mm] 320 1.56 

TABLE 2D SAMPLING DENSITY DISTRIBUTION DEPENDING ON 
# OF SLITS AND ROTATION SPEED OF SPIRAL MVUS 

The 4th International Conference on Image Formation in X-Ray Computed Tomography

142



In table 3, reconstructed images show the results 
corresponding to previous sampling density results. When 
using 10 rotation speed, we failed to gain any structural 
information from all kinds of number of slits. For the cases of 
12 and 16 slits, higher rotation speed of spiral MVUS provides 
clearer reconstructed images in the ROI. Higher rotation speed 
gives more uniform sampling density is thought to lead to a 
better image quality. Visual inspection and also the image 
similarity index study (though its results are not shown in this 
manuscript) confirmed that the combination of 8 slits and 30 
rotation speed is optimal. 

Rotation 
/ 1scan 8silts 12silts 16slits 

10 

20 

30 

40 

>0.099<0.104 

B. Reconstructed images: mAs-opening rate 
A comparative study was also conducted that includes both 

mAs and opening rate of spiral MVUS. All simulation study 
employed the optimal conditions of the spiral MVUS filter 
acquired from the previous study. Reconstructed images in 
different mAs level and opening rates are summarized in Table 
4, 5. Table 5 shows the ROIs of the reconstructed images to 
better visualize the low-contrast objects.  
From the right top to the left bottom, diagonally displayed 

images are reconstructed under the same dose reduction ratio. 
180mAs-20%, 90mAs-40% and 45mAs-60% represent 80% 
dose reduction ratio of the standard scan that assumes 
180mAs-100%. Among the three reconstructed images, the one 
from 180mAs-20% appears to show highest contrast between 
white circles and background in the ROI. And smallest white 
circle is less distorted compared to the ones from other 
conditions. 
For 90% dose reduction ratio, there are four conditions such as 

180mAs-10%, 90mAs-20%, 45mAs-40%, and 22.55mAs-60%. 

In cases of 180mAs-10% and 90mAs-20%, contrasts of the 
objects seem to be higher than the other two with less image 
noise. However, the images are relatively more distorted 
particularly for the smaller ones. 

For 95% dose reduction ratio, there are also four conditions 
available such as 90mAs-10%, 45mAs-20%, 22.5mAs-40%, 
11.25mAs-60%. It appears that the condition of 11.25mAs-60% 
is the best condition overall considering image distortion. For 
higher dose reduction ratio than 95%, it is hard to decide which 
condition is better because image distortion is too severe for all 
the reconstructed images. 

In conclusion, we would like to claim that higher mAs and 
smaller opening rate is preferred for low or intermediate dose 
reduction and lower mAs and larger opening rate for high dose 
reduction.   

IV. CONCLUSION

We proposed a new type filter for many-view 
under-sampling technique. Spiral MVUS filter is easy to 
implement in a diagnostic CT gantry and provides useful data 
in the sparse sampling context. Our feasibility study examined 
optimal parameters of the spiral MVUS filter. In addition, from 
a comparative study, a combination of low tube current and 
sparse sampling has been investigated in the TV minimization 
image reconstruction framework. 
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             mAs 

Opening 
11.25 22.5 45 90 180 

10%

20%

40%

60%

TABLE RECONSTRUCTED IMAGES DEPENDING ON MAS AND OPENING RATE                                                                  >0.09<0.11 

              mAs 

Opening 
11.25 22.5 45 90 180 

10%

20%

40%

60%

TABLE ROIS OF RECONSTRUCTED IMAGES DEPENDING ON MAS AND OPENING RATE                                       >0.099<0.104 
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Augmented Likelihood Image Reconstruction with
Non-local Prior Image Regularization

Maik Stille and Thorsten M. Buzug

Abstract—The presence of high-density objects remains an
open problem in medical CT imaging. The recently published
Augmented Likelihood Image Reconstruction (ALIR) algorithm
has shown to outperform current methods for phantom data
and real clinical cases of patients with different kinds of metal
implants. A variation of the algorithm with an additional non-
local prior image based regularization term is proposed. The
prior image should hold anatomical information that are similar
to the target image. In every iteration of the ALIR algorithm,
a new image is calculated based on the given prior image
and a registration step. The resulting image is then used to
penalize intensity variations. Reconstruction results show that the
regularization step improved the reduction of streaking artifacts.

I. INTRODUCTION

Computed tomography (CT) remains one of the key imaging
methods in clinical practice. Image quality of reconstructed
CT images can be reduced by the occurrence of different
artifacts, which are caused by physical phenomena such as
scattering, beam hardening, noise, or total absorption. These
phenomena can be amplified due to high-density objects
such as metal implants or surgical instruments. The resulting
streaking artifacts obstruct the assessment of the anatomy of
the patient and can reduce the diagnostic value of the images
drastically.

In order to reduce metal artifacts a variety of approaches
have been proposed in the last decades [1]–[3]. The re-
cently published Augmented Likelihood Image Reconstruction
(ALIR) algorithm has shown to outperform current methods
for phantom data and real clinical cases of patients with
different kinds of metal implants including hip implants,
knee implants and amalgam fillings [4]. Due to its iterative
reconstruction scheme and the augmented Lagrangian based
optimization the algorithm enables a high degree of flexibility.
We present an ALIR variation with a prior image based non-
local regularization term, which was recently published in [5].
The regularization term penalizes intensity variations between
the image to be reconstructed and a prior image. While the
prior image holds information from an image that looks similar
to the image that is to be reconstructed, the regularization term
forces the reconstruction to keep anatomical information of the
original image while reducing streaking artifacts.

II. METHODS

Given a set of intensity measurements {ni}Mi=1, the nega-
tive log-likelihood function for transmission tomography for

statistical image reconstruction is defined as

l(f) =
M∑
i=1

⎛⎝−ni ln(n0) + ni

N∑
j=1

aijfj

+ ln(ni!) + n0 exp(−
N∑
j=1

aijfj)

⎞⎠ (1)

where f ∈ RN is a vector that consists of the expected
attenuation coefficients [3]. The number of photons that are
detected in the absence of absorption is denoted by n0, the
total number of projections is denoted by M , and the number
of pixels in the image is denoted by N .

In order to reconstruct an image without the usage of x-
rays that run through a metal object, the set of projections
indices M = {1, . . . ,M} can be divided into a set of indices
for projections that are not affected by metal, M1, and a set
for projections that are affected by metal, M2. In ALIR the
constant terms in (1) are omitted and only projection indices
of x-rays that are not affected by metal are used, which results
in

l̂Λ(f) =
1

|M1|
∑

i∈M1

⎛⎝ni

N∑
j=1

aijfj

+ n0 exp(−
N∑
j=1

aijfj)

⎞⎠ .

(2)

Furthermore, the ALIR algorithm works with the assump-
tion that prior knowledge in form of shape and known at-
tenuation coefficients of the metal object is available. This
knowledge can be gained by an exact computer-aided design
(CAD) description of these objects, which can be potentially
provided by manufacturers [6]. However, if an exact model
of the metal object is not available, the proposed algorithm
is able to operate with an approximation of the shape, gained
from a segmentation step, combined with arbitrary attenuation
coefficients. Let b ∈ RN be a vector that contains attenuation
coefficients of the implant and Q ∈ [0, 1]N×N a diagonal
matrix with qij = 0 if i �= j that represents a mask.

In the ALIR algorithm, the prior knowledge of the metal
object is used to introduce the equality constraint

cΛ(f) =
μ

2

N∑
j=1

(
qjj(fj − bj)

N

)2

−
N∑
j=1

λj
(qjj(fj − bj))

N
,

(3)
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Ground Truth Metal Object Prior Image Difference

Figure 1. The used XCAT phantom. From left to right: the ground truth image of the image that is be reconstructed, the artificial metal object, the prior
image, which is located approx. 2 cm proximal to the first image, and the difference between the prior image and the image that is to be reconstructed.

with the multipliers λ ∈ Rn and μ ∈ R, which is applied in
order to assign the given attenuation coefficients to the correct
position in the reconstructed image. The objective is formu-
lated as an augmented Lagrangian, which incorporates (3)
directly in

Λζ(f ;λ, μ) = l̂Λ(f) + ζcΛ(f) + γR, (4)

where γ is a regularization parameter, R is a regularization
term and the weighting factor ζ > 0 is introduced in order
to control the influence of the constraints in relation to the
log-likelihood function [4].

In the course of the algorithm, projection values

pi =
N∑
j=1

aijfj , i ∈M2 (5)

are replaced by a forward projection of a bilateral filtered
version of interim results and the set of all indices M is used
in (2) instead of the set M1 [4], [7].

For the regularization R the previously proposed non-local
prior image regularization is used [5]. The term penalizes
intensity variations to a prior image g ∈ RN that should
include similar anatomical information as the image f and
is defined as

R(f,Γ(g, γ)) =

√√√√ N∑
x=0

δx

(
fx −

1

ωx
Ψx(f,Γ(g, γ))

)2

, (6)

with

Ψx(f,Γ(g, γ)) =∑
y∈Nx

Γ(gx, γ) exp

(−||fηx − Γ(g, γ)ηy ||p
h2

)
(7)

where Γ(g, γ) is the transformed prior image g with the trans-
formation parameter γ [5]. Without loss of generality, an affine
transformation is used. The parameters of the transformation
result from the optimization problem

D(f (k),Γ(g, γ))
!
= min (8)

where D : R2N → R denotes a distance measure. Problem (8)
is solved in every iteration of the reconstruction algorithm
using the l-BFGS-b algorithm [5], [8]. Within (7) ηx denotes
a patch window around pixel x, Nx denotes a search window

around pixel x, and || · ||p denotes the Minkowski distance of
order p. Furthermore, λ ∈ {0, 1}N is a mask with

δx =

{
0 if gx = 0

1 if gx �= 0
, (9)

which forces the regularization to ignore all pixels where the
prior image holds no information.

III. RESULTS

In order to investigate the performance of the proposed
ALIR algorithm with non-local prior image regularization, a
software phantom was generated using the XCAT software [9].
Two different slices were used that are located around the
pectoral girdle. In the first slice an artificial metal object was
manually added within the left humerus. This slice is used as
the target image f . The second slice is located approximately
2 cm proximal to the first slice and is used as the prior image
g. Most importantly, the image g shows anatomical differences
compared to the image f and contains no metal artifacts nor
metal objects as can be seen in figure 1.

For the initialization of the ALIR algorithm a forward-
projection of the ground truth image is calculated and all
projection values that are affected by the artificial metal object
are removed. The description of the metal object in the form
of b and Q is gained from a segmentation of the metal object
in the ground truth image. Furthermore, the prior image that is
seen in figure 1 is used for the regularization, which is given
in (6).

After 19 iterations the ALIR algorithm reached conver-
gence. In figure 2 selected interim results are shown together
with the calculated prior images Ψx(f,Γ(g, γ)). In the course
of the reconstruction the each time recalculated prior imaged
shows more and more similarity to the image f . After approx.
13 iterations no changes in the new prior image can be
observed. However, the regularization ignores pixels that do
not hold any information. Therefore, holes in the recalculated
prior image are not inherited into the image f .

In figure 3 the final reconstruction results are given for
the ALIR algorithm, the ALIR algorithm with non-local prior
image regularization and the linear interpolation approach [1].
The amount and severity of streaking artifacts is highest in
the reconstruction result of the linear interpolation approach.
The ALIR algorithm is able to reduce most of the artifacts
and results in a substantially enhanced image. However, the
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Ground Truth Linear Interpolation ALIR ALIR with Reg.

Figure 3. Reconstruction results. From left to right: the ground truth image, the linear interpolation approach, ALIR and ALIR with additional non-local prior
image regularization.

Iteration 1 Prior Image 1

Iteration 3 Prior Image 3

Iteration 5 Prior Image 5

Iteration 13 Prior Image 13

Figure 2. Interim results and the corresponding prior image of the ALIR
reconstruction with non-local prior image regularization.

regularization step based on a prior-image is further beneficial
for the metal artifact reduction.

In order to confirm the visual impression quantitatively,
the sum of squared differences between the ground truth
and the result of each reconstruction method is calculated.
Table I shows an unambiguous result that the linear interpo-
lation shows clearly the highest error with 1195.9HU. The
ALIR algorithm already shows a much better performance
with 134.4HU. However, an additional non-local prior image

MAR Method SSD [HU]

linear interpolation 1195.9
ALIR 134.4
ALIR with regularization 32.7

Table I
SUM OF SQUARED DIFFERENCES (SSD) OF DIFFERENT MAR METHODS

COMPARED TO GROUND TRUTH. SEE FIGURE 3 FOR THE CORRESPONDING
IMAGES.

regularization reduces the error further to a minimal error of
32.7HU.

IV. CONCLUSION

A variation of the Augmented Likelihood Image Recon-
struction algorithm with a non-local prior image based regular-
ization is proposed. In every iteration a transformation between
intermediate results of the ALIR algorithm and the prior image
is found. Based on a non-local approach a new prior image is
calculated that is used to penalize intensity variations between
the recalculated prior and the image that is to be reconstructed.
Reconstruction results show an enhanced artifact reduction
compared to ALIR without regularization and the linear in-
terpolation approach. While incorporating information based
on a prior image that holds similar anatomical structures, the
correct detailed anatomical information of the target image
could be reconstructed.
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Abstract—This paper proposes a scale space total variation
(ssTV) algorithm to reduce large scale streaks in limited angle
tomography. The weighted total variation (wTV) algorithm is
able to remove most small scale streaks. However, it fails to
reduce larger streaks since total variation (TV) regularization
is scale-dependent and may regard them as homogeneous areas.
Derived from the wTV algorithm, the proposed ssTV algorithm
applies wTV regularization on the image at different scales using
down-sampling and up-sampling operations and thus can reduce
streaks more effectively. Advantages of the ssTV algorithm are
demonstrated on both 2-D numerical data and a 3-D clinical
dataset.

I. INTRODUCTION

Limited angle tomography is an essential but challenging
task in practical applications of computed tomography (CT).
The limited angle problem arises when the gantry rotation is
restricted by other system parts or scanning time. Due to data
incompleteness, the reconstructed images have severe streak
artifacts and obtaining high quality images is difficult.

Researchers have put a lot of effort into suppressing streak
artifacts in limited angle reconstruction. One approach is to
recover the missing sinogram data in the projection domain
based on data consistency conditions like Ludwig-Helgason
consistency [1]. In addition, iterative reconstruction with total
variation (TV) regularization algorithms [2]–[4] was demon-
strated to be effective in limited angle tomography since
compressed sensing technologies can use relatively few data
to achieve good image quality with the prior assumption that
medical images are sparse in the gradient domain.

In the case of limited angle tomography, the shape and
orientation of streak artifacts are closely related to the angles
missing in the acquisition. With this additional prior informa-
tion, Chen et al. [5] developed the anisotropic TV (aTV) by
assigning different weighting factors to different directions,
which shows better performance on edge recovery and streak
artifact reduction than the isotropic TV algorithm. However,
some structures in the clinical reconstructed image may be
blurred due to the staircasing effect [6].

The weighted TV (wTV) algorithm proposed by Candès et
al. [7] can help avoid this effect. In our previous work [8], we
demonstrated that wTV can reduce noise well while preserving
image resolution and contrast in the case of complete data.

Initialization
W = 1

SART
Af = p

wTV
regularization Result

wTV gradient g Normalize g Backtracking
line search t

f - t · g Update weights
W

N

M

Fig. 1. The wTV algorithm iterates SART and wTV regularization steps
alternatively N times in the outer loop. The wTV regularization step repeats
the gradient descent process M times as the inner loop.

In the limited angle case, wTV can reduce small streaks
well yet is unable to remove large streaks. Due to the scale-
dependent property of TV regularization [9], large streaks
may be regarded as homogeneous areas and real edges. To
enhance homogeneity particularly along the streaks’ normal
direction, we proposed the weighted anisotropic TV (waTV)
algorithm [8] by using four neighboring pixels instead of
two to calculate the gradient along that direction. The waTV
algorithm showed promising potential in streak reduction.
However, it may produce new “zebra crossing”-like artifacts.
Besides, it is cumbersome to incorporate anisotropy analyt-
ically since new formulas need to be derived for different
scales. With the aims of enabling convenient implementation
and avoiding zebra crossing artifacts while reducing streaks of
various sizes, the scale space TV (ssTV) algorithm is proposed
in this paper.

II. METHODS

The reconstruction model of the wTV algorithm can be

min
f
||f ||wTV subject to Af = p, (1)

where f is the image, A is the system matrix and p is the
acquired projection data. Based on Candès et al. [7], ||f ||wTV
is defined as

||f ||wTV =
∑
x,y,z

W x,y,z|| (Df)x,y,z ||,

W x,y,z =
1

||(Df)x,y,z||+ ε
,

(2)
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wTV gradient gd Normalize gd
Backtracking
line search td

f - td · gu
Update weights

Wd

Up-sample gd
 get gu

Down-sample   f
 get  fd

Ms

Fig. 2. The ssTV minimization substep down-samples the image f to
calculate the down-sampled wTV gradient gd and step size td, then it uses
td and the up-sampled gu to update the original image f .

Initialization
SART
Af = p Result

Scale space
TV regularization

N

ssTV minimization
factor s = 1

ssTV minimization
factor s = 2

ssTV minimization
factor s =  smax - 1

ssTV minimization
factor s = smax

...

Fig. 3. The ssTV algorithm uses multiple scales during wTV regularization.
See Fig. 2 for an overview of the ssTV minimization step.

where W is the weight matrix, Df is the gradient of f , x,
y and z are pixel indices and ε is a parameter influencing the
reconstructed image resolution. The flow chart of the whole
algorithm is shown in Fig. 1. The main loop iterates at most N
times and each iteration consists of a simultaneous algebraic
reconstruction technique (SART) [10] step to increase data
fidelity as well as a wTV regularization step. In each wTV
regularization step, we regard the weight matrix W as constant
for computing the gradient of ||f ||wTV with respect to the
image to retain a convex problem [7],

gx,y,z =
∂||f ||wTV

∂fx,y,z

, (3)

and repeat the gradient descent process M times using back-
tracking line search algorithm [11]. After that, W is updated.

The effects of conventional TV regularization are often quite
local [9]. It mostly reduces small streaks well while larger
streaks remain essentially intact. We assume that if we apply
TV regularization at various resolutions using a scale-space
approach, larger streaks may also be reduced well. This is the
main idea of our proposed ssTV algorithm.

Fig. 2 is an ssTV minimization substep. It first down-
samples the image f with a certain scaling factor s to calculate
the down-sampled wTV gradient gd and find a suitable step
size td to make sure that the TV value of fd − td · gd

is decreased. With the down-sampling operation, the scale
of the streaks is decreased relative to the spatial gradient
computation used in TV. Then gd is up-sampled with the same
scaling factor s to get gu, which means that the scale of TV
regularization effects are increased. Finally, with td and gu

the original scale image f can be updated as f − td · gu. The
above process is repeated Ms times, then the corresponding
weight matrix W d is updated.

In limited angle tomography, orientations of streaks can be
aligned with a coordinate axis, e.g. the X-axis, if we choose a
proper corresponding scan angle range 10◦ - 170◦ (Fig. 4) such
that anisotropic scaling along Y direction can be performed.

S0S1

X

Y

O
10°170°

Fig. 4. Scan trajectory. Fig. 5. Numerical phantom, window:
[-240 240] HU.

The down-sampling and up-sampling operations with a scaling
factor s > 1 are defined as

f ′
x,y,z =

j=L∑
j=−L

hj+Lfx,y+j,z,

(fd)x,y,z =

⎛⎝j=s−1∑
j=0

f ′
x,s·y+j,z

⎞⎠ /s,

fx,s·y+j,z =
(
(fd)x,y,z · (s− j) + (fd)x,y+1,z · j

)
/s,

j = 0, 1, ..., s− 1,

(4)

where h is a 1-D Gaussian filter kernel with length 2L + 1
and standard deviation σ = s/2 to avoid aliasing and f ′ is
the filtered image.

As regularization on a single scale is most sensitive to
artifacts of a specific spatial extent, we perform it in scale
space, i.e. on several scales, s = smax, smax − 1, ..., 2, 1 with
increasing resolution (Fig. 3), where smax is the maximum
scaling factor. In this way, both noise and streaks of various
sizes can be reduced. Note that ssTV minimization with s = 1
is the regular wTV minimization.

III. EXPERIMENTS

A. Numerical Phantom

In order to validate the advantage of our proposed ssTV
algorithm in reducing large streaks, a 2-D numerical phantom
is designed (Fig. 5). It contains two columns of circular areas
(radius = 10 mm). The attenuation coefficient for the circular
areas is 1200 HU while the background is 0 HU. The phantom
size is 512×512 pixels and the pixel size is 1 mm. Regarding
the acquisition parameters, the scan angle from 10◦ to 170◦

is chosen such that most streaks are almost in the horizontal
direction. The detector size is 768 pixels and the pixel size
is 1 mm. The source to detector distance is d = 2175 mm,
the fan angle is γmax = 20◦ and the angular increment is
1◦. The whole experimental setup, including generation of the
phantoms, is implemented in CONRAD [12].

The ssTV algorithm and the regular wTV algorithm are
employed to reconstruct this phantom from limited angle data.
For wTV, we choose M = 10 heuristically. Consequently,
for ssTV, the same number of TV minimization steps should
be applied, i.e.

∑∞
s=1 Ms = M = 10. With this constraint,

combinations of different scaling factors are investigated as
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follows: [M1,M2,M3,M4,M5] = [2, 8, 0, 0, 0], [2, 4, 4, 0,
0], [2, 2, 2, 4, 0] and [2, 2, 2, 2, 2]. Besides, ssTV with s = 2
only, i.e. [M1,M2,M3,M4,M5] = [0, 10, 0, 0, 0], is also
investigated as a control.

All images, including clinical data described below, are
reconstructed with ε = 0.001 in Eqn. 2. The reconstruc-
tion algorithms stop when they reach the termination criteria
σ < 8.0 · 10−3 HU or n = 400, where σ is the root-mean-
square difference of two consecutive iteration results and n is
the iteration number.

B. Clinical Data

The algorithms are also compared in a 3-D clinical head
dataset acquired with a Siemens Artis zee angiographic C-arm
system (Siemens Healthcare GmbH, Forchheim, Germany).
The detector size is 1240×960 and the detector pixel size
is 0.308 mm. The complete data contains 496 projections
obtained in a 200◦ short scan. We simulate a limited angle
acquisition with a scan angle from 10◦ to 170◦ where only
the projections 25 through 422 are used. The reconstruction
image grid size is 512×512×256, and the pixel sizes are 0.4
mm, 0.4 mm and 0.8 mm in X, Y and Z direction, respectively.

We first use the wTV algorithm to reconstruct the complete
data as an image quality reference. Then, wTV and ssTV
are applied to the limited angle data. In [8], we determined
that it is beneficial to apply 30 iterations of SART first as
initialization, then 50 additional iterations of wTV or ssTV
are applied.

IV. RESULTS AND DISCUSSION

The reconstruction results of the numerical phantom and
their root-mean-square errors (RMSE) are shown in Fig. 6.
Large streaks still exist in the wTV reconstruction result (Fig.
6(a)) while they are reduced by ssTV with s = 2 (Fig. 6(b)).
However, ssTV with scaling factor 2 only is unable to reduce
high frequency noise. In contrast, ssTV with smax = 2 (Fig.
6(c)) and smax = 3 (Fig. 6(d)) can reduce both large streaks
and high frequency noise effectively. Fig. 7 also demonstrates
that combinations of multiple scaling factors (curves C, D, E
and F) converge faster than wTV (curve A) while using scale
2 only (curve B) is insufficient.

The reference images reconstructed from the complete clin-
ical dataset with wTV are shown in Fig. 8. Image results
of SART, wTV and ssTV for limited angle tomography are
shown in Fig. 9. Compared to SART (Figs. 9(a) and 9(b)),
wTV shows its advantage in reducing small streaks and high
frequency noise since the bony structures and the brain textures
are preserved much better. However, severe large streaks still
remain in the wTV results (Figs. 9(c) and 9(d)). The proposed
ssTV algorithm with s = 2 only can reduce large streaks
better than wTV. However, Fig. 9(f) shows that it suffers from
severe high frequency noise like the SART result and thus the
brain texture is obscured. This confirms that combining various
scaling factors is beneficial for reducing noise and streaks of
various sizes. Figs. 9(g) - (j) illustrate that ssTV with smax ≥ 2

(a) wTV,

400th iteration,

RMSE = 10.14 HU

(b) ssTV, s = 2 only,

400th iteration,

RMSE = 63.73 HU

(c) ssTV, smax = 2,

341th (final) iteration,

RMSE = 0.79 HU

(d) ssTV, smax = 3,

328th (final) iteration,

RMSE = 0.55 HU

Fig. 6. Comparison of wTV, ssTV with s = 2 only, smax = 2 and smax =
3, windowing: [-240 240] HU, (a) M = 10, (b) [M1,M2] = [0, 10], (c)
[M1,M2] = [2, 8], (d) [M1,M2,M3] = [2, 4, 4].
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Fig. 7. Comparison of different scaling factor combinations, M = 10 for A,
[M1,M2,M3,M4,M5] =[0, 10, 0, 0, 0], [2, 8, 0, 0, 0], [2, 4, 4, 0, 0], [2,
2, 2, 4, 0] and [2, 2, 2, 2, 2] for B, C, D, E and F, respectively.

can reduce large streaks more effectively while high frequency
noise is also removed.

V. CONCLUSION

In this paper, we proposed the ssTV algorithm for streak
reduction in limited angle tomography. From the experiments
above, we conclude that the ssTV algorithm with various
scaling factors converges faster and reduces large streaks better
than wTV. It is convenient to implement based on an existing
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(a) wTV, 65th slice (b) wTV, 140th slice

Fig. 8. Reference images reconstructed from the complete clinical dataset
with the wTV algorithm. Windowing: [-1000 1730] HU for (a) and [-220
365] HU for (b).

wTV implementation as it only introduces additional down-
sampling and up-sampling operations.

Disclaimer: The concepts and information presented in this
paper are based on research and are not commercially avail-
able.

REFERENCES

[1] J. L. Prince and A. S. Willsky, “Constrained sinogram restoration for
limited-angle tomography,” Optical Engineering, vol. 29, no. 5, pp. 535–
544, 1990.

[2] M. T. Manhart, M. Kowarschik, A. Fieselmann, Y. Deuerling-Zheng,
K. Royalty, A. K. Maier, and J. Hornegger, “Dynamic iterative recon-
struction for interventional 4-D C-arm CT perfusion imaging,” Medical
Imaging, IEEE Transactions on, vol. 32, no. 7, pp. 1336–1348, 2013.

[3] H. Wu, A. Maier, R. Fahrig, and J. Hornegger, “Spatial-temporal total
variation regularization (STTVR) for 4D-CT reconstruction,” in Proc of
SPIE, vol. 8313, 2012.

[4] E. Sidky, C. Kao, and X. Pan, “Accurate image reconstruction from few-
views and limited-angle data in divergent-beam CT,” Journal of X-ray
science and technology, vol. 14, pp. 119–139, 2006.

[5] Z. Chen, X. Jin, L. Li, and G. Wang, “A limited-angle CT reconstruction
method based on anisotropic TV minimization,” Physics in medicine and
biology, vol. 58, no. 7, pp. 2119–2141, 2013.

[6] V. Y. Panin, G. L. Zeng, and G. T. Gullberg, “Total variation regulated
EM algorithm,” Nuclear Science, IEEE Transactions on, vol. 46, pp.
2202 – 2210, 1999.

[7] E. Candès, M. Wakin, and S. Boyd, “Enhancing sparsity by reweighted
l1 minimization,” The journal of fourier analysis and applications,
vol. 14, pp. 877–905, 2008.

[8] Y. Huang, O. Taubmann, X. Huang, V. Haase, G. Lauritsch, and
A. Maier, “A new weighted anisotropic total variation algorithm for
limited angle tomography,” in International Symposium on Biomedical
Imaging. IEEE, 2016, to appear.

[9] D. Strong and T. Chan, “Edge-preserving and scale-dependent properties
of total variation regularization,” Inverse Problems, vol. 19, no. 6, p.
S165, 2003.

[10] L. Ritschl, F. Bergner, C. Fleischmann, and M. Kachelriess, “Improved
total variation-based CT image reconstruction applied to clinical data,”
Physics in medicine and biology, vol. 56, no. 6, pp. 1545–1561, 2011.

[11] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[12] A. Maier, H. Hofmann, M. Berger, P. Fischer, C. Schwemmer, H. Wu,
K. Müller, J. Hornegger, J. Choi, C. Riess, A. Keil, and R. Fahrig,
“CONRAD - a software framework for cone-beam imaging in radiol-
ogy,” Medical physics, vol. 40, no. 11, p. 111914, 2013.

(a) SART as initialization (b) SART as initialization

(c) wTV (d) wTV

(e) ssTV, s = 2 only (f) ssTV, s = 2 only

(g) ssTV, smax = 2 (h) ssTV, smax = 2

(i) ssTV, smax = 3 (j) ssTV, smax = 3

Fig. 9. Comparison of SART, wTV, ssTV with s = 2 only and smax = 2, 3
in limited angle tomography, M = 10 for wTV, [M1,M2,M3] = [0, 10, 0],
[2, 8, 0] and [2, 4, 4] for ssTV with s = 2 only, smax = 2 and smax = 3,
respectively. Windowing: [-1000 1730] HU for the left images, [-220 365]
HU for the right images.
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Abstract—Anti-scatter grids are known to suppress the scatter 

significantly thus improving contrast of image in radiography. 
However, its use in cone-beam CT for the purpose of improving 
contrast-to-noise ratio (CNR) has not been successful mainly due 
to increased noise related to Poisson statistics of photons. This 
paper proposes a sparse view cone-beam CT with the use of an 
anti-scatter grid to improve CNR. Compared to the conventional 
method, the proposed method reduces the number of projections 
and increases exposure in one projection to enhance image quality 
in terms of CNR without an additional cost of radiation dose. For 
image reconstruction from sparse-view data, a total-variation 
minimization algorithm was adopted. We conducted both 
simulation study and experiment to compare the resulting images 
by the conventional and the proposed methods quantitatively. The 
results showed that contrast and CNR by the proposed method 
have increased compared to the conventional method at the same 
total radiation dose condition and that the cupping artifact has 
been reduced as well. The proposed method can provide high 
quality image by using an anti-scatter grid with no additional 
radiation dose to the patient. 

Index Terms—Anti-scatter grid, contrast, CNR, cupping 
artifacts  

I. INTRODUCTION 
N x-ray cone-beam CT (CBCT) imaging, scatter is a physical 
process which constitutes a critical factor for degrading 

image contrast. It has been under our research interest that 
clinicians’ demand for image quality particularly including 
contrast in such as prostate imaging or brain imaging is high 
compared to the ones that are available in commercial CBCT 
systems. There have been a host of correction approaches in 
CBCT with varying degrees of success. Using an anti-scatter 
grid is one of the methods that directly suppresses scatter 
recorded in the detector thus improving contrast in radiography. 
Anti-scatter grids are usually composed of Pb strips at regular 
intervals that are filled with interspacer. However, its use in 
CBCT has not been successful in increasing the contrast-to-
noise ratio (CNR) mainly because the noise related to the 
Poisson statistics of photons is increased while contrast is 
improved as well. 
 The influence of an anti-scatter grid in CBCT on image 
quality has been systematically studied and turns out to be 
rather ineffective in improving CNR in the filtered-
backprojection (FBP) algorithm framework for image 
reconstruction. Siewerdsen et al. (2004) reported that the 
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motivation of using grids in CBCT is not so strong in that 
regards [1]. When using high resolution detectors, Singh and 
Jain (2014) reported that, even in radiography, there is little 
improvement of CNR because of nonnegligible physical 
dimension of the grids [2]. The study on the case of C-arm 
CBCT showed similar results. Schafer and Stayman (2012) 
found that using an anti-scatter grid in C-arm CBCT would 
need a dose increment to reinstate a CNR level gained in a 
gridless case [3]. It appears that an additional radiation dose is 
inevitable in CBCT with a grid system to increase image CNR. 
However, it should be also noted that such discussions have 
been based on the FBP image reconstruction framework. 
 The purpose of the study was to demonstrate a CNR 
improvement is feasible when an anti-scatter grid is used in 
CBCR by reducing the number of projections and increasing 
the exposure in each projection to suppress noise, thereby 
retaining the total dose, in the iterative image reconstruction 
framework that is inspired by compressed sensing theory. A 
total-variation minimization algorithm was employed for image 
reconstruction from sparse-view data [4-6].  Although a further 
evaluation study comparing with existing scatter correction 
approaches is necessary, the proposed method showed a 
promising solution to the CBCT applications that require high 
quality images of low-contrast anatomy. 

II. METHODS AND MATERIALS 

A. Simulation study 
We carried out a simulation study to test a feasibility of the 

proposed method. Projections of the XCAT phantom were 
taken at 720- and 120- views, the formers of which incorporate 
larger amount of scatter and more noise compared to the latters 
that simulate the use of an anti-scatter grid. The full-view data 
(720-views) have been fed into the FBP algorithm for image 
reconstruction, and the sparse-view data (120-views) into the 
TV algorithm. CNR analysis has been performed on both 
images. 

 
 
 
 
 

 

CNR improvement in a sparse-view cone-beam 
computed tomography using an anti-scatter grid 

Sanghoon Cho, and Seungryong Cho 

I 

 
Figure 1. Simulation geometry. 
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Table 1. Simulation condition. 

Conventional method Proposed method 
- Full view (720)  
 
- Poisson noise 
 
- Scatter contaminated 
 
- FBP  
  reconstruction algorithm 

- Sparse view (120) 
 
- Poisson noise 
 
- Scatter reduced 
 
- Total-Variation  

minimization  
  reconstruction algorithm 

 

B. Experiment 
We conducted experiments using a prototype CBCT system 

as shown in Fig. 2, and the specifications of an anti-scatter grid 
used for experiments are summarized in Table 2. The grid is 
composed of lead strips in 200 lines per inch. 

 

 

Table 2. Specification of anti-scatter grid for experiment. 

Spec of anti-scatter grid 
- Type: converging to source  
             (2D grid) 
 
- Size: 337 × 328 mm 
 
- Lines/Inch: 200 
 
- Ratio: 10:1 
 
- Material 
       Absorber (strip): Pb 
       Interspacer: Al 

 
First, we conducted an experiment using a multi-slit blocker 

made of lead to see whether the anti-scatter grid we used is 
functioning as much as we expect. By using a multi-slit beam-
blocker in between the x-ray source and the imaged object, one 
can create scatter signals only in the shadow regions of the 
beam-blocker in the detector. If the anti-scatter grid suppresses 
those scattered signals, one would expect to see practically null 
signals down to the dark current levels in the shadow. We 
compared the signals of the shadows in a grid case and a 
gridless case as shown in Fig. 3 to assess the performance of the 
anti-scatter grid used. 
 

 
 

Head phantom as shown in Fig. 4 was used for the 
experiment. For the gridless case, the tube voltage of 100kVp 
and the tube current of 10mA were used; and for the grid case, 
100kVp and 20mA were employed. Then, the two resulting 
projection images were quantitatively analyzed. 
 

 
 

Second, the water equivalent CATPhan phantom was used 
for the experiment to see the cupping artifact reduction by using 
the proposed method. As shown in Table 3, in the conventional 
method, 600 projections without an anti-scatter grid were taken 
for 360° scan with the X-ray source of 105 kVp with 10 mA, 
and FBP algorithm was used for image reconstruction [7]. 
Whereas, in the proposed method, 300 projections with an anti-
scatter grid were taken for 360° scan with the X-ray source of 
105 kVp with 20 mA, and TV algorithm was used for image 
reconstruction [4]. Then, cupping artifact degree was analyzed 
quantitatively. 

 
 
 
 
 
 
 
 
 

 
Table 3. Experiment condition. 

Conventional method Proposed method 
- Without a grid 
 
- 600 view (360° scan) 
 
- 105 kVp, 10 mA 

- With a grid 
 
- 300 view (360° scan) 
 
- 105 kVp, 20 mA 

 
 

Figure 3. Grid assessment using beam blocker. 

        
Figure 4. Head phantom and multi-slit blocker.  

Figure 2. Experiment system. 

 
Figure 5. Water equivalent CATPhan phantom. 
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- Feldkamp, Davis, and  
Kress (FDK)  

  reconstruction algorithm 

- Total-Variation  
minimization  

  reconstruction algorithm 
 
Third, as shown in Fig. 6, the contrast resolution CATPhan 

phantom was used for comparing the resultant images of 
conventional method and proposed method. The experiment 
conditions were the same with those summarized in Table 3. 
After image reconstruction, Contrast, CNR, and magnitude of 
cupping artifact were analyzed quantitatively. 

 

C. Contrast, CNR, and tcup(%) 
Metrics of Contrast, CNR, and tcup(%) were used for image 

analysis. Eq. (1) represents a contrast where n1 and n2 represent 
a signal and background, respectively.  

 

                                      (1) 
 
Similarly, Eq. (2) represents CNR where n1 and n2 represent 

two different signals, and standard deviation(n) represents a 
standard deviation of n2. 

 

             (2) 
 
Lastly, as is defined in Eq. (3), tcup(%) represents the 

magnitude of the cupping artifact, where  represents average 
value of the attenuation coefficients on edge and center region. 
 

                 (3) 
 

III. RESULTS 

A. Simulation study 
Fig. 7 represents tomographic images using (a) a 

conventional method, and (b) a proposed method. Fig. 8 shows 
the midline profiles of image (a) in Fig. 6 as a black straight line, 
and image (b) in Fig. 6 as a blue dot line. As seen in the figures, 
cupping artifacts has been enhanced and contrast has increased 
evidently. Quantitatively, contrast has been increased by a 
factor of 1.50. 
 

 

 

 

B. Experiment 
 

All experiments were conducted under the condition in Fig. 
9. Fig. 10 represents images (a) without a grid, and (b) with a 
grid. As shown in the figures, black and white pattern appears 
more clearly when using a grid. Midline profiles of the images 
are shown in Fig. 11. Quantitatively, contrast has been 
increased by a factor of 1.87. 
 

 
 

 
Figure 6. Resolution CATPhan phantom. 

 
Figure 7. Reconstruction images of (a) conventional 

method, and (b) proposed method. 

 
Figure 8. Midline profiles of reconstruction images 

using (a) conventional method (black 
straight line), and (b) proposed method 
(blue dot line). 

 
Figure 10. Projection images with (a) without a grid, 

and (b) with a grid. 

 
Figure 9. Experiment geometry 
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Fig. 12 represents tomographic images of water equivalent 
catphan phantom using (a) a conventional method, and (b) a 
proposed method. Fig. 13 shows midline profiles of image (a) 
in Fig. 12 as a black straight line, and image (b) in Fig. 12 as a 
blue dot line. As seen in the figures, cupping artifacts has been 
enhanced evidently. Quantitatively, image (a) in Fig. 12 has 
higher tcup(%) value than (b) by a factor of 2.12.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 14 represents tomographic images of resolution catphan 

phantom using (a) a conventional method, and (b) a proposed 
method. Fig. 15 shows midline profiles of image (a) in Fig. 14 
as a black straight line, and image (b) in Fig. 14 as a blue dot 
line. Quantitatively, contrast has been increased by a factor of 

1.28, and CNR has been increased by a factor of 1.13. Also, 
image (a) in Fig. 14 has higher tcup(%) value than (b) by a factor 
of 1.46. 
 
 
 
 
 
 
 
 
 
 
 

 

IV. CONCLUSION 
We proposed the method of sparse view cone-beam CT with 

the use of an anti-scatter grid to improve CNR without 
additional radiation dose to the patient. The results from 
simulation study and experiments have shown that by using 
proposed method, contrast and CNR have increased and the 
magnitude of cupping artifacts decreased compared to the 
conventional method. 
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Figure 11. Midline profiles of projection images (a) 

without a grid (black straight line), and (b) 
with a grid (blue dot line). 

 
Figure 13. Midline profiles of reconstruction images 

using (a) conventional method (black 
straight line), and (b) proposed method 
(blue dot line). 

 
Figure 12. Reconstruction images of (a) conventional 

method, and (b) proposed method. 

 
Figure 14. Reconstruction images of (a) conventional 

method, and (b) proposed method. 

 
Figure 15. Midline profiles of reconstruction images 

using (a) conventional method (black straight 
line), and (b) proposed method (blue dot line). 
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Abstract—We present an improved real-time, patient-specific 

dose reconstruction algorithm for CT based on improved physics 
modeling. The new algorithm more accurately models the 
variation of materials in the human body, especially for higher 
attenuation materials such as bone.   We performed validation 
experiments with analytic phantoms and a polychromatic X-ray 
spectrum. We used Monte Carlo simulation (GEANT4) as the 
ground truth. The results show that the proposed method has 
improved accuracy in both soft tissue region and bone region: less 
than 6% voxel-wise errors and less than 3.2% ROI-based errors. 
Since the computational cost is on the order of a low-resolution 
filtered backprojection reconstruction, the proposed algorithm 
could potentially be used for real-time applications such as patient 
and organ specific scan planning and organ dose reporting.  
 

Index Terms—Computed Tomography, radiation dose 
estimation 

I. INTRODUCTION 
omputed tomography (CT) has become one of the most 
widely used diagnostic tools in medicine. At the same 

time, CT radiation dose has become an important concern and 
an area of intense research and development. Some recent dose 
reduction methods target patient-specific, organ-based dose 
optimization and hence fast, accurate and volumetric dose 
estimation is in demand. 

Dose estimation using Monte Carlo simulation can be very 
accurate [1] but it is inherently computationally expensive. 
Analytic, model-based methods often have larger errors since 
they don’t fully incorporate the complexity of the human 
anatomy and the X-ray spectrum. We previously proposed a 
fast dose reconstruction algorithm based on a backprojection 
framework and we demonstrated good accuracy in soft tissue 
region (error < 10%) but larger error in bone regions 
(sometimes exceeding 50%) [2].  

In this paper, we propose an improved dose reconstruction 
method, more accurately modeling the variation of materials in 
the human body, especially for higher attenuation materials 
such as bone. The proposed method has three steps: 

1) Compute the first order interaction energy using a ray 
tracing method 

2) Separate the interaction energy into the absorbed and 
scattered energy 
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3) Distribute the scattered energy by convolution with a 
tuned scatter kernel and multiplying by an absorption 
map. 

Section II gives a detailed description of the methods. 
Section III contains the results and discussion of the validation 
experiments. 

II. METHODS 

A. Interaction energy  
The basic physics of the first order interaction options 

between the incident X-ray and a slab is shown in Figure 1. 
X-rays can interact through absorption and scattering. X-rays 
that do not interact are transmitted through the object. 

 

 
Figure 1: Basic interactions between an incident X-ray beam and an object 

The interaction energy is calculated as 
 (1 exp( ))int inciE E l�� � � � � , (1) 

where inciE  is the total energy of the incident X-ray beam, � is 
the attenuation coefficient of the incident X-ray (dependent on 
the photon energy) and l is the path length through the object. 

To obtain the interaction energy of incident X-rays at a given 
energy, we need to determine the attenuation at that energy, 
which typically means that we need to take a reconstructed 
image and apply material decomposition. With a conventional 
single energy acquisition, only approximate material 
decomposition is feasible. We assume that the body is made of 
two materials with variable densities: water and bone, and we 
apply thresholding to each voxel to determine its material 
fractions. We also assume that beam hardening correction is 
applied. With these assumptions, the total attenuation 
coefficient at a given energy can be calculated as: 

 0
E

cal

�
� �

�
� � ,  (2) 

 Model-Based Dose Reconstruction for CT Dose 
Estimation 
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where �0 is the reconstructed linear attenuation coefficient, and 
the second factor scales this attenuation to different energies, 
where��cal and ��E are the material attenuation coefficients at 
the reconstructed energy and at the desired energy respectively. 

B. Separation into absorbed and scattered energy  
Three processes govern the X-ray interactions in the diagnostic 
energy range: 
Photoelectric: The primary X-rays are completely absorbed and 
the tissue emits photo-electrons and characteristic X-rays. The 
photo-electrons cannot travel far (compared to the voxel size of 
the CT image), thus would be re-absorbed in the same voxel; 
the characteristic X-rays cannot travel far either due to their low 
energy, e.g., the K-alpha line of Calcium is 3.69 keV. Thus 
100% of the primary photon energy is absorbed within the 
voxel. 
Compton scattering: The primary X-ray loses some energy and 
keeps moving in a different direction. The energy loss depends 
on the scattering angle. A scattered electron is created, which 
cannot travel far and is re-absorbed within the same voxel. Thus 
some of the energy is absorbed by the voxel, the fraction 
depending on the scattering angle.  
Rayleigh scattering: The primary X-ray changes its direction 
without energy loss. No energy is absorbed in the voxel. 

For a single event, it’s not certain which interaction 
mechanism will play.  However, for statistically large number 
of X-ray interactions, we can determine the average occurrence 
of the three processes as well as the average energy absorption 
in Compton scattering, so that we can compute the average 
absorbed energy and scattered energy for all interactions. 

The average energy deposition of Compton scattering can be 
calculated with the Klein-Nishina formula [3] or numerically. 
We used Monte Carlo simulation toolkit GEANT4 [4] to obtain 
it in the energy range from 10 keV to 160 keV, shown in Figure 
2. 

 
Figure 2: Average energy deposition of Compton scattering ECompt, for incident 

energy Einci from 10 keV to 160 keV 

The average energy deposition Eabs (absorbed energy) and 
the scattered energy Esc of the first order interaction are 
calculated as: 

 Compt Compt PE
abs int

inci

E
E E

E
� �

� �
� 	

� � 
 �� �
 �

, (3) 

 sc int absE E E� � , (4) 
where Eint is the average interaction energy, ECompt is the 
average energy loss for Compton scattering of the incident 
X-ray with energy Einci ; �Compt and ��PE are the cross sections of 
Compton scattering and photoelectric and � is the total cross 
section of all three processes. 

C. Convolution model and the final absorbed energy 
We developed a model based on 3D convolution to simulate 

the transportation of scattered X-ray. The convolution kernel is 
tuned per energy bin, from 10 keV to 160 keV, so that their 
linear combination is able to cover any polychromatic X-ray 
source spectrum below 160 kVp. 

After this convolution, the absorption of the scattered energy 
is calculated by multiplying with the absorption factor k, 
defined as 

 1 exp( )sck d�� � � � , (5) 
where �sc is the total attenuation coefficient of the scattered 
X-ray, d is the voxel size. Even though the incident X-ray used 
to define each convolution kernel is monochromatic, the 
scattered X-rays are polychromatic, and therefore �sc is defined 
as the effective attenuation coefficient weighted by the scatter 
spectrum. The scatter spectrum is obtained using Monte Carlo 
simulation, shown in Figure 3. 

 
Figure 3: The scattered X-ray energy distribution for 60 keV, 80 keV and 100 

keV incident X-rays, obtained by Monte Carlo simulation 

The final absorbed energy for a monochromatic incident 
X-ray beam is calculated as: 

 ( , )mono abs scE E conv E Kernel k� 
 � , (6) 
Furthermore, the absorbed energy for polychromatic X-ray is 

the weighted sum of mono energies: 
 � �, ,( , )poly i abs i sc i i i

i
E I E conv E Kernel k� � 
 �� , (7) 

where i is the incident energy index and iI is the intensity of 
the X-ray source spectrum as a function of energy bin i. 

D. Simulation studies 
We used an elliptical water cylinder (40 cm × 20 cm and 120 

cm in length) to validate the performance of the proposed 
method at monochromatic X-ray, and we defined a thorax 
phantom for polychromatic evaluation. The thorax phantom is 
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shown in Figure 4. It includes 4 regions-of-interest (ROIs) used 
for evaluating the absorbed dose. Simulations were performed 
using 541 mm source-to-iso distance, a fan angle of 52�, a 
longitudinal beam collimation of 40 mm or 64 slices, 109 

incident X-rays per monochromatic case and 1.2×1010 per 
polychromatic case. 

 
Figure 4: Thorax phantom used for polychromatic validation experiments. The 

dashed ROIs are used for average dose calculation. 

III. RESULTS AND DISCUSSION 
Figure 5 shows the results of the water phantom 

computations at various monochromatic energies. The 
differences between the proposed approach and Monte Carlo 
simulation are in the range of [-12; 12] and the relative error in 
all voxels remains less than 6% of the absolute values in the 
Monte Carlo results. The results also indicate that the dose near 
the surface of the phantom is slightly over-estimated and the 
dose inside the phantom is slightly underestimated. In the case 
of bone, this behavior is inverted (not shown).  

 Figure 6 shows the results for the thorax phantom with 120 
kVp and 140 kVp polychromatic spectra. Images from the 
Monte Carlo simulation and the proposed approach are shown 
in Figure 7(a, d) and Figure 7(b, e) respectively.  The absolute 
difference between the two approaches is in the range of [-350; 
350] and remains below 6% for all voxels, shown in Figure 7(c, 
f). The average dose in the 4 ROIs are shown in Table 1 and 
Table 2. The relative error for the 4 sample regions is in the 
range of -1.5% – 3.2%. 

 

IV. SUMMARY 
We introduced improved physics-based models in a fast CT 

dose reconstruction approach. The improved approach 
demonstrated quantitatively good correspondence to a Monte 
Carlo gold standard in both soft tissue and bone regions in a 
chest phantom with a realistic polychromatic spectrum. Given 
its real-time computing efficiency, the proposed approach 
could be used in applications such as patient specific scan 
protocol optimization, organ-weighted dose optimization and 
dose prediction [5] [6]. 

 

Table 1: Average dose and the error, 120 kVp 

ROI MC dose 
(MeV) 

Recon dose 
(MeV) % error 

Spine 7534 7774 3.2 
Lung 645 643 -0.36 
Water 2350 2350 0.0011 

Denser water 1313 1294 -1.5 
 
 

Table 2: Average dose and the error, 140 kVp 
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ROI MC dose 
(MeV) 

Recon dose 
(MeV) % error 

Spine 8928 9174 2.8 
Lung 799 797 -0.30 
Water 2900 2901 0.055 

Denser water 1684 1663 -1.3 
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Figure 5: Dose estimation for water phantom and monochromatic spectrum: (a) Monte Carlo at 80keV, (b) proposed method at 80keV, (c-f) difference images at 

40keV, 60keV, 80keV and 100keV. 

 

 
Figure 6: Comparison between proposed method and Monte Carlo simulation; a) Monte Carlo simulation at 120kVp, b) proposed dose reconstruction at 120kVp, c) 

difference image at 120kVp, d) Monte Carlo simulation at 140kVp, e) proposed dose reconstruction at 140kVp, f) difference image at 140kVp.  

 

 

The 4th International Conference on Image Formation in X-Ray Computed Tomography

160



Automatic geometric calibration of chest
tomosynthesis using data consistency conditions

Jeroen Cant, Gert Behiels, Jan Sijbers

Abstract—In medical imaging, Chest Tomosynthesis (TS) is a
form of limited angle tomography that allows to compute section
images of a patient, in planes parallel to a flat panel detector
placed behind the patient. Projection images are acquired using
an X-ray tube that moves on a linear path with respect to the
stationary detector.

An important cause of artifacts in TS images are errors
in the assumed geometrical setup of the system, especially the
orientation of the X-ray tube path with respect to the detector.
In this paper, we present a method for correcting errors in the
acquisition geometry without the need for a calibration phantom.
The method is evaluated on simulation data and experimental
acquisitions and proves to substantially reduce reconstruction
artifacts caused by geometry mismatches.

I. INTRODUCTION

Chest Tomosynthesis is a form of limited angle X-ray
tomography with which 3D images of a patient can be
computed. Cone beam projection images are acquired using a
fixed flat panel detector which is placed behind the patient, and
a motorized X-ray tube, typically moving on a straight line, to
create projection images from a limited angle. Subsequently, a
reconstruction algorithm is used to reconstruct section planes
parallel to the detector. Chest TS can be performed using
standard X-ray modalities with a motorized X-ray tube and
a dynamic flat panel detector. The technique offers a high in-
plane resolution but suffers from a low depth resolution, due to
the limited acquisition angle of the projection images [1], [2].
Nevertheless, chest TS is capable of separating overlapping
anatomy into subsequent section planes, making the detection
of certain pathologies easier compared to standard X-ray
images [3].

In order to reconstruct high quality TS images, accurate
knowledge of the relative positions of the X-ray source and
detector is crucial. Inaccuracies in the assumed acquisition
geometry lead to reconstruction artifacts such as striping and
blurring. For chest tomosynthesis, an important geometric
parameter is the orientation of the detector relative to the
linear motion path of the X-ray tube. Even inaccuracies smaller
than 0.5◦ on the detector orientation may lead to significant
image reconstruction artifacts. If acquisitions are acquired
with a rectangular detector in a table, these inaccuracies are
frequently present as the detector can often be rotated 90◦

by the operator, resulting in inaccurate orientation due to
mechanical limitations. In tomosynthesis systems with a flat
panel fixed to a wall stand, the X-ray source moves on a

JC and JS are with the iMinds-Vision Lab, University of Antwerp, Belgium.
JC and GB are with Agfa HealthCare NV, Belgium. Corresponding author:
jeroen.cant@agfa.com

motorized column attached to the ceiling of the room, which
also complicates exact control of the tube motion path relative
to the detector.

Therefore, methods are needed to accurately calibrate the
acquisition geometry. The acquisition geometry can be mea-
sured offline, using a calibration phantom [4], and online
using the projection images. For online calibration, radiopaque
markers can be used to derive the acquisition geometry
[5]. Another way is to exploit data consistency conditions,
which describe redundancies between projection images. From
these conditions, a cost function can be formulated that,
after minimization, leads to the optimal geometric parameters
such as detector orientation and position. Such a technique
was developed for estimating and correcting the geometric
parameters in a cone beam computed tomography setup, based
on epipolar consistency conditions (ECC) [6].

However, improvements are necessary for tomosynthesis,
as the ECC are not robust enough to deal with truncated
projections. In recent work, a heuristic weighting function was
introduced to weigh the gray values in the projection images,
depending on the fraction of the ray passing the part of the
object that is visible on all projections and an estimation of
the maximal object thickness [7].

In this work, modifications to the original ECC based esti-
mation of geometrical parameters are presented, specifically
designed for chest tomosynthesis. We present a weighting
function that does not depend on the patient thickness, and
additional modifications to increase robustness against geo-
metrical parameter outliers.

The proposed method is described in Section II. Exper-
iments with simulations and experimental acquisitions are
presented in Section III. Discussion and conclusion are in
Section IV and V.

II. METHOD

In this section, the original method of Debbeler [6] is
summarized for reference. Subsequently, a modification is
presented to improve its robustness against truncation. Finally,
a modified cost function is presented specifically designed for
estimating the detector orientation in chest tomosynthesis.

A. Plane-based raw data redundancy criterion

A schematic representation of chest tomosynthesis is illus-
trated in Fig. 1. Projections are acquired of a patient f with a
stationary detector Θ. The N subsequent positions of the X-
ray source are indicated as s(λi). Note that in our setup, the
X-ray source moves on a linear path S. In other tomosynthesis
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Fig. 1. Illustration of a chest tomosynthesis acquisition. N X-ray images are
acquired on a stationary flat panel detector Θ with an X-ray tube that moves
on a straight line S. The angle μ represents the orientation of the detector,
relative to the X-ray tube path. Most chest tomosynthesis systems are designed
such that μ = 0.

setups the source might move on a circular path over a limited
angle, which is not considered in this work. The coordinate
frame attached to the detector has axes (U, V,W ).

The epipolar redundancy criterion describes the following
relationship between two projection images. For two source
points s(λn) and s(λn̂), multiple planes Ω can be drawn that
intersect both points and the detector along an intersection
which can be parameterized by an angle μ and a distance l
from the detector center (u0, v0). For noiseless acquisitions
and without truncation, it can be proven [6] that

g3(λn, μ, l) = g3(λn̂, μ, l) (1)

with g3 defined as:

g3(λn, μ, l) =
∂

∂l
g2(λn, μ, l) (2)

where

g2(λn, μ, l) =

∫ ∞

−∞
g1(λn, l cosμ− t sinμ, l sinμ+ t cosμ)dt

(3)
and

g1(λn, u, v) =
1

|w · t(λn, u, v)|
p(λn, u, v) (4)

with p the projection data, w the normal of the detector and
t(n, u, v) the direction of the ray arriving in detector pixel
(u, v) of the nth projection. Based on Eq. (1), a redundant
planes cost function cRP can be derived which reaches a
minimum if the geometric parameters (and hence μ and l)
are correctly estimated:

cRP =

√√√√√N−1∑
n=0

π/2∑
μ=−π/2

Lmax∑
l=−Lmax

(g3(λn, μ, l)− g3(λn̂, μ, l))2

(5)
In this work, we will focus on the estimation of the detector
orientation μ, relative to the linear motion path of the X-ray
tube.

B. Truncation weighting

In the presence of noise and moderate truncation in the
acquisitions, minimizing the cost function cRP in Eq. (5) has
been reported to still provide a good indication for estimating
parameters of the acquisition geometry in Cone Beam CT [6].
However, in chest TS, substantial truncation of the object is
present in the projections both in the horizontal and vertical
direction. If the X-ray source moves on a linear path with
a very small angle μ relative to the detector, the largest
inconsistencies between the projections can intuitively be
expected to be at the top and bottom regions of the projections
as certain parts of the patient will not be imaged, depending
on the acquisition angle of the tube. Intuitively, the horizontal
truncation would cause less inconsistencies. In previous work,
a weighting function was therefore derived to reduce the
weight in the cost function cRP of pixels that were suspected
to contain information that was not present in all projections
[7].

However, Eq. (3) is very sensitive for pixels near the upright
(horizontal) image edges, even if an object would have been
imaged that fitted perfectly on the detector without horizontal
truncation. A small deviation from 0 in μ would cause a large
part of the image pixels in the image border to fall off the
intersection with the plane Ω, causing a large discontinuity in
g3 and thus making the entire cost function cRP unstable.

Therefore, we propose to use a truncation filter which
gradually reduces the weight of the pixels near the horizontal
image borders (Fig. 2), with w the relative width of the left
and right regions of the image where the weight is reduced
using a Gaussian function. The same filter is also proposed to
compensate vertical truncation.

Fig. 2. To reduce the impact of pixels near the edge of the projections on the
cost function, a weighting functions is applied. In the regions of relative width
w, weights are increased from 0 to 1 according to a Gaussian distribution with
3σ = w.

C. Robust cost function for linear tube motion

In case of linear source motion along a path S, the plane
Ω intersects all source positions s(λi) simultaneously, with
i ∈ [0..N − 1]. Moreover, the detector remains fixed through-
out the entire acquisition in tomosynthesis. The epipolar
redundancy of Eq. (1) can thus be generalized to

g3(λi, μ, l) = g3(λj , μ, l) (6)
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with 0 ≤ i < j < N . The cost function cRPL for linear source
motion can be written as

cRPL(μ) =
∑
l

N∑
i=0

(g3(λi, μ, l)− ḡ3(μ, l))
2 (7)

with ḡ3(μ, l) ≡ 1
N

∑
n g3(λn, μ, l).

III. EXPERIMENTS

In a first series of experiments, the presented method was
evaluated on the XCAT phantom [8]. Subsequently, experi-
mental projections were acquired of an anthropomorphic phan-
tom (Humanoid Systems, Carson, USA) with a tomosynthesis
modality.

A. XCAT simulations

A chest tomosynthesis exam was simulated using the XCAT
[8] phantom. The ASTRA [9] toolbox was used to compute
11 projections of the XCAT phantom with a source image
distance of 120 cm and a linear X-ray tube motion path of
20 cm. The first and last projection image are displayed in
Fig. 3. Detector size was set to 360 × 420 pixels of 1 mm
size. Moderate Poisson noise was added to the projections,
corresponding to an unattenuated photon count I0 = 105.
The detector was placed at a relative rotation of 10◦ with the
motion path of the X-ray tube. Experiments were performed
to estimate this simulated detector rotation.

The error ε on the estimation of the detector orientation
angle μ can be written as

ε = 10◦ − argmin
μ

cRPL(μ)

The maximum achievable accuracy of the estimation is related
to the detector size. In Eq. (3), line integrals are computed
of the projection images along rays with orientation μ. The
maximum accuracy Δ is defined as the angle increment for
which a rays passes through a neighboring pixel at the edge
of the image: Δ = tan−1(1/210) = 0.27◦.

(a) n = 0 (b) n = 10

Fig. 3. First (a) and last (b) simulated XCAT projection.

In a first experiment, the effect of the truncation filtering
as described in section II-B was studied. Without truncation
filtering, cRPL reached a minimal value for μ = 12.7◦ which
is well above the true rotation angle of the detector (Fig. 4(a)).
Subsequently, the use of the proposed truncation filtering was

studied. Gaussian truncation filters were used with varying
values w.

Despite vertical truncation causing the largest data incon-
sistencies between the projections, cRPL does not reach a
minimal value around 10◦ if only vertical filtering is applied
(Fig. 4(b)). However, horizontal filtering causes the minimum
of cRPL to move towards 10◦ for filter widths w > 0.10
(Fig. 4(c)). Combining both horizontal and vertical filters
more or less produces the same results, confirming the need
for horizontal filtering despite the mainly vertical truncation
inconsistencies (Fig. 4(d)).

The estimation errors are displayed in Fig. 5. Truncation
filters along horizontal and both directions produce a stable
estimated angle within the maximal accuracy of the experi-
ment, for filter widths w > 0.10. Vertical filtering only does
not result in a correct estimation of the rotation angle μ.

(a) none (b) vertical

(c) horizontal (d) both

Fig. 4. Cost function cRPL for estimated detector angle μ (true orientation =
10◦). (a) cRPL without truncation filtering (b) cRPL with vertical truncation
filtering, for different filter widths w (c) cRPL with horizontal truncation
filtering (d) cRPL using both horizontal and vertical truncation filtering.

Fig. 5. Error on estimated detector orientation angle (in degrees) for different
truncation filter directions and filter widths w.
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(a) n = 0 (b) n = 65

Fig. 6. First (a) and last (b) image of the tomosynthesis acquisition of the
anthropomorphic phantom. The red dashed lines indicate border regions with
incomplete radiation due to X-ray beam collimation. The white arrow indicates
the path of the X-ray tube.

(a) μ = 0 (b) μ = 0.57

Fig. 7. (a) cropped region of a slice of the tomosynthesis reconstruction of
the anthropomorphic phantom, without correction of the acquisition geometry.
The white arrow shows a large stripe artifact. The black arrow shows a
distorted representation of the vertebrae. (b) The same slice, corrected for a
detector rotation μ = 0.57◦. Note the absence of the stripes and geometrical
distortions.

B. Experimental data

To evaluate the effect of the correction of the relative detec-
tor orientation, experimental tomosynthesis projections were
acquired of an anthropomorphic phantom. Corrected and un-
corrected reconstructions were computed with 45 iterations of
the Simultaneous Algebraic Reconstruction Technique (SIRT)
and compared visually. A motorized X-ray modality was used
to acquire 66 projection images using a flat panel detector of
2208×2668 pixels of 160μm width. The first and last image of
the acquisition are displayed in Fig. 6. The X-ray tube moved
on an arc above the detector center with a radius of 148cm
along the longitudinal axis, as illustrated by the white arrow.
Due to X-ray beam collimation, regions near the left, right and
bottom edges of the projections contained unexposed pixels
and were therefore cropped as illustrated by the red dashed
lines. Projection angles were distributed equiangularly from
−20◦ to 21◦. The cost function cRPL reached a minimum for
μ = 0.57◦. The striping artifacts and geometrical distortions
in the uncorrected reconstruction (Fig. 7(a) are not present
anymore in the corrected reconstruction (Fig.7(b)).

IV. DISCUSSION

The experiments show that the optimal width of the trun-
cation filter is primarily depending on the orientation angle
of the detector and the range around which the function g2 is
computed.

With filter widths w > 0.35, the cost function becomes
unstable. A possible explanation could be that more than
70% of the projections has been weighted down, leaving too
little useful information in the projections to compute a cost
function robustly.

In the experimental setup, the X-ray tube moved on an
arc in stead of a linear path, as assumed in the robust cost
function cRPL of Section II-C. No plane Ω could therefore be
fitted exactly through all the tube positions, for all intersection
lines with the detector. Nevertheless, the cost function cRPL

still showed a clear minimum around 0.57◦, which improved
reconstruction quality substantially.

V. CONCLUSION

In this work, truncation filtering was presented to in-
crease the performance of the epipolar consistency conditions
(ECC) for estimating the relative detector orientation in chest
tomosynthesis. Corrected reconstructions showed substantial
increase in reconstruction quality and reduction of striping
artifacts and geometrical distortions.
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1A unified x-ray computed tomographic
reconstruction framework

Ti Bai, Xuanqin Mou, Hao Yan, Hengyong Yu and Ge Wang

Abstract—Despite the recent advances in low-dose x-ray com-
puted tomography, image noise and artifacts remain major issues
in clinical and preclinical applications, which come mainly from
data noise, beam hardening, and scattering. While extensive
efforts were devoted to address individual causes for image
quality degradation, little attention has been paid to minimize
the adverse effects in a unified fashion. In this paper, we combine
image reconstruction and artifact reduction in a physics-based
synergistic framework with a high computational efficiency.
Experimental results show that we can achieve 44% and 35%
image noise reduction along with significant HU number accuracy
improvement in the cases of prostate and head-neck cancer
patients, as compared to a standard statistical reconstruction
method. Moreover, the overall reconstruction process can be
finished within 2 minutes.

Index Terms—Image reconstruction, cone beam CT, noise,
beam hardening, scattering

I. INTRODUCTION

THE great demands of accurate non-destructive imaging
of structures inside an object have driven a rapid de-

velopment of x-ray computed tomography (CT) technologies
over the past decades. Now, CT has been widely applied
in an array of scenarios, such as industrial non-destructive
detection, medical diagnostic imaging, image guided radiation
therapy/surgery, and preclinical small animal studies. Despite
the significant progress made in hardware and algorithm, there
still exist substantial flaws impairing the image reconstruction
performance stemmed from various sources of data degrada-
tion including data noise, beam hardening, scattering, and so
on.

Given the inherent stochastic nature of the photon emission
and photon-material interaction, quantum noise in projection
data is inevitable which will be propagated to reconstructed
images, resulting in streak artifacts and reducing low-contrast
resolution. Major efforts were devoted to noise reduction,
which can be divided into two categories: pre/post-processing
methods and model-based iterative algorithms. The strategy
of pre/post-processing is to apply a sophisticated linear or
nonlinear filter directly on projection data or reconstructed
images for noise suppression[1]. On the other hand, a model-
based iterative algorithm formulates the reconstruction task
into an optimization problem by taking into account the
statistical property of data noise and prior knowledge in a
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specific application[2]. Either a Poisson distribution of raw
data before log or a Gaussian distribution of line integral data
after log are often adopted[1], [2]. As far as prior knowledge
is concerned, sparsity and low-rank promotion regularizers,
such as total variation (TV) minimization[3] and dictionary
learning (DL) based representation[4] are very popular, thanks
to compressive sensing techniques..

Beam hardening is due to the polychromaticity of the x-ray
spectrum, and leads to cupping and streak artifacts without
any correction. An ensemble of studies were carried out to
alleviate this problem. For example, the classical method that
combines water correction[5] and bone correction[6] in the
commercial systems. Also, a statistical polyenergetic recon-
struction framework was proposed and showed a promising
outcome[2].

Scattering becomes pronounced when a large area detector
array is used for cone-beam CT. As a result, cupping artifacts
and loss can be problematic[7].A variety of methods were
designed to avoid or compensate for scattering. The hardware-
based methods include air-gap, anti-scatter grid, beam stop,
and primary modulation[8] and so on. The software-based
methods often estimates the scatter in either the projection
or image domain under the assumption that the attenuation
coefficients of the human tissues are known[9], and then
performs a correction accordingly. The scatter can be estimated
with the Monte Carlo (MC) technique[10] or the analytic
formula[11].

Various techniques were proposed to address data noise,
beam hardening, and scattering respectively. However, to our
best knowledge, little attention has been paid to construct
a unified reconstruction framework with respect to all these
degradation factors. In this paper, we attempt to initiate such a
unified reconstruction framework in which the scatter compo-
nents are iteratively separated while updating a reconstructed
image according to a polychromatic x-ray source spectrum. In
the next section, we describe a unified formulation character-
ized by an augmented objective function. In the third section,
we report the experimental results. In the last section, we will
discuss relevant issues and conclude the paper.

II. METHODS AND MATERIALS

A. Formulation

Let us first introduce notations. Based on the noise statistics,
a broad x-ray source spectrum and an assumed smooth scatter
background, we define an overall objective function as follows:

Φ(ρ, s) = min
∑
i

(Ȳi − Yilog(Ȳi)) + λ||�s||p + βR(ρ) (1)

where ρ is the unknown density map, i indexes the detector
element, Ȳi =

∑
e Ii(e)exp(−

∑
k

∑
j mkj(e)ρj lij) + si and

Yi denote the expected value and the real measurement,
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respectively. Ii(e) and si represent the fluence of photon
energy e and the detected scatter signal. lij is an element in
the system matrix, giving the intersection between the ith ray
and the jth voxel of the image volume. It is supposed in this
study that the reconstructed volume could be classified into K
types of materials. mkj(e) is the mass attenuation coefficient
of the jth voxel in the energy bin e if the voxel is of the
kth material type. Regarding the scatter component s, which
is known to be dominated by low frequency components, a
sparsity promotion penalty ||�s||p is used with p = 1 and a
weight parameter λ. R(ρ) is a regularization term quantifying
the roughness/smoothness of the restored density map ρ whose
strength is controlled by β.

With Eq. (1), we can simultaneously estimate the scat-
ter components and reconstruct an image in the spectrally-
informed fashion. When the source spectrum is unknown, an
effective monoenergetic source spectrum model is commonly
utilized for the reconstruction process, which must be followed
by a beam hardening correction step to minimize the cupping
and streaking artifacts. In that case, the expected value of Yi

can be expressed as Ȳi = Ii(ε)exp(−
∑

k

∑
j mkj(ε)ρj lij),

where ε is the effective x-ray energy. When the scatter com-
ponent s is omitted in Eq. (1), the proposed framework will be
reduced to the classical polyenergetic reconstruction model.

B. Algorithm

Since the iterative reconstruction algorithms were exten-
sively studied based on the statistical model of data noise
or the polychromaticity of the x-ray source spectrum, here
we concentrate on the estimation of the scatter component by
employing an effective monochromatic source spectrum and
utilizing a square error based fidelity term between the expect-
ed values and the measurements. This preliminary study can
be generalized to be a fully unified reconstruction framework,
i.e., Eq. (1), which is our final goal to be achieved based on
this work-in-progress.

Supposed that xj(ε) =
∑

k mkj(ε)ρj is the linear attenu-
ation coefficient of voxel j, and for simplicity, the symbol ε
will be omitted in the rest of the paper. Considering a dictio-
nary learning based �0-norm sparse regularizer, the simplified
unified reconstruction framework could be expressed as:

min
x,s,α

∑
i

||Iiexp(−
∑
j

xj lij) + si − Yi||22 + λ||�s||1

+β
∑
t

(||Etx−Dαt||22 + ν||αt||0), (2)

where Et denotes the extraction of the tth patch. α is the
sparse coefficient with respect to the dictionary D, ν is
the parameter balancing the sparse coding tolerance and the
sparsity level described by ||αt||0.

It is worth emphasizing that with this simplified framework
based on an effective energy source model, the cupping
artifacts from the beam hardening effect can be significantly
reduced by attributing the cupping artifacts to scattering,
although the streaking artifacts due to the beam hardening
effect may still exist, as will be demonstrated in S ec. (III).

The optimization of Eq. (2) can be alternatively pursued by
splitting it into the following three sub-problems:

min
x

∑
i

||Iiexp(−
∑
j

xj lij) + si − Yi||22

+β
∑
t

||Etx−Dαt||22, (3)

min
s

∑
i

||Iiexp(−
∑
j

xj lij) + si − Yi||22 + λ||�s||1, (4)

min
α

∑
t

(||Etx−Dαt||22 + ν||αt||0). (5)

The well-known separable paraboloidal surrogate(SPS) al-
gorithm can be employed to minimize Sub-problem (3) with
the variables s and α being fixed. The classical split Bregman
algorithm is tailored as the solver of Sub-problem (4), which
is a typical problem to perform total variation minimization
based image restoration. Sub-problem (5) is to find the sparse
representation which can be achieved with the orthogonal
matching pursuit algorithm. These are well-known and will
not presented due to the limited space.

C. Initialization

To facilitate the whole reconstruction process, a suitable
initialization is needed to rapidly converge to a satisfactory
solution. Specifically, the reconstructed volume x can be
initialized with the FDK reconstruction[12], based on which
the sparse coefficients α are initialized with the solution of
Sub-problem (5). Moreover, a method is specifically developed
for the initialization of the scatter s.

It is reasonable to assume that the attenuation coefficients of
the human soft tissues are quite stable and fairly uniform with-
in each tissue type. However, the FDK result is significantly
contaminated due to a variety of degradations including data
noise, beam hardening, scattering, etc. Given the attenuation
coefficient range for soft tissue from μ1 to μ2, we can simply
map attenuation coefficients for soft tissues to μwater, while
keeping the rest structures including the air and bone parts
unchanged. Then, a “water-bone-mixture” surrogate object can
be digitally designed as described in [9], [11]. Substituting the
above object into Sub-problem (5), the solution can be used
for the initialization of the scatter component s.

Note that the map Yi − Iiexp(−
∑

j xj lij) contains both
the high frequency components including approximation errors
between the designed object an the ideal volume, and the low
frequency components from the smooth scatter background.
Therefore, a large λ should be chosen so as to extract the low
frequency components, i.e., scatter s.

D. Experiments

Two real datasets from patients were collected, which are
a head-neck case and a prostate case respectively, with the
on-board imager integrated in a Varian TrueBeam medical
accelerator (Varian Medical System, Palo Alto, CA). All the
projection data were rebinned in a 4× 4 mode into 512× 384
pixels with a resolution of 0.776 × 0.776mm2. In each case,
364 and 656 views were respectively collected in the full-fan
mode with a 200 degrees circular arc and the half-fan mode
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TABLE I
ROI STATISTICS OF THE PROSTATE PATIENT CASE. THE NUMBERS INSIDE

THE PARENTHESES ARE THE STANDARD DEVIATIONS.(UNIT: HU)

Mean HU(STD) FDK Pre-correction TF-iterative DL-iterative
Red ROI -223(33) -20(50) -48(17) -42(20)

Green ROI -49(30) 17(46) 45(14) 42(17)
Blue ROI -176(36) 15(54) 33(16) 36(18)

with a 16cm lateral detector shift and a complete scanning
circle. The reconstructed volumes are of 512×512×200 with
a voxel size of 0.57mm3 and 1.0137mm3 in the two cases
respectively.

After the FDK reconstruction, x, s and were initialized as
stated in Sec. (II-C). Since the effective monoenergy ε is un-
known in this study, the commonly used 70keV was employed
to facilitate the computation, and μ1, μ2 and μwater were set
to 0.1cm−1, 0.25cm−1 and 0.2cm−1 respectively for image
segmentation. We also tested the performance fluctuation with
different selections of ε by varying μwater. To demonstrate
the necessity of the iteration, the FDK algorithm was also
applied to pre-corrected data, i.e., subtracted the initialized
scatter component directly from the measured raw data. To
compare with the 3D dictionary learning based regularizer,, the
tight frame (TF) based sparse representation[13] was also tried
in the proposed framework. For performance quantification,
the averaged standard deviation (STD) of noise and the error
in HU were calculated in selected regions of interest (ROIs).

III. RESULTS

Figure (1) demonstrates the experimental results in the
prostate patient case. Sever scatter artifacts, such as the ring
artifact resulted from the bow-tie filter and the black-hole
artifact resulted from the half-fan detector geometry [14], are
evident in the conventional FDK reconstruction. After the
pre-correction, the overall accuracy in HU was remarkably
improved at the expense of noise aggravation, as shown in
Fig. (1)b. As indicated by the arrows, the artifacts were in-
duced by the mismatch between the real object and the “water-
bone-mixture” surrogate object, based on which the scatter was
initialized. On the other hand, it can be seen in Fig. (1)c and
(1)d that after the proposed unified reconstruction substantial
scatter artifacts were suppressed while the noise level was
also effectively reduced, underlying the merits of the proposed
algorithm. As expected, the subtle structures in the dictionary
learning based reconstruction were more faithfully retained, as
compared to that based on tight frame based reconstruction,
as indicated by the magnified ROIs in the second row.

To corroborate the above qualitative results, quantitative
assessment was performed in terms of the mean HU number
and the standard deviation in three ROIs as indicated in
Fig. (1). The key results are summarized in Table I in the
prostate patient case. Comparison of the dictionary learning
based unified reconstruction with the conventional FDK re-
construction without any correction shows that the average
standard deviation is reduced by dictionary learning up to 44%,
while the HU number accuracy is also improved substantially
by the same method.

The results associated with the head-neck patient are in
Fig. (2). The scatter artifacts generated biases in HU num-

TABLE II
ROI STATISTICS OF THE HEAD-NECK PATIENT CASE. THE NUMBERS

INSIDE THE PARENTHESES ARE THE STANDARD DEVIATIONS(UNIT: HU)

Mean HU(STD) FDK Pre-correction TF-Iterative DL-Iterative
Red ROI -133(49) -20(48) -94(24) -83(32)

Green ROI -24(40) 12(37) 31(23) 21(23)
Blue ROI -139(45) -23(53) -72(26) -65(32)

TABLE III
TIME CONSUMPTION PER STEP OF THE PELVIS PATIENT CASE.

operation forward projection backward projection TF DL
time 4s 4s 0.5s 15s

bers, which were more pronounced in the peripheral regions.
Similar conclusions could be made in the prostate patient case.
Specially, the reconstruction with the pre-correction could not
distinguish the muscle and adipose tissues well, as indicated
by the red solid and the green dot rectangles.

Quantitative results in the head-neck patient case are in
Table II. Using the dictionary learning method, a 35% noise
reduction performance was achieved accompanied with a
significantly improved HU number accuracy.

Finally, we repeated the experiments by setting μwater

to 0.18, 0.19, 0.21, and 0.22, respectively. No significant
difference could be observed in terms of the HU accuracy,
demonstrating that the proposed algorithm is robust with
respect to the selection of μwater.

IV. DISCUSSION AND CONCLUSION
In this study, promising reconstructions were achieved with

the proposed unified reconstruction framework, despite that
only an effective monochromatic x-ray source spectrum model
was incorporated. It is expected to be more powerful if
a polychromatic x-ray source spectrum is available, which
will be reported in our next paper. Also, we will investigate
for more effective means to control noise amplification after
scatter correction.

One barrier preventing iterative reconstruction from being
practically used is the high computational burden. This issue is
more serious with the incorporation of correction algorithms,
such as MC-based scatter correction. The proposed unified
reconstruction framework promises added-on values to the
practically relevant situations at a moderate cost, which is
only an extra forward projection per iteration relative to the
conventional iterative reconstruction. Additionally, the ordered
subset based SPS algorithm accompanied with the Nesterov’s
momentum acceleration technique is very efficient as the
optimization solver. Since both of them are highly paralleliz-
able, the computational speed can be enhanced with graphic
processing units (GPUs). In this project, a single NVIDIA
GTX 980 video card was used. The overall reconstruction
process can be finished in 4 loops within less than 2 minutes
for the dictionary learning based reconstruction. Table III lists
the times needed per step in the pelvis patient case.

In this study, the scatter component was initialized based on
a “water-bone-mixture” surrogate object from the FDK recon-
struction. In clinical applications, however, sometimes a better
but “free” prior image could employed for the calculation,
such as a registered CT volume for image guided radiation
surgery/therapy (IGRT).

As there were only two datasets from IGRT examined in
this feasibility study, a more systematic comparion would
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Fig. 1. Prostate patient case. (a)∼(d) Reconstructions with the conventional FDK without any correction, with pre-correction, the unified reconstructions with
the TF and dictionary learning regularizers respectively. The ROIs marked with the rectangles in the first row are used for quantitative evaluation. The insets
in the second row are the magnified ROIs marked in the yellow rectangles. Display window: [-250 250].

Fig. 2. Head-neck patient case. The sub-figures are arranged in the same way as for those in Fig. (1). The display windows from the top row to the bottom
row are [-250 250], [-750 750] and [-250 500] in HU, respectively.

be desirable to establish the extent to which the proposed
unified reconstruction framework can be applied, especially
in different scenarios such as small animal imaging, dental
CBCT imaging, and etc.

In conclusion, a unified reconstruction framework has been
proposed that considers various degradations simultaneously
with a high computational efficiency. Substantial image qual-
ity gains have been achieved with the proposed framework
in terms of significantly reduced noise level reduction and
improved HU number accuracy, as evaluated in the cases
of prostate and head-neck patients respectively, relative to
the conventional FDK reconstruction. Incorporation of the
polyenergetic source spectrum model is expected to improve
the imaging performance further, which is currently under way.
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Adaptation of the OSC-TV Reconstruction
Algorithm for 4D Cone Beam Computed

Tomography
Julia Mascolo-Fortin, Dmitri Matenine and Philippe Després

Abstract—Four-dimensional cone beam computed tomography
(4D-CBCT) allows for temporally resolved imaging with useful
applications in radiotherapy. However, it is also subject to
clinically prohibitive reconstruction artifacts when performed
with standard reconstruction algorithms. A GPU-accelerated
ordered subsets convex algorithm (OSC), combined with the total
variation minimization (TV) regularization technique, is partic-
ularly adapted for this problematic: the TV technique improves
image quality despite the use of a limited number of projections,
while the use of ordered subsets and the GPU implementation
reduce the computation time. Two methods were studied to
adapt the OSC-TV algorithm to 4D reconstruction. In the first
method, the reconstruction of each phase was initialized with a
3D OSC-TV reconstruction, while in the second one, a blank
image was used. Reconstruction algorithms were tested on a
dynamic numerical phantom after a classification in phases based
on the respiratory signal detected by the Amsterdam Shroud
algorithm. Both methods allowed for an adequate visualization of
the respiratory movement, while the 4D reconstruction initialized
from a prior 3D reconstruction led to better overall image quality.
Reconstructions were performed on a single GPU and the total
execution times for 8 phases were of about 35 minutes for
672 projections of 512×384 pixels and a reconstruction grid of
384×384×188 voxels.

I. INTRODUCTION

External beam radiotherapy in the thoracic region presents
the particular problematic of a substantial target displacement
during the treatment due to respiratory motion [1]. To re-
duce the irradiation of healthy tissues, image-guided radiation
therapy (IGRT) should consider this temporal displacement
by using a 4D representation of the patient’s body. Being
acquired over a relatively long period, cone beam computed to-
mography (CBCT) projections contain information about this
displacement. A 4D reconstruction algorithm aims to recover
this information and use it to improve the general quality of
the reconstructed image and, eventually, the accuracy of IGRT.

The low number of projections from each phase and their
uneven spacing are the major problem in 4D CBCT, leading to
major artifacts [2]. Total variation regularization (TV) [3] has
been frequently used to partially correct this problem [4] [5],
but has not been used in combination with the ordered subsets
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convex (OSC) [6] algorithm in the context of 4D imaging.
The advantage of this expectation-maximization algorithm is
to offer clinically acceptable reconstruction times using an
optimized GPU implementation [7].

Considering that many image regions remain static during
respiratory movement, the use of information from all projec-
tions to reconstruct each phase can improve image quality. To
this end, different strategies had already been explored, such
as optical flow based registration [8] or auto-adaptive phase
correlation algorithm [9]. The use of a prior 3D reconstruction
had already been considered to constrain the convergence of
an iterative reconstruction algorithm [10], [11] or to serve as
a base to which add a correction image for each phase [12].
The present work studies a novel approach to optimize the 4D
OSC-TV algorithm by the initialization of each phase by a
prior 3D reconstruction. Using reconstructions of a numerical
phantom, this alternative initialization scheme is compared
to a standard initialization by a blank image. Consequently,
two objectives are pursued in this study: the adaptation of the
OSC-TV algorithm to 4D CBCT and the comparison of the
aforementioned initialization schemes.

II. MATERIALS AND METHODS

A. OSC-TV algorithm

The selected reconstruction algorithm, OSC-TV [7], com-
bines a modified ordered subsets convex algorithm and a
total variation minimization regularization technique. The OSC
step optimizes a Poisson log-likelihood objective function via
expectation-maximization. The TV step is applied alternately
with the OSC step, and minimizes the 3D total variation of the
image estimate. This algorithm seems particularly suitable for
4D reconstruction due to the ability of the TV regularization to
reduce noise and undersampling artifacts and the acceleration
of computation supplied by the modified OSC algorithm. All
of the computational tasks above are implemented on GPU
using the CUDA architecture (NVIDIA, Santa Clara, CA). The
distance elements for the re-projection and backprojection are
obtained via the Siddon’s method [13] and are computed on
the same GPU for one projection angle at a time.

B. Adaptation to 4D reconstruction

The Amsterdam Shroud algorithm [14], as implemented in
the Reconstruction Toolkit library (RTK) [15], was used to
characterize the respiratory movement from a full cone beam
CT acquisition. This signal allowed for the identification of
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respiratory cycles and then the separation of the projections
set into 8 respiratory phases.

Two methods had been developed to adapt the OSC-TV
algorithm to 4D reconstruction, each method having a different
way of initializing the reconstructed image. In the first method
(4D OSC-TV), a standard initialization of the reconstructed
image is performed with a blank image. Each respiratory
subset is therefore reconstructed completely separately from
the other ones. In the second method (p3D+4D OSC-TV), the
4D reconstruction image is initialized from a prior 3D OSC-
TV reconstruction. This prior reconstruction enables the use of
information from the whole projections set, which could po-
tentially reduce streaking artifacts in the final image. However,
motion artifacts present in the initial 3D reconstruction could
affect the final 4D image. We conjecture that those artifacts
will be reduced by limiting the number of 3D iterations: while
being blurrier, the initialization image is expected to be less
prone to streaking artifacts after fewer iterations.

C. Projection data and GPU hardware

The proposed algorithm was evaluated on the XCAT anthro-
pomorphic numerical phantom [16]. The use of a numerical
phantom was justified by the desire of a fully controllable
acquisition, while the choice of this particular phantom was
motivated by its accurate representation of human anatomy
and respiratory movement. A total of 56 3D phantoms were
generated to sample the respiratory movement, which had a
period of 5 seconds (3 seconds of inspiration and 2 seconds
of expiration), an amplitude of 1.2 cm in the anterior-posterior
axis and of 2 cm in the vertical axis. A sphere of soft tissue
of 1 cm diameter was also added in the right lung to simulate
a lung tumor. Cardiac motion and noise were not simulated.

The projections were obtained using the XCAT projector
with parameters inspired from those of a Varian OBI (Palo
Alto, CA) low-dose thorax scan. Attenuation of 70 keV pho-
tons was simulated for a half-fan detector of 397×298 mm2,
to obtain 672 projections on a fine grid of 1024×768 pixels. In
order to reduce reconstruction time, the simulated projections
were brought to 512×384 pixels via averaging of 2×2 pixel
groups. The reconstruction grid consisted of 384×384×188
voxels of 1.2×1.2×1.5 mm3.

The reconstructions were performed on a Titan (NVIDIA,
Santa-Clara, CA) GPU, fitted with 2688 computing cores and
a global random access memory (RAM) size of 6 GiB for the
GPU.

III. RESULTS AND DISCUSSION

The error of each reconstruction algorithm was estimated by
the normalized root-mean-square deviation (NRMSD), defined
as follows:

NRMSD ≡
(

1

μp,max − μp,min

)√∑
j (μj,p − μj,r)

2

jmax
, (1)

where μp denotes phantom voxel values and μr recon-
structed voxel values. The normalization is performed with
respect to the phantom voxel values extrema. The progression
of NRMSD as a function of the number of iterations performed

(in 4D for 4D algorithms or in 3D for the standard 3D
algorithm) is shown in Fig.1. Phase 1 and 4 were selected
to show the accuracy of reconstruction methods for both
an end phase (phase 1, end-expiration) and a central phase
(phase 4). Fig.1 shows that approximately 2 iterations are
necessary to obtain the best 3D image estimate. For both
studied phases, NRMSD did not significantly decrease after
2 iterations for the 3D OSC-TV reconstruction. Based on this
result, 2 iterations were performed for the 3D part of the
p3D+4D OSC-TV method. For the 4D part of the p3D+4D
approach, it was decided from results of Fig.1 to complete 10
iterations, the NRSMD decreasing insignificantly starting at
this point (average decrease of 0.4%).

As seen in Fig.2, projections of the moving phantom were
first reconstructed by two 3D algorithms, the OSC-TV iter-
ative algorithm and the conventional filtered backprojection
method, namely Feldkamp-Davis-Kress (FDK) [17]. For all
reconstructed images (Fig.2 and Fig.3), the same slice is shown
with a μ range of [0, 0.3] cm−1. In Fig.2, both images display
significant motion blurring and artifacts, which would compro-
mise clinical use; these reconstructions are rather shown for
comparison and reaffirm the usefulness of a phase-correlated
algorithm.

FDK 3D OSC-TV

A
xi

al
C

or
on

al

Fig. 2. 3D reconstruction of the XCAT phantom in movement using the FDK
algorithm and the OSC-TV algorithm. Both reconstructions display significant
motion blurring and artifacts. μ range of [0, 0.3] cm−1 shown.

Fig.3 shows, for phases 1 and 4, the results obtained by
the 4D methods (p3D+4D OSC-TV and 4D OSC-TV), as
well as the phantom representing the central position of the
studied phases. It can be observed that the use of a prior
3D reconstruction for initialization of the 4D reconstruction
significantly increases image quality for an end phase such as
phase 1, while, for a central phase such as phase 4, both recon-
struction approaches (p3D+4D and 4D) provide similar results.
This is due to the fact that projections identified as belonging
to extremal movement phases, such as fully inhaled and fully
exhaled, are bundled in one position of the respiratory cycle,
while projections belonging to the middle movement phases
appeared at two positions of the cycle, leading to a better
angular coverage for middle phases. Qualitatively, p3D+4D
OSC-TV reconstruction better reproduces motionless regions
(back and the exterior of the chest cavity) than the simple 4D
OSC-TV version, but some motion artifacts present in the 3D
reconstruction are still visible, mostly in the sternum region,
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(a) Phase 1 (b) Phase 4

Fig. 1. NRMSD as a function of completed iterations for different OSC-TV reconstructions (standard 3D, p3D+4D and 4D) for (a) phase 1 and (b) phase
4. Both 4D algorithms yield a lower estimation error than standard 3D, while p3D+4D yields a lower NRMSD than simple 4D for phase 1 reconstruction.

as seen in Fig.3.

The correct detection of the tumor position was also evalu-
ated. Both 4D OSC-TV and p3D+4D OSC-TV could predict
the position of the tumor for phases 1 and 4 with an error
within the uncertainty due to pixel size (1.2 mm in vertical and
lateral directions and 1.5 mm in longitudinal direction). This
precision, combined with a low tumor edge blurring, suppose
an adequate temporal resolution. However, for the 4D OSC-
TV method, detection of some of the real tumors could be
complexified by their eventual proximity to artifacts. Since
the p3D+4D method allows for a better image quality for end
movement phases, detection of small objects’ motion could
be facilitated by its use. From a more general perspective,
it is understood that in this work, the simplicity of the
studied movement i.e., a respiratory movement of constant
frequency and amplitude and no cardiac movement, as well
as the absence of noise, have simplified the problem. Never-
theless, these conditions were already somewhat challenging
and demonstrated the impact of the initialization image on
convergence.

To evaluate the execution time, 10 repetitions of each recon-
struction were performed to obtain a mean execution time and
the corresponding standard deviation. Each iteration completed
with the full data set (3D iterations) took 167.7±0.8 seconds,
while an iteration for the reconstruction of a single phase,
using only 1/8th of the projections, took about 21.81±0.07
seconds. Considering that the p3D+4D approach required 2
3D iterations and 10 4D iterations, while the 4D approach
required 12 4D iterations, the total reconstruction time for the
p3D+4D method was of 34.7±0.1 minutes and of 34.9±0.1
minutes for the 4D method. However, it is to be noted that each
phase’s reconstruction could easily be executed in parallel on
several GPUs, reducing the computation time of the 4D part
of both methods by a factor of 8, if 8 GPUs were available
for the task. The 3D reconstruction could also be performed

via the FDK algorithm to reduce computation time.

IV. CONCLUSION

In the present study, the ability of the OSC-TV algorithm
to perform 4D reconstructions on cone-beam CT projection
datasets obtained via the Amsterdam Shroud algorithm has
been examined. It was shown that the initialization of each
phase’s reconstruction by a prior 3D reconstruction improved
overall image quality. The p3D+4D approach was more robust,
being able to reconstruct end movement phases with less
artifacts in motionless regions, but showed slightly more
streaking artifacts than the simple 4D approach. Reconstruc-
tions were performed on a single GPU and the total execution
times for 8 phases were of about 35 minutes. To continue
the validation of a four-dimensional version of the OSC-TV
algorithm, it is envisioned to compare it with other 4D CBCT
reconstruction algorithms and study reconstructions of clinical
CBCT acquisitions.
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Fig. 3. XCAT phantom and its 4D reconstructions for (a) respiratory phase 1 (end-expiration) and (b) respiratory phase 4 (central respiration phase). For
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� 
Abstract—X-ray focal-spot shift (FSS) can cause artifacts in CT 

reconstruction. In industrial and security applications, FSS needs 
to be corrected real-timely as it changes during the CT scan. In 
this work, we propose a practical real-time correction method. 
Based on cone-parallel reconstruction, only one time of rebinning 
and filtering is needed to estimate the amplitude of FSS in our 
method. It greatly reduces the time cost compared with the 
correction method in flying focal-spot systems, which makes 
real-time correction possible. Results of simulation show that the 
image after correction using this method is close enough to the 
real one. 
 

Index Terms—CT reconstruction, focal spot shift, 
reconstruction algorithm 
 

I. INTRODUCTION 
In industrial CT applications, X-ray Focal-Spot Shift (FSS) 

is one of the most important problems that degrade image 
quality. FSS is mainly caused by variations of the tube 
temperature and imperfect mechanical accuracy of the rotating 
gantry. As both factors make FSS change all the time during 
usage, the problem cannot be solved just by pre-correction 
before usage. Although improving the hardware precision may 
help to reduce the negative effect of FSS, the total cost of the 
whole CT device will be increased greatly. In this work, we 
propose a practical real-time correction method for this 
problem. Since the amplitude of FSS is unknown, we firstly 
build a method to estimate the FSS. Then, according to the 
estimation, an analytic CT reconstruction algorithm with FSS 
correction is executed. In our method, the FSS correction is 
performed only during the back-projection process to save 
computation so that we are able to implement it for real-time 
CT applications which are usually required in security 
inspections. 

Focal-spot offset compensation methods have been an 
interesting topic in this field [1] [2] [3] [4]. Most of them are used in 
flying focal-spot systems. In those cases, the regular movement 
of focal spot is controllable and useful to improve the spatial 
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resolution. In this work, the variation of focal spot is unknown 
and needs to be corrected in real time to avoid any delay in 
real-time applications. To our best knowledge, few publications 
are involved in the research of such unpredicted FSS.  

This paper is organized as follows. In Section II, we describe 
the whole process of our method, including the reconstruction 
algorithm parameterized with FSS and the indicator function 
defined upon an object (referred as indicator) in reconstructed 
images that can reflect the scale of FSS. In Section III, we 
display our initial experimental results. In Section IV, we give 
conclusion and some discussions. 

II. METHOD 
The proposed method can be separated into two parts.  

Firstly, given an FSS, a CT reconstruction algorithm 
accommodating FSS correction can be performed. Secondly, 
the degree of FSS can be measured by reconstructed images 
from a given indicator. In this work, we figure out an overall 
method to solve these two aspects. 

Given a machine calibrated before usage (  at the 
beginning), the real-time correction method includes following 
steps: 

1) Enumerate a list of possible FSSs around the current FSS 
(e.g. � �currentFSS FSS 0.1mm 1,2, ,10k k� � � � �,10 ). 

2) For each possible FSS estimation, reconstruct a small 
region with the indicator inside (namely local reconstruction). 

3) Calculate a quantity that reflects the degree of FSS 
(namely indicator function) for each one. 

4) Reconstruct the whole image using FSS estimation with 
the smallest value of indicator function, and set this FSS as the 
current FSS. 

 

A.  Analytical CT Reconstruction Algorithm with FSS 
Correction 

Theoretically speaking, reconstruction method of flying 
focal spot [1] [2] can be used to solve the FSS problem. In those 
methods, focal-spot shift is corrected within the rebinning 
process, then filtering and back-projection process is done on 
such rebinned data. However, once the FSS value is changed, a 
different rebinning and filtering process should be done, which 
involves the whole acquisition data. This means that a great 
amount of calculation caused by rebinning and filtering are 
required, which obviously cannot meet the acquirement of 
real-time reconstruction. Therefore, our method corrects the 
FSS in the process of backprojection. Once the rebinning and 

Helical CT Reconstruction with Real-time 
Focal-Spot-Shift Correction 

Pei Han, Xin Jin, Yuxiang Xing 

The 4th International Conference on Image Formation in X-Ray Computed Tomography

173



filtering have been done, only a small region containing the 
indicator (to be introduced in Section II.B) needs to be 
reconstructed several times for FSS estimation, which can 
avoid massive calculation. 

Our reconstruction method is extended from a standard 
CB-FBP algorithm with cone-parallel geometry [5]. According 
to [5], a 3D map of linear attenuation coefficient is computed 
based on a cone-parallel geometry. 

For convenience, we illustrate cross-section view of the 
cone-parallel geometry, i.e. project all rays on Oxy plane, as 
shown in figure 1. Here, the focal spot is denoted by S. The ray 
passing an object point  has its projection P on a 
circular virtual detector. Angle  is used to index view angles 
on the Oxy plane and t indices detector bins. The central ray of 
view  is denoted by . Rotation axis (Z) of a helical scan is 
perpendicular to this plane and cone angle  is out of the plane. 

 
Fig. 1.  Cross-section view of cone-parallel back-projection geometry. 

 
With a standard helical CT geometry, reconstructions can be 

obtained by: 

 
max

min

max min
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�

( , , )f x y z( , ,, , �

�( , )dg( , ,
  (1) 

 ( , , ) ( , , ) ( )g t g t g t� � � �� �( )g( )( , , ),   (2) 
where  is the projection,  represents the 1D ramp 
filtering kernel, R is the radius of the trajectory, Z is the 
projected z-coordinate of point  onto the virtual 
detector, and   is the 3D view weighting function. 

 
Now, we consider a non-standard case with FSS. In theory, 

FSS could be in all directions. Since slice thickness in helical 
CT reconstruction is relatively larger than in-place resolution, 
the degradation from FSS along Z is less important to us. Also, 
reconstruction is not sensitive to radius FSS. Therefore, we just 
focus on tangential FSS. As shown in figure 2, we denote  to 
be the actual location of the focal spot, which deviates from S 
within the helical source trajectory. In this way, the amount of 
shift can be defined as the arc-length  (or the chord-length 

, because  is small), and count-clockwise direction is 
noted as position direction. 

Assume that FSS remains almost the same during the short 
time over a few circles of scan. The central line of view angle  
also deviates from  to , where . Since  
(within in several mm) is much smaller than the distance 
between the source and detector (about 1.2 ~ 1.5 m), and S is 
not so far from S0, we can assume that  , i.e. 

. 
In this way, the real ray projecting at P is emanated from , 

rather than S. Directly replacing  with this projection 
will obviously cause artifacts. In fact, the real ray passing 
through P within this view angle  is the red dot line in figure 2, 
which projects at  and is parallel to ray  (or ).  

 
Fig. 2.  Cross-section view of cone-parallel back-projection geometry with 
FSS. 

 
In order to use the CB-FBP method with cone-parallel 

geometry, we need to find the true orthogonal iso-distance , 
which refers to the distance between  and . Based on 
the geometric relations shown in figure 2, we have 
 FPP PSS�� �PSS�PSS   (3) 

Therefore 

 cos cos cosFP dt t PP t SS t SS
LSP

� � �� �� � �� � � � � � �   (4) 

where  is the angle between the central rays with and without 
FSS (the blue dash line and blue solid line in figure 2), L is the 
distance between source and virtual detector D, and d is the 
distance between virtual detector D and the object point. 

 
Consequently, the reconstruction method parameterized with 

FSS can be rewritten as 

 
max

min

max min
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 cosdt t SS
L
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where  is the shift value, L is the distance between source S 
and virtual detector D, d is the distance between virtual detector 
D and the object point , and  is the angle between the 
central rays with and without FSS. We can see that the only 
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difference between (5) and (1) is back-projection geometry. 
 

B. Indicator function to measure FSS 
In order to estimate and correct the offset, we need to find an 

object in the reconstructed images to be an indicator. We expect 
the image of our indicator demonstrate some features 
monotonically related to FSS. An object uniform in z-direction 
can be considered as a good choice because it appears as the 
same in every slice, but the tangential FSS can cause periodic 
deviation of its location in slices. 

 
Fig. 3.  A slice image of a real security check CT system, in which the tunnel 
wall appears as the narrow bright boundary around. 
 
1 Choice of Indicator 

The indicator employed in this article is the tunnel wall of the 
security CT machine. It often appears as a narrow bright line in 
each slice of reconstructed images, as shown in Figure 3. 
Obviously, it not only satisfies the ‘z-uniformity’ requirement, 
but also has the following additional advantages: 

1) It is perfectly stable. External changes (e.g. temperature 
variations and wind disturbances) will not destroy its 
uniformity in z-direction. 

2) While reconstructing different luggage, the tunnel is 
always in the same location. This guarantees a stable and 
reliable indicator calculation of the proposed method. 

3) It introduces no extra cost. Placing a standard object in the 
machine is operable but not necessary here. 
 
2 Definition of Indicator Function 

The goal of the indicator function is to evaluate the 
uniformity of the tunnel area in reconstructed image. In this 
work a simple but efficient indicator function is used. 

First, let us denote  as the discrete version 
of the reconstructed image  here. We choose a pixel 

 on the tunnel wall in one of the slices. Two 
rectangular regions (referred as  and  respectively) on 
x0yz and y0xz planes are defined with  at their center, 
described as 

 0 0 0

0 0 0

: , [ , ]
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For each k, we can calculate 1D centroid of  and  
along x and y direction, respectively: 
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The images of (7) and (8) are shown as figure 4(a) and 4(b) 
respectively. 

Then, the variance of  and  can be evaluated by 
 and : 
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where ( )C C
k

x x k K� � and ( )C C
k

y y k K� � , K is the 

number of slices to be chosen. 
Finally, the indicator function noted as  can be expressed 

as 

 2 2
I x y� � �� 
   (10) 

 
Fig. 4.  Examples of (a) images within regions  and ; (b) Centroid along 
x and y direction of  and , respectively. 
 
3 Computational Complexity 

For a whole backprojection,  pixels should be 
reconstructed. Assume that enumeration of indicator function 
values at 20 FSSs are needed in our correction method. In each 
calculation of indicator function, only  pixels will 
be involved based on (7) and (9). Thus,  pixels 
should be calculated totally during the FSS correction process 
in our method. Since K is about the same as , and an m 
smaller than 10 is generally enough, we have the following 
proportion given that  and  are around 103: 
 340 (2 1) 80 10z x y zm K m N N N N�� 
 � � � �z x yN N80 10 x yx0 380 10 N N380 10 N N380 10   (11) 

This means that the correction step only takes 0.1% time cost 
of a regular backprojection, which makes real-time correction 
possible. 

III. EXPERIMENTS AND RESULTS 

A. Correlation between Indicator Function and FSS 
Using the algorithm in II.B, we can simulate the 

reconstructed images with different FSSs. The 3D effect of our 
simulating model and the reconstructed image (without FSS) of 
its cross-section are shown in Figure 5. 
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Fig. 5.  (a) 3D illustration of the phantom for simulation; (b) A reconstruction of 
transverse-plane from the 0-FSS data ( ). 

 
In this model, the reconstructed images are 768 640 for 

each slice, with 216 slices in total, i.e. 
. Choose the slices in which the tunnel wall can be 

easily discerned, i.e.  so that  in (9). 
The correlation of  is shown as Figure 6. We can see 

that  is a monotone increasing function of  as we 
needed. 

 
Fig. 6.  Correlation between  and FSS from simulated data shown in fig. 5. 

 

B. Evaluation of Reconstructed Image 
We use simulated data of  and  for 

comparison. The reconstructed results of the 2mm FSS data 
without correction are shown in Figure 7. The FSS effect can be 
clearly observed in Figure 7(b), where the tunnel wall looks 
discrete in the YZ view. 

Using the method at the beginning of Section II with the 
precision of 0.1mm, we finally estimate FSS as 1.6mm for the 
2mm FSS data, and then reconstruct the whole image. We use a 
chosen line in the same position of the same slice to show the 
results, which is marked red in figure 7(a). 

Profiles of the chosen line are shown in Figure 8. In figure 
8(a), we show the profiles of the ground truth (0-FSS data) and 
the one without correction (2mm-FSS data). In figure 8(b), we 
show the profiles of the ground truth and the one after 
correction. We can see that the profile of the 2mm FSS data is 
close to the 0-FSS data after correction (almost coinciding with 
each other in the two peaks), which is much better than the one 
before correction. 

However, this estimation is not accurate enough. A main 
reason is the lack of image resolution for ‘local reconstruction’ 
(see the beginning of Section II), in which the size of one pixel 
is as large as 1.4mm, which restricts the accuracy of FSS 
estimation. 

   
Fig. 7.  (a) A reconstructed transverse-plane of the 2mm-FSS data ( ); 
(b) A reconstructed x0yz plane of the 2mm-FSS data ( ). Both (a) and (b) 
are reconstructed without FSS correction. 

 

 
Fig. 8.  Profiles of the same line: (a) in the reconstructed images of 0 FSS 
(ground truth) and 2mm FSS without correction; (b) in the reconstructed 
images of 0 FSS (ground truth) and 2mm FSS with correction. 

 

IV. CONCLUSION AND DISCUSSION 
In this paper, we give a novel method that can correct FSS 

real-timely. Theoretically, the FSS correction method 
introduced here has larger error than the accurate flying 
focal-spot method. However, it avoids massive calculation 
caused by repetition of rebinning, and experimental results 
have shown that such approximation is acceptable. 

Our future work will include improving the accuracy of FSS 
estimation, performing experiments on actual data, and the 
real-time monitoring of the focal-spot location using the 
indicator. 
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� 
Abstract— X-ray Computed tomography (XCT) is a common 

tool for the industrial purposes non-destructive testing and 
metrology. For latter the knowledge of measurement uncertainty 
is of great importance. This paper gives an overview of methods 
to determine the expanded measurement uncertainty for a 
measurand based on experiments and simulations. Furthermore, 
we present a simulation-based case study that demonstrates the 
influence of several effects on the expanded measurement 
uncertainty for three measurement features on a selected 
specimen. 
 

Index Terms—XCT, metrology, dimensional measurement, 
measurement uncertainty, simulation 
 

I. INTRODUCTION 
etrology is besides non-destructive testing the most 

important application of XCT. Contrary to metrology 
technologies like tactile and optical measuring systems 
(CMSs), X-ray Computed tomography (XCT) is capable of 
scanning a complete workpiece at once. Furthermore, XCT 
can provide measurement values of inner and inaccessible 
measurement features. 

However, the complete process chain from an XCT scan of 
a specimen to a final measurand (e.g., radius, roundness, 
distance) plus uncertainty value is rather complex, since there 
are numerous factors that influence the uncertainty. 

The expanded measurement uncertainty is a quality 
indicator of a measurement and especially important, when a 
decision is necessary, if a manufactured part is within the 
tolerance. This article presents a simulation-platform and a 
case study that gives more insight into the relevance of 
selected influencing factors. 

II. MEASUREMENT PROCESS WITH XCT 
At first, the metrologist has to plan the XCT measurement 

and make choices on several free parameters, before 
performing the XCT scan. The scan is followed by evaluation 
procedures to determine the required measurand. The 
 

Submission date is the 25th of January 2016. This work was supported by 
the “K-Project for non-destructive testing and tomography plus” financed by 
FFG and the governments of Upper Austria and Styria. 

Michael Reiter and Johann Kastner are with the University of Applied 
Sciences Upper Austria, Campus Wels, Stelzhamerstrasse 23, 4600 Wels, 
Austria (e-mail: michael.reiter@fh-wels.at, johann.kastner@fh-ooe.at). 

following list summarizes this workflow for measurements 
with XCT and states degrees of freedom: 
1) Choose an orientation of the specimen in the X-ray beam 

This should ensure the minimization of artefacts and 
systematic measurement errors due to X-ray related effects 
or inexact reconstructions. 

2) Select device, CT and reconstruction parameter 
The chosen parameters of X-ray source (e.g. acceleration 
voltage, current, filter plates) and detector (e.g. integration 
time, averaging, gain) have to ensure sufficient 
transmission of X-rays through the specimen, reduce 
beam-hardening by a sufficient amount, and lead to a 
sufficient signal-to-noise and contrast-to-noise ratio. 
Besides that, the number of projections and reconstruction 
parameters have to be chosen. 

3) Perform the XCT scan of the specimen 
Projection images are acquired from different views of the 
specimen and are reconstructed to a 3D image that consists 
of voxels, which represents the spatial X-ray attenuation of 
the specimen. Optionally, artefact corrections are applied 
before or after the reconstruction. 

4) Perform dimensional measurements 
Various tools of XCT and software manufacturer are 
available to extract the surface points (point clouds) from 
voxel data and can perform measurements on surface 
points. Actual/nominal comparison is a geometrical 
comparison in 3D, where the alignment of reference and 
specimen is of importance to determine differences. 
Similarly, measurements and tolerance verifications of 
geometrical features (e.g. size, form, position, …) are 
influenced by user choices on the positions and number of 
extracted surface points (measurement strategy). 

 
A lot of effort is put into the establishment of automated 

procedures that support the user during the scanning and 
measurement workflow described above. Nevertheless, device 
operators induce uncertainty to the measurement. Other 
factors that contribute to the uncertainty of a measurand Y are: 
(i) device stability and knowledge of the actual geometry, (ii) 
correction, reconstruction and evaluation procedures, (iii) the 
measurement environment (e.g., Temperature, Humidity, 
Vibrations), (iv) properties of the specimen. The interested 
reader can refer to [1,2]. The determination of measurement 
uncertainty is described in chapter III. 

Investigation towards simulation-based 
determination of measurement uncertainties for 

X-ray computed tomography 
Michael Reiter and Johann Kastner 

M 
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III. METHODS TO DETERMINE THE MEASUREMENT 
UNCERTAINTY 

The Guide to the Expression of Uncertainty in 
Measurement (GUM) [3] provides basic methods for the 
determination of measurement uncertainty, also applicable to 
XCT. The most common approach for XCT is the 
experimental method, which needs reference measurements. 
The second approach is based on simulations using the Monte-
Carlo method. Describing the propagation of measurement 
errors by a model function is currently not realizable for XCT. 

A. Experimental method using calibrated workpieces 
The experimental approach described in ISO 15530-3 [4] 

for CMSs can be adapted to XCT [5,6], but is not yet covered 
by a dedicated standard. This approach is based on setting up 
an uncertainty budget to describe the expanded measurement 
uncertainty U of a measurand y without investigating error 
sources of XCT measurements separately. There are two 
definitions of U. In the uncorrected case, the systematic 
deviations b (Equation 1) between the XCT and reference 
value is treated as random error and added to the expanded 
measurement uncertainty (Equation 2). On the other hand, the 
corrected case, which is suggested by [3], considers only the 
uncertainty of the bias correction as additional standard 
uncertainty ub. The complete and corrected measurement 
result Y is then given by Equation 3. Descriptions of factors 
contributing to these formalisms are given in Table 1. To 
perform this statistical assessment at least 20 repeated XCT 
measurements are required [4], as well as repeated 
measurements performed with a reference method. Typically, 
tactile or optical CMSs are used to calibrate workpieces. For 
further details, we refer to [4,6]. 

Overall, this is a time-consuming and costly procedure, 
which is only applicable if the workpiece has features that are 
accessible by the reference method [5]. Simulation-based 
estimation of measurement uncertainties could partially 
overcome these drawbacks. 
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B.  Simulation-based approach using the Monte-Carlo 
method 

Investigating the uncertainty in metrology on the basis of 
the Monte Carlo method (MCM) by numerical simulation is a 
well-established procedure. It is applicable to any kind of 
measurement technology and is published in the supplement 1 
to the GUM [7]. The virtual coordinate measuring machine 
(VCMM) is based on the MCM and is already used in 
metrology laboratories for uncertainty assessments [8]. 

Hiller et al. [1] adapted and applied the MCM more recently 
to XCT. The complete measurement process is simulated 
multiple times, as realistic as possible, with varying input 
parameters Xi to gain measurand Y from dimensional 
measurements on the virtual XCT images (Fig 1). 

The input parameters Xi are assumed to be random variables 
that follow a defined probability density function (PDF) (e.g. 
uniform or normal distribution) and are stochastically selected 
by pseudo-random generators for every simulation run. This 
leads to a standard uncertainty usim of Y (Equation 4). 
According to [9], total uncertainty values can be obtained by 
additional including uncertainty contribution from other 
sources (hybrid approach). 

UyY �� ,      2
other

2
sim uukU 
��  (4) 

Preferably, the distribution functions of Xi are determined 
by experiments or given by manufacturer specifications. If 
experiments are not available, their characteristics have to be 
estimated. 

IV. SIMULATION PLATFORM FOR THE ESTIMATION OF 
MEASUREMENT UNCERTAINTIES 

This work uses SimCT [11] a simulation tool for X-ray 
imaging and XCT. The tool considers all relevant effects from 
the generation of X-rays, to the interaction of X-rays with the 
virtual specimen and finally to the detection of X-ray. Surface 
models (triangle meshes and constructive solid geometries) 
and corresponding materials define virtual specimens. SimCT 
is capable of considering static, time and angle dependent 
misalignments during XCT scans with circular acquisition 
trajectories. Within this work, only static detector mis-
alignments are considered by the MCM, whereby all other 
effects are considered as realistic as possible. 

Projection images are reconstructed using the filtered back-
projection algorithm published by Feldkamp et al. [12]. 

TABLE 1 
DETAILS TO THE UNCERTAINTY BUDGET 

y  Uncorrected measurand 

caly  Calibrated measurand determined by the reference method 

b  Systematic deviation between reference and XCT 
y  Mean of the uncorrected measurand values (XCT) 

U  Expanded measurement uncertainty of the XCT measurement 

k  Expansion coefficient (k=2 represents a confidence level of 95% 
for the assumption for a normal distribution) 

calu  Standard uncertainty of the calibration measurements 

pu  Standard uncertainty of the XCT measurements 

wu  
Standard uncertainty from material and manufacturing variations of 
the workpiece (variation of   expansion  coefficients, form errors, 
roughness, elasticity, etc.) 

bu  Standard uncertainty of the correction of systematic errors b 

 
 
 
 
 
 
 
 
 
 
Fig. 1.  Process chain of the Monte Carlo method for uncertainty estimation.
X are input quantities and Y is the measurand. f represents a simulation
platform that generates realistic XCT data. 

X1 
X2 
… 
XN 

input 

Y=f(X1, X2,…, XN) Y 

output 
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V. CASE STUDY 
This paper presents a case study performed on an aluminum 

workpiece (alloy EN-AW7075) shown in Figure 2, where the 
measurement features diameter d1, d2 and d3 are of interest. 

Several uncertainty estimations, based on the MCM, were 
done to analyze the relevance of five different uncertainty 
sources i listed in Table 2, where one uncertainty source 
contains at least one input parameter. Simulation series and 
uncertainty assessments (Equation 5) have been done for these 
five sources separately and all enabled at-once. Additionally, 
the separately determined uncertainties have been combined 
by Gaussian error propagation (Equation 6) to determine the 
expanded measurement uncertainty per measurand d1, d2 and 
d3. Equations 5 and 6 do not contain the standard uncertainties 
ub and ucal due to the simulation-based determination. 
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Realistic XCT simulations are done for scans on a micro-

focus XCT device Rayscan 250E. This device uses an Viscom 
micro-focus tube XT9225-D 225 kV and a Perkin Elmer flat 

panel detector XRD 1620 AN14 (2048x2048 pixels, pixel size 
200 μm). Table 2 shows the investigated, realistically chosen 
and bias-free uncertainty sources with x being the 
magnification axis. The label i will reflect the cause for a 
standard uncertainties ui. Note that un is the uncertainty caused 
by enabling image noise in the simulation. Further constant 
scan parameters are: source-detector-distance 1500 mm, 
exposure time 266 ms, detector gain 16, binning 2x2, 600 
projections, voxel size 40 μm, no additional filter plate to 
harden the spectrum. Simulations are done with four virtual 
rays per pixel, which is a trade-off between calculation time 
and sufficiently modeling partial volume effects. For the 
assessment of the measurement uncertainty per input 
parameter selection, 100 XCT simulations were done. The 
calculation time for 100 simulations was approximately 
30 hours on an Intel Core i7 975 (3.33GHz) with an Nvidia 
GTX 285. 

Dimensional measurements on the virtual data were done 
using Volume Graphics Studio MAX 2.2.6. Surface points are 
determined by a local adaptive threshold [13] and have been 
geometrically registered to a CAD model of the workpiece. 
After that, cylinder geometries were fitted to approximately 
1000 surface points per cylinder by the Gaussian best-fit 
method to determine the diameters d1, d2 and d3. 

VI. RESULTS 
Initially, a simulation was performed as realistic as possible 

without any random input parameter. Results showed that 
systematic errors to the CAD values are significant with 
b1=15.38 μm, b2=-16.47 μm and b3=-10.54 μm at a voxel size 
of 40 μm. The measurand’s mean values of this simulation 
were used as reference value for all five uncertainty sources i. 
Additional, ideal simulations with monochromatic radiation 
without scatter confirmed, that these systematic deviations are 
caused by beam-hardening and scattered radiation. 
Consequently, reducing those effects by selecting an 
appropriate spectrum can lead to higher accuracies. Further, 
Figure 3 shows Ui,corr of diameters determined for the five 
different input parameter selections i given by Table 2. Their 
relevance depends on the measurement feature. For the 
presented investigation, the most relevant errors are caused by 
detector misalignments that remain uncorrected. All five 
effects had bias free PDFs and therefore induced only 
negligible additional systematic errors (<0.25 μm). Figure 4 
shows the uncorrected measurands d1 and d2 of simulations 
were all five uncertainty sources were stochastically selected 
at-once “t,s,r,d,n”. The corresponding uncertainty is shown in 
Figure 3. Expanded measurement uncertainties of this 
simulations and combined uncertainties of separate 
simulations (Equation 6) are only comparable for d2 and d3., 
This means Equation 6 might not be a suitable approximation 
to estimate measurement uncertainties for any kind of 
measurement feature, even though the uncertainty sources are 
bias free. Causes for this behavior will be investigated in 
future work. Note that all corrected expanded measurement 
uncertainties were beyond 5 μm (equivalent to 1/8 of the used 
voxel size) for realistic uncertainty sources. 

 
Fig. 2.  3D rendering of the specimen CAD-model, view from source 
towards detector in the first CT projection (left). Simulated slice image of the 
disk-like workpiece (thickness 4 mm) with three measurement features 
(right). The three diameter values are nominal values. 

TABLE 2 
INVESTIGATED UNCERTAINTY SOURCES 

i Input parameter Unit Distribution function  
t X-ray tube    
 Voltage kV uniform, a=178.0, b=182.0  
 Current μA uniform, a=147.0, b=153.0  
     

s Specimen    
 translation in x mm uniform, a=-2.00, b=2.00  
 translation in y mm uniform, a=-2.00, b=2.00  
 translation in z mm uniform, a=-2.00, b=2.00  
 rotation around x ° uniform, a=68.0, b=72.0  
 rotation around y ° uniform, a=-1.00, b=1.00  
 rotation around z ° uniform, a=-1.00, b=1.00  
     

r Rotary table    
 x-position mm normal, μ=150, σ=0.01  
     

d Detector    
 y-position mm uniform, a=-0.20, b=0.20  
 z-position mm uniform, a=-0.20, b=0.20  
 rotation around x ° uniform, a=-0.25, b=0.25  
 rotation around y ° uniform, a=-0.25, b=0.25  
 rotation around z  uniform, a=-0.25, b=0.25  
     

n Noise    
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VII. CONCLUSIONS 
We have applied the MCM to dimensional XCT by using an 

established simulation platform (SimCT), investigated several 
uncertainty sources and estimated measurement uncertainties. 
For the shown investigation, the most relevant random 
measurement errors were caused by bias-free detector 
misalignments. Beam-hardening and scattered radiation are 
significant sources for systematic measurement errors. 
Consequently, we see simulation-based approaches as useful 
tool to estimate measurement uncertainties, investigate the 
relevance of uncertainty sources and to verify any kind of 
correction method. 
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Fig. 3.  Corrected expanded measurement uncertainty of diameter d1 (left), d2 (mid) and d3 (right). Corrected bias b1=15.38 μm, b2=-16.47 μm and
b3=-10.54 μm. Bright green, the uncertainties resulting from separated simulations per input parameter combination i. In dark green the result of simulations that
consider all uncertainty sources at-once (Equation 6) and in blue the combined uncertainty calculated by Equation 5. 

 
Fig. 4.  Measurement deviation of d1 and d2 for the 100 simulations with all uncertainties sources enabled at at-once “t,s,r,d,n” (left) and the corresponding 
histogram of the uncorrected measurement values (right). 

The 4th International Conference on Image Formation in X-Ray Computed Tomography

180



Micro-CT resolution promotion based on coupled
dictionary training in sinogram

Shouping Zhu, Zhipeng Guo, Cuiping Bao, Jianxun Wang, Gaoqi Lv, Xu Cao, Jimin Liang, and Jie Tian

Abstract—The purpose of this manuscript is to promote the
reconstruction resolution in micro-CT. We approach this problem
by super-resolution via coupled dictionary training in sinogram.
The coupled dictionaries are firstly trained from the sinogram
images of 100 different random phantoms. Then super-resolution
sinogram data are estimated based on the low resolution sino-
gram data with the help of coupled dictionaries. Finally the
filtered back-projection method is utilized for reconstruction
using the low resolution and the estimated high resolution
sinogram data. Simulation and real data experiments show that
super-resolution via coupled dictionary training in sinogram can
promote the resolution of reconstructed result of micro-CT to a
certain degree.

Index Terms—promote resolution, super-resolution, coupled
dictionary training, sinogram, micro-CT

I. INTRODUCTION

M ICRO-computed tomography (micro-CT) is widely
used in small animal and materials research as its high

resolution. Although the resolution of the micro-CT can reach
several microns, the pace to get clearer CT image never stop.
There are two ways to promote the resolution of CT image:
hardware and software. Resolution can be promoted straight-
forward with the hardware upgrade, but it will accompany the
increase of the whole system cost or the decrease of the field
of view (FOV). On the other hand, some advanced or improved
reconstruction algorithms can promote the resolution indirectly
[1][2]. It will promote the resolution to a certain degree at a
cost of calculating time and the algorithm complexity increase.

Super-resolution (SR) is an image restoration method which
can restore the high resolution image from the low resolution
image. SR algorithms have been widely developed and play
an important role in image processing [3]. In recent decades,
SR algorithms have spread to medical image process. In 2002,
Hayit et al. used an iterative super-resolution algorithm to give
improved resolution and better edge definition in the slice-
select direction in magnetic resonance imaging (MRI) [4].
In 2006, John et al. demonstrated a super-resolution method
for improving the resolution in clinical positron emission
tomography (PET) scanners [5]. They obtain super-resolution
images by combining four data sets with spatial shifts between
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consecutive acquisitions and applying an iterative algorithm.
In 2014, Wim et al. introduced a discrete tomography super-
resolution reconstruction approach, and applied to increase
the reconstruction resolution [6]. In 2015, Yan et al. put
forward a general framework of super-resolution in computed
tomography system [7]. Dictionary training methods have been
widely studied for image super resolution[8][9][10]. In this
manuscript, we will use coupled dictionary training method
for sinogram super resolution to promote the CT resolution.

The manuscript is organized as follows. Section II intro-
duces the super-resolution algorithm via coupled dictionary
training and the implement in sinogram data. In section III,
simulation and real data experiments are carried out to eval-
uate the resolution promotion effect of the proposed method.
Finally, a conclusion is given in Section IV.

II. METHODS

There are many kinds of super-resolution methods have
been developed, interpolation-based, regularization based,
training-based, and so on. Since the training-based super-
resolution method put forward by Yang et al. in 2012 [8]
performanced well in reality, we applied it into sinogram
image super-resolution and it can be described as follows.

A. Coupled dictionary training for sparse recovery

For two coupled sparse feature spaces the latent space X ⊆
Rd1 and the observation space Y ⊆ Rd2 , the existing mapping
function F : X → Y can be represented from recovered signal
x in X to observed signal y in Y as that y = F (x). Assuming
that the mapping function is nearly injective, we should find a
coupled dictionary pair Dx and Dy in space X and Y , which
should satisfy a condition that for any signal y ∈ Y , we can
use its sparse representation in terms of Dy to recover the
corresponding latent signal x ∈ X in terms of Dx. Thus the
coupled dictionary should satisfy the following equations for
each signal pair {yi, xi}:

zi = argmin
αi

‖yi −Dyαi‖22 + λ ‖αi‖1 , ∀i = 1, ..., N (1)

zi = argmin
αi

‖xi −Dxαi‖22, ∀i = 1, ..., N (2)

where {xi}Ni=1 and {yi}Ni=1 are the training samples from X
and Y , αi is the sparse code of xi, λ is a parameter controlling
the sparsity penalty and representation fidelity, and {zi}Ni=1 are
the sparse representations.
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The recovery of x from y can be divide into two part, find
the sparse z representation of y in terms of Dy and estimate
the latent signal as x = Dxz. The following squared loss term
is defined to minimize the recovery error of x in dictionary
training.

L(Dx, Dy, x, y) =
1

2
‖Dxz − x‖ (3)

Find the optimal dictionary pair {D∗
x, D

∗
y} by minimizing

the empirical expectation of the squared loss term over the
training signal pairs

min
Dx,Dy

1

N

N∑
i=1

L(Dx, Dy, x, y)

s.t.zi = argmin
αi

‖yi −Dyαi‖22 + λ ‖αi‖1 , i = 1, ..., N

‖Dx(:, k)‖2 � 1, ‖Dy(:, k)‖2 � 1, k = 1, ..., N (4)

where ‖Dx(:, k)‖2 is the kth column of Dx, ‖Dy(:, k)‖2 is
the kth column of Dy.

As empirical loss in (4) does not guarantee that y can be
well represented by Dy , a new loss function is defined.

L =
1

2
(γ ‖Dxzi − xi‖22 + (1− γ) ‖Dyzi − yi‖22) (5)

here γ(0 < γ � 1) used to balances the two reconstruction
errors. When Dy is fixed, the sparse representation zj can be
determined for each yi with Dy , and the problem of (5) can
be reduces to

min
Dx

N∑
i=1

1

2
‖Dxzi − xi‖22

s.t.zi = argmin
α

‖yi −Dyαi‖22 + λ ‖α‖1 , i = 1, ..., N

‖Dx(:, k)‖2 � 1, k = 1, ..., N. (6)

Since Dy is a highly nonconvex bilevel programming problem
[11], descent method is applied to solve this problem.

∂L

∂Dy
=

1

2
{
∑
j∈Ω

∂(γRx + (1− γ)Ry)

∂zj

dzj
dDy

+ (1− γ)
∂Ry

∂Dy
}

(7)
Here, Rx = ‖Dxz − x‖22 and Ry = ‖Dyz − y‖22, zj is the jth
element of z, and Ω denotes the index set for j.

In practice, a projected stochastic gradient descent pro-
cedure is employed to optimize Dy , many techniques are
developed in the calculation optimization either. Thus the
coupled dictionaries Dx and Dy can be obtained after training.

B. Coupled dictionary training in sinogram

In order to find the coupled dictionaries Dx and Dy in
sinogram, we should first select a training data set. The data set
consists of a series of high resolution (HR) images {Xi}Ni=1.
The low resolution (LR) images {Yi}Ni=1 are obtained by
bicubic interpolation with the down sampled HR images.
Since the super-resolution in angle space will bring many
artifacts, the super-resolution is only carried out in detector

(a) Phantom (b) Sinogram

Fig. 1: Random phantom and sinogram. Each phantom consists
of 10 ellipses and 10 rectangles, sinogram was obtained in 360
center degrees with 1024 detector pixels.

bins. Then a large number of training HR/LR image patch
pairs are obtained in HR images. The selected training data
{xi, yi}Ni=1 is N pairs of HR/LR patches of size p×p sample
in {Xi, Yi}ni=1. Then coupled dictionaries Dx and Dy in
sinogram can be found as said in the preceding subsection.

C. Patch wise sparse recovery
Since the coupled dictionaries Dx and Dy is found, HR

image X can be restored from the LR image Y using the
patch wise sparse recovery. It can be described as follow:
Step 1. Input low resolution image Y .
Step 2. Set HR image X = 0; upscale Y to Y ′ by bicubic
interpolation.
Step 3. Select a p × p patch yp in Y ′, m = mean(yp),
r = ‖yp −m‖2.
Step 4. Extract normalized gradient feature y for yp.
Step 5. Calculated z = argmina1/2 ‖Dyα− y‖22.
Step 6. Recover HR patch feature: x = Dxz/ ‖Dx‖.
Step 7. Recover HR image patch xp = (c× r) • x+m. Here
c is a constant depending on the magnification scale.
Step 8. Add xp to the corresponding pixels in X .
Step 9. Repeat Steps 3 to 8 until every divided patch is
calculated.

III. EXPERIMENTS AND RESULTS
A. Super-resolution in sinogram

For coupled dictionary training, 100 random phantoms with
the size 512×512 are created. Each phantom consists of 10
ellipses and 10 rectangles. The side length of the rectangles
and the axis length of the ellipses are generated randomly, and
the positions of the rectangles and the ellipses are also gener-
ated randomly. Projection data of these phantoms is acquired
by distance-driven projection method [12]. 360 projections
were generated cover 360◦. The detector is modeled as a line
array of 1024 bins. Therefore the size of each projection is
1024 × 360. Fig. 1 shows an example of the phantom and
its corresponding sinogram. These sinograms are regarded as
HR images, and the LR images are generated by binning the
detector with a factor of 2. Therefore the size of low resolution
projection is 512× 360.

These sinogram images are applied for couple dictionaries
training. 1,000,000 patches are selected and each patch con-
tains 5×5 pixels. The magnification is set to 2 × 1, which
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(a) High resolution sinogram (b) Low resolution sinogram

(c) Bicubic interpolation of (b) (d) Super-resolution of (b)

Fig. 2: Super-resolution for sinogram data. (a) is the original
high resolution sinogram with the size 1024 × 360; (b) is
correspond low resolution sinogram with the size 512× 360;
(c) is the bicubic interpolation result and (d)) is the result of
super-resolution by direction training. Comparing with (a), the
peak signal noise ratio (PSNR) of (c) is 65.63, and (d) is 66.96.

means that we only implemented super-resolution in detector
bin direction. The training process is performed on a PC with
Intel i7-3770 3.4 GHz CPU and Matlab 2012b is used. 234
seconds were taken after all the patches training completed.
The super-resolution process of siongram data from low-
resolution to high-resolution cost 216 seconds. The super-
resolution results of sinogram are shown in Fig. 2. We chose
the peak signal noise ratio (PSNR) as the image evaluation
criteria, the lager the PSNR, the closer the compared two
images. Comparing with (a), the PSNR of (c) is 65.63, and
(d) is 66.96.

B. Simulation data experiment

In order to verify the promotion effect of the resolution in
reconstruction, we create a phantom and perform simulation
experiments. The phantom consists of some quartet grids in
different width with 256×256 pixels. The projection is ac-
quired in 360 degrees by 800 detector pixels, twice to enlarged
with super-resolution in sinogram after double binning, and
reconstruct with filtered back projection (FBP) method. The
reconstruct results are shown in Fig. 3 and Fig. 4.

In Fig. 3(b), from left to right, top to bottom, the PSNR
are 21.3868, 13.7068, 14.0551, and 15.4425 refer to the
ideal image. Fig. 4 gives the corresponding profile of Fig.
3. We can see that the super-resolution reconstruction results
are better than the bicubic interpolation and low resolution
reconstruction result.

(a) Testing phantom

(b) Super-resolution of test phantom

Fig. 3: Simulation experiment effect in reconstruction. (a) is
the ideal image. In (b), from left to right, top to bottom are
the center region of reconstruction result with high resolution
sinogram, low resolution sinogram, bicubic interpolation and
super-resolution of low resolution sinogram. Referenced to the
ideal image, the PSNR are 21.3868, 13.7068, 14.0551, and
15.4425.

Fig. 4: Profile of the reconstruction result.
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(a) Result of HR sinogram (b) Result of LR sinogram

(c) Result of BI sinogram (d) Result of SR sinogram

Fig. 5: Reconstruction result of high resolution (HR) sinogram,
low resolution (LR) sinogram, bicubic interpolation (BI) sino-
gram and super resolution (SR) sinogram.

C. Real data experiment

To investigate the effectiveness of the proposed method in
real data, a rabbit leg is scanning by the prototype micro-
CT system built in our lab. The system consists of a flat
detector (Dexela1512, Dexela, UK) and a micro focus X-
ray tube (L9181-02, Hamamatsu, Japan). 360 projections are
collected around the subject over 360◦. During scanning, the
detector is set to 2 × 2 binning, and the center row of each
projection is extracted to form a fan beam sinogram. Therefore
the size of the sinogram is 972 × 360, with the pixel size
150μm. It is regarded as the high resolution data. The low
resolution data is generated by binning the projection with the
factor of 2×1. The super resolution sinogram is generated by
the coupled dictionary training from the low resolution data.
we also generate the corresponding bicubic interpolation(BI)
super resolution sinogram for comparison in our experiment.
The reconstruction of the sinogram is performed by the FBP
method with the image size 1024×1024. The results are shown
in Fig. 5, and the corresponding enlarged results are shown in
Fig. 6. We can see the PSNR of (b), (c), (d) are 33.7142,
35.4099, and 36.1565 referenced to (a) in Fig. 6.

IV. CONCLUSION

In this paper, we have applied the super-resolution algo-
rithm via coupled dictionary training to CT reconstruction to
promote the reconstruction resolution. Simulation experiment
shows that the resolution of reconstruction result after super-
resolution in sinogram is significantly improved. In real da-
ta experiment, we can see more details in super-resolution
group compared to the bicubic interpolation group. In conclu-
sion, both simulation and real experiments show that super-

(a) Result of HR sinogram (b) Result of LR sinogram

(c) Result of BI sinogram (d) Result of SR sinogram

Fig. 6: Enlarged views of Fig. 5. Referenced to (a), the PSNR
of (b), (c), (d) are 33.7142, 35.4099, and 36.1565.

resolution via coupled dictionary training in sinogram can
promote the resolution of reconstructed result of micro-CT
to a certain degree.

REFERENCES

[1] Pan X, Yu L, Kao C M, et al. “Spatial-resolution enhancement in micro-
CT.”, Nuclear Science Symposium Conference Record, 2003 IEEE, vol.
5, pp. 3244-3247, 2003 .

[2] Toma A, Sixou B, Denis L, et al. “Higher order total variation super-
resolution from a single trabecular bone image.”, Biomedical Imaging
(ISBI), 2014 IEEE 11th International Symposium on, pp. 1152-1155,
2014.

[3] Park S C, Park M K, Kang M G. “Super-resolution image reconstruction:
a technical overview.”, Signal Processing Magazine,vol. 20, no. 3, pp. 21-
36, 2003.

[4] Greenspan H, Oz G, Kiryati N, et al. “Super-resolution in MRI.”, Biomed-
ical Imaging, 2002. Proceedings. 2002 IEEE International Symposium on
IEEE, pp. 943-946, 2002.

[5] Kennedy J A, Ora I, Alex F, et al. “Super-resolution in PET imaging.”,
IEEE Transactions on Medical Imaging, vol. 25, no. 2, pp. 137-147, 2006.

[6] Van Aarle W, Batenburg K J, Van Gompel G, et al. “Super-resolution for
computed tomography based on discrete tomography.”, Image Processing,
IEEE Transactions on, vol. 23, no. 3, pp. 1181-1193,2014

[7] Yan Z, Li J, Yao L, et al. “Super resolution in CT.”, International Journal
of Imaging Systems and Technology, vol. 25, no. 1, pp. 92-101, 2015.

[8] Jianchao Y, Zhaowen W, Zhe L, et al. “Coupled Dictionary Training
for Image Super-Resolution.”, IEEE Transactions on Image Processing
A Publication of the IEEE Signal Processing Society, vol. 21, no. 8, pp.
3467-3478, 2012.

[9] Gao J, Guo Y, Yin M., “Restricted Boltzmann machine approach to couple
dictionary training for image super-resolution”, Image Processing (ICIP),
2013 20th IEEE International Conference on, pp. 499-503, 2013.

[10] Xiang S, Meng G, Wang Y, et al., “Image deblurring with coupled
dictionary learning”, International Journal of Computer Vision, pp. 1-24,
2014.

[11] Colson B, Marcotte P, Savard G, “An overview of bilevel optimization.”,
Annals of Operations Research, vol. 153, no. 1, pp. 235-256, 2007.

[12] De Man B, Basu S., “Distance-driven projection and backprojection in
three dimensions.”, Physics in medicine and biology, vol. 49, no. 11, pp.
1477-1480, 2004.

The 4th International Conference on Image Formation in X-Ray Computed Tomography

184



Cardiac Motion Compensation from Short Scan
CT Data: A Comparison of Three Algorithms

Juliane Hahn, Herbert Bruder, Thomas Allmendinger, Karl Stierstorfer, Thomas Flohr, and Marc Kachelrieß

Abstract—Aside from dose minimization, improving the tem-
poral resolution is a main issue in cardiac computed tomography,
when trying to provide images with diagnostic value. We compare
three algorithms improving the temporal resolution of a single
cardiac phase without taking information from any other phase:
an iterative reconstruction technique, working on only a subset
of the acquired data, and two motion vector field estimating
algorithms, which are based on the optimization of an image
artifact measuring cost function. The methods are compared with
the help of a phantom measurement and are applied to patient
cases.

I. INTRODUCTION

THE location-dependent temporal resolution tres of a stan-
dard short scan reconstruction is limited by the gantry

rotation time trot and can be approximated by tres ≈ trot/2
close to the isocenter in case of single source systems as
illustrated in reference [1].

Measurements of coronary artery velocities have demon-
strated that the right coronary artery moves with an average
speed between 35mm/s and 70mm/s for patients with heart
rates between 45 bpm and 100 bpm [2]–[5]. Such velocities
can lead to large displacements of the vessels during data
acquisition which introduces strong motion artifacts in the
reconstructions.

As a consequence, quite a few algorithmic solutions have
been proposed in cardiac CT to further increase the temporal
resolution and thus the image quality. They can be divided
into two major groups: iterative reconstruction techniques
utilizing a smaller data range than needed for a conventional
reconstruction via filtered back projection (FBP) [6]–[8], and
motion compensation (MoCo) algorithms estimating space-
and time-resolved motion vector fields (MVFs) compensating
for the motion during data acquisition [9]–[14].

The iterative reconstruction algorithms aim at increasing
the temporal resolution by using only little more than half
of the short scan data for reconstruction (≈ 120◦). In such
approaches, an additional regularization must be introduced
to prevent limited angle artifacts, which occur due to missing
data. In order to restrict the influence of the limited view, prior
knowledge has to be introduced during iterative reconstruction
which is realized by a regularization.

The Temporal Resolution Improvement Using Prior Image
Constraint Compressed Sensing (TRI-PICCS) - algorithm [6]
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uses a low-temporal resolution short scan reconstruction as
prior image and performs an iterative PICCS [15] reconstruc-
tion over only a subset of the measured data. The PICCS
algorithm employs a regularization via total variation to limit
the influence of the limited view associated with the data
used for reconstruction and the motion incorporated in the
prior image. However, in reference [1] it has been empha-
sized that the apparent improvement in temporal resolution
is only comparable to an improvement in temporal resolution
from direct fan-beam reconstruction with Parker weights to a
parallel-rebinned FBP reconstruction.

Another option to prevent limited angle artifacts in an
iterative reconstruction from less than the short scan data has
been introduced with the Temporal Resolution Improvement
Method (TRIM) [7], [8]. A constraint based on a prior image
histogram is introduced, pushing small gray values towards
higher values, thereby reducing limited angle artifacts as
explained in more detail in section II-A.

Completely differing from the first group, most of the algo-
rithms of the second category employ a 3D registration routine
working on the reconstructions of multiple cardiac phases
to obtain motion compensation. For those algorithms much
more data than needed for a single short scan reconstruction
have to be acquired and in general a reference phase of quite
good image quality must exist. Though, especially in cases
of patients with high or irregular heart rates, such a “good”
reference phase, which is often the mid-diastole, might not
exist [2].

For this reason and with regard to dose minimization we
are going to focus on algorithms of this group increasing the
temporal resolution by utilizing only the data needed for the
reconstruction of a single cardiac phase, which is the short
scan data range. The first MoCo method, which is dubbed
after Motion Artifact Metric optimization (MAM) [13], derives
the MVFs analytically by optimizing a cost function, which
measures the amount of motion artifacts in the image, and
applies them to the rawdata. This leads to an image with
reduced motion artifacts after FBP reconstruction (see section
II-B1). The second MoCo algorithm [14] is based on the
reconstruction of a series of partial angle images or volumes
that are used to estimate the motion and then are shifted and
added to obtain a motion artifact–free volume (see section
II-B2). We herein entitle this method PAMoCo (Partial Angle
reconstruction-based Motion Compensation).

We compare the iterative reconstruction technique TRIM
and the two MoCo methods. In a previous comparison between
the TRIM and the TRI-PICCS algorithm (reference [1]) the
TRIM algorithm has already proven superior visualization.
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Therefore, we choose the TRIM method for comparison.
Furthermore, this way we are able to compare algorithms
of the different groups starting from the same rawdata for
reconstruction. We here focus on single source CT systems that
inherently suffer from a lower temporal resolution than dual
source CT systems, although some of the presented algorithms
can be straight forward applied to dual source systems.

II. MATERIALS AND METHODS

A. Iterative Reconstruction TRIM
In order to prevent limited angle artifacts, when utilizing

less than the short scan data, a conventional simultaneous
algebraic reconstruction technique (SART), which optimizes
the raw data fidelity C1(f) = |Xf − p′|2 has been extended
by a regularization term C2(f) to

C(f) = C1(f) + βC2(f). (1)

Herein f is the reconstructed image to be determined, p′ the
raw data subset containing approximately 120◦ of the original
short scan projection data and X the forward projection opera-
tor. The parameter β controls the strength of the regularization,
which has been chosen to be a histogram constraint

C2(f) = −
∑
i

log(ω(f(xi))). (2)

The probability density ω to find a gray value f(xi) is
approximated by local histograms which are derived in small
parts of the image f , e.g. of the regions close to the coronary
arteries. The optimization is divided into a SART-step and
an adaption-step considering the regularization term, in which
unnatural gray values introduced by limited angle artifacts are
pushed towards local maxima of the histogram. Initializing the
optimization with the original low-temporal resolution FBP
image fFBP, the FBP image guarantees that the SART finds
a solution close to it and acts as prior information when pro-
viding the histograms. However, since fFBP is a low-temporal
resolution image, a dependence of the histogram to motion
artifacts might have an influence on the final reconstruction.

Interestingly, exactly this fact is used in the following two
methods, where the images entropy E, which is computed
using histograms of the images, is employed as a measure for
the artifact amount in the reconstruction.

B. Motion Compensation Algorithms
The concept of motion estimation is to estimate MVFs

s(r, t) which are sub-sampled in time and space in order to
compensate for the unknown motion during data acquisition.
Usually, the two major steps - motion estimation - and motion-
compensated reconstruction - are performed in an alternating
manner during a cost-function optimization to obtain a final,
image artifact-free reconstruction. The two methods which we
are going to investigate focus on those regions of the heart
where motion artifacts are typically occurring and which are
of relevance for diagnosis: the coronary arteries and their
surrounding regions. Their visualization is highly relevant for
the diagnosis of cardiovascular diseases, for stent evaluation
or for plaque detection and quantification.

For this reason, and in order to reduce the computational
costs, as a first step a segmentation is performed reducing the
volume relevant for MoCo to the region of interest (ROI) Ωseg.
The MoCo operates only on the voxels of this ROI.

The two methods differ in the way how motion is modelled
as well as how the MVFs are applied.

1) MAM Algorithm: Due to the limitation to the usage of
short scan data, motion estimation in this case is not based on
a registration of images. Instead, the MAM algorithm is based
on the assumption that the amount of motion artifacts can be
measured and compressed to a single number. As suggested
in reference [13], the image entropy

E =
∑
v

h(v) lnh(v) (3)

is used. It is known from information theory and it has been
shown to be a viable measure for the occurrence of motion
artifacts. In equation (3) v is the CT value and h(v) is the
image’s histogram. Motion is modeled by a vector field

M(t, r, s) = r + s(t, r), (4)

composed of in time and space sub-sampled motion vectors
s ∈ RN , which are placed along in time and space equally
spaced control points at voxel positions r ∈ R3. In between
the control points the vectors are simply obtained by linear
interpolation. A motion-compensated reconstruction is done
by warping the voxel space according to equation (4) and
performing a back-projection in an FBP-like manner as pro-
posed by Schäfer et al. [16]. For fast and efficient motion
estimation a gradient descent algorithm with adaptive step size
has been chosen for the motion estimation, which is possible
when approximating the entropy by Parzen-windowing with
Gaussian kernels enabling to calculate derivatives of the cost
function.

2) PAMoCo Algorithm: The algorithm proposed in refer-
ences [14], [17] is based on the reconstruction of a series of
partial angle images, from small double-overlapping segments
of the original short scan data. Since the projection angle ϑ
can be interpreted as time coordinate, the temporal resolution
of the partial angle reconstructions (PARs) is increased by a
factor of (2K + 1)/2, depending on the number S = 2K + 1
of partial angle reconstructions. The PARs are shifted using
the estimated MVFs. Finally, the motion-compensated recon-
struction is obtained by adding shifted PARs

fMoCo(r) =
∑
k

fk(r + s(r, tk)), (5)

where −K ≤ k ≤ K counts the PARs fk(r) centered around
the angles ϑk = ϑ0 + kΔϑ and angular span Δϑ = π/(2K +
1) defining the temporal resolution of the reconstruction. In
order to reduce the computational amount and to regularize
the MVF, the temporal dependence of the motion model is
approximated by a low degree polynomial

s(r, t) =
P∑

p=1

ap(r)(t− t0)
p, (6)

where P denotes the highest power of the polynomial. The
unknown coefficients ap(r) are determined by optimizing
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Figure 1. x-motion in mm in dependence of the heart phase applied by the
motion robot at three different heart rates: 60, 70 and 90 bpm. With increasing
heart rate, a lowering of the amplitude and shortening of the diastolic phase,
as indicated by the dashed line, has been taken into account.

an image metric, e.g. the entropy, as proposed in reference
[13]. Because of the non-convexity of the cost function, the
optimization is re-initialized multiple times. For the actual
optimization, Powell’s algorithm is used, which is a derivative-
free optimization routine, where non-linear constraints to the
parameters can be included.

C. Evaluation
We compare the algorithms presented above with the help of

a phantom measurement. A motion robot triggered by an ECG-
like signal is connected to a synthetic vessel phantom. Each
vessel phantom consists of a cylinder of diameter d imitating
the attenuation properties of a vessel in the absence of contrast
media with an attenuation leading to a CT value of 50HU at
120 kV in the absence of motion. The vessel is placed inside
a water tank, which is surrounded by a body phantom. The
simulated motion depends on the heart rate, also simulating the
non-proportional shortening of diastole and systole at higher
heart rates as described in reference [2]. The effect of the
shortening in case of the x-component of the simulated motion
at different heart rates is illustrated in figure 1. The data were
acquired with a Siemens SOMATOM Force system in a low
pitch spiral acquisition mode enabling the reconstruction of
multiple cardiac phases.

We measured three vessel phantoms with
d = 1.5mm, 2.5mm and 3mm diameter and equipped
each cylinder with a suitable stent, each of different type,
showing different characteristics in the reconstruction. Due
to the rotation time of trot = 250ms of the CT system, the
temporal resolution can be approximated by tres ≈ 125ms at
the location of the vessel which was positioned approximately
in the center of the field of view (FOV) when using only
data acquired by detector A for the reconstruction. In a first
step, we measured the stents without applying motion. Each
measurement was then repeated three times with heart rates
60 bpm, 70 bpm and 90 bpm and motion. With this setup
we are able to simulate the translation of a rigid object and
scan it under realistic conditions. Since we are interested in
increasing the temporal resolution in case of single source
systems, we used only the data acquired by detector A for

motion estimation and motion-compensated reconstruction.
We scanned at a voltage of 90 kV with an effective dose of
640mAs per rotation.

We further compare the algorithms with five coronary CT
angiography patient cases with heart rates between 50 bpm and
70 bpm acquired with a Siemens SOMATOM Definition AS
system, with a rotation time of trot = 285ms and perform
several reconstructions at phases slightly shifted from the best
phase for reconstruction.

Since the MAM and TRIM algorithm are designed to
improve the image quality of a reconstruction close to a best
phase, we are going to compare the three algorithms only in
this region.

We proceeded in a similar manner in case of the phantom
measurement, where we determined the heart rate dependent
best phase by introducing a quality measure Q. Q assesses
the amount of motion taking place during data acquisition by
summing over the absolute displacement in the respective heart
phase:

Q(c) =

c+Δc∫
c

|ṗ(c′)|dc′, (7)

where p(c′) is the position of the vessel phantom, c the start
heart phase of the reconstruction and Δc the half scan range in
units of the heart phases. Q as a function of c for a heart rate
of 70 bpm is shown in figure 2, where we evaluate only phases
between 20% and 80% of the cardiac cycle, since the other
would not be considered for reconstruction anyways due to
the strong displacement close to the R-peak. At this heart rate
we detect the best phase at c = 70% and choose to slightly
shift the phase of interest in 5%-steps to 65% and 60% for
the evaluation of the algorithms.

Figure 2. Motion measure Q in dependence of the reconstruction phase c
in % of the heart beat at 70 bpm.

III. RESULTS

As explained in section II-C in case of the phantom mea-
surement and the clinical cases we reconstructed at cardiac
phases slightly shifted from the best phase in order to compare
the three algorithms.

The reconstructions at a simulated heart rate of 70 bpm with
a vessel phantom of d = 2.5mm at c = 60% and c = 65% are
shown in figures 3 and 4. From left to right the standard short
scan reconstruction, TRIM, MAM and PAMoCo results are
presented. In the first row an axial view of the middle image
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Figure 3. FBP, TRIM, MAM and PAMoCo reconstructions (from left to right)
at 65% of the simulated cardiac cycle with C= 400HU, W= 1500HU.
From the first to the last row axial, coronal and sagittal planes of the respective
reconstructions are displayed. A stent with a diameter of d = 2.5mm and a
simulated heart rate of 70 bpm has been used for this measurement.

plane is depicted. For a better three-dimensional visualization
we further show coronal and sagittal planes in the second and
third row. The intersection point of the planes has been chosen
such that the best visualization could be achieved for each
reconstruction.

At the heart phase of c = 65% (see figure 3) a strong
shading artifact appears in the standard reconstruction due
to motion, which is best visible in the second image of the
first column. Due to an increased temporal resolution in the
other reconstructions, the shading disappears and an image of
increased sharpness is the result in case of all three algorithms
under investigation. Note that in case of TRIM it looks as if
image sharpness has increased more strongly, since the stent
can be differentiated better from the background than in the
MoCo cases. This is due to the fact that negative entries evoked
by noise are pushed towards higher values during the iterative
reconstruction as well. Hence, the noise seems to be smoothed
in the region the TRIM algorithm operates.

However, in the reconstructions at c = 60% (see figure 4)
more severe blurring artifacts induced by motion are visible
as indicated by the yellow arrow in the third row of the
first column. In the phantom study, at higher heart rates
and at phases featuring stronger motion, we observe a slight
advantage of the MoCo algorithms, since depending on the
number of temporal control points, which we chose to be 6
for the MAM algorithm and 31 for the PAMoCo, a higher
temporal resolution when compared to TRIM, can potentially
be reached.

Similar results were obtained in the patient study, where we
have to note that no patient with a really high or irregular heart
rate was included. Reconstructions of the patient cases with
curved MPRs will be shown at the meeting due to a limited
amount of space in this abstract. in the revised abstract.

Figure 4. FBP, TRIM, MAM and PAMoCo reconstructions (from left to right)
at 60% of the simulated cardiac cycle with C= 400HU, W= 1500HU.
From the first to the last row axial, coronal and sagittal planes of the respective
reconstructions are displayed. A stent with a diameter of d = 2.5mm and a
simulated heart rate of 70 bpm has been used for this measurement.

IV. CONCLUSION

All algorithms have proven their capability of improving
the image quality in the region of the coronary arteries when
slight motion artifacts are present in case of the phantom study
and patient data. However, the PAMoCo algorithm might have
the ability to compensate for motion even in cardiac phases
showing very severe motion artifacts. For this reason, the
PAMoCo algorithm should be compared to some registration-
based algorithms as described in section I, which have been
shown to have the biggest impact in case strong motion is
apparent.
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Abstract—This work concerns an image-based cardiac motion 
estimation method (iME) for computed tomography (CT)-based 
cardiac functional analysis (CFA) with a reduced radiation dose. 
As CT-CFA requires images over the entire heart beat, the scans 
are often performed at 10-20% of the tube current settings that 
are typically used for coronary CT angiography. A large image 
noise then degrades the accuracy of motion estimation. In this 
study, we propose to use two CT scan data, one for CT 
angiography at a quiescent phase at a standard (full) dose and the 
other for CFA over the entire heart beat at the low dose. We 
modified the iME we have previously developed for a full-dose 
retrospectively-gated coronary CT angiography for the 2-scan 
protocol and assessed the accuracy of the estimated motion vector 
field. The study confirmed that the modified iME was robust 
against the mismatch of noise levels, contrast enhancement levels, 
and shapes of the chambers.  

Index Terms—CT, motion estimation, cardiac function analysis 

I. PURPOSES 
ARDIAVASCULAR diseases remain the leading cause of 
death in the western world, placing an ever-increasing 
burden on both private and public health services. 

Electrocardiogram (ECG)-gated coronary computed 
tomography (CT) angiography imaging is an established 
non-invasive technique for detecting coronary stenosis caused 
by calcium deposits and fatty soft atherosclerosis. CT 
angiography’s negative predictive value (NPV) for coronary 
artery diseases is high enough (>90%) to be integrated into the 
diagnostic workflow patients with chest pain and a risk of heart 
failure. It has been discussed, however, that in order to better 
predict the future heart events, it is highly desirable to obtain 
the functional information on the cardiac motion such as 
asynchrony in addition to the anatomical information on 
coronary arteries and the heart. Cardiac functional analysis 
(CFA) provides a different class of information, which is 
critical to heart failure, is currently obtained by 
echocardiography (ultrasound), tagged magnetic resonance 
imaging (MRI), or nuclear medicine. Neither of them is perfect 
with limitations in the number of view angles and strong 
operator-dependency in echo, a cost and availability of the 
system in MRI, and the spatial resolution and signal-to-noise 
ratio of images in nuclear medicine.  

When a heart is scanned for one heart beat by CT, it provides 
4-D cardiac images for 10-20 cardiac phases with a good spatial 
resolution [(0.5 mm)3 per voxel] and tissue contrast. Regional 
motion and the correlation to coronary plaques can be analyzed 
reliably without a problem with mis-registrations, which would 
have been an issue if two separate exams were performed, one 
for CT angiography and the other for CFA. Thus, CT-based 
CFA can be a valuable option in practice.  

One of the major issues with CT exams is a radiation dose to 

patients, thus, in order to minimize the dose, there are two 
possible scenarios in clinical routines: (a) First, a CT 
angiography scan is performed at a standard (full) dose. When 
an onsite review is not normal, a CT-CFA is then performed at a 
low dose level. The CT angiogram will target at one cardiac 
phase (typically a mid-diastole) for 1-3 mSv, while the CFA 
scan will provide 10-20% dose for the entire cardiac cycle for 
0.4-2.4 mSv. (b) A joint CT angiography-CFA is performed 
with a single scan. A prospectively-gated tube current 
modulation is used to provide a full dose for one cardiac phase 
and 10-20% dose for the other phases. In this study, we tackle 
the scenario (a), as it was approved by our institutional review 
board.  

The problem of the low-dose CFA scan is that images are 
very noisy, which may degrade the accuracy of CFA severely. 
A method which estimates the motion between adjacent 
consecutive frames sequentially as many video encoders (Fig. 
1a), may not be suitable as it may try to match an image noise in 
one frame to an image noise in the next frame. A method that 
uses a local-matching technique such as the demon algorithm 
may not perform well due to the large image noise.  

We have developed an image-based motion estimation 
method (iME) which uses one cardiac phase as an anchor and 
estimates motion to the other phases (Fig. 1b) [1]. iME 
estimates a non-rigid deformation of the heart using an 
intensity-based optimization method by minimizing a sum of 
squared weighted differences with spatial and temporal 
roughness penalty terms. iME has been evaluated with images 
at the full dose over the heart beat with clinical data [1,2] and 
swine data [3]. In this study, we modified iME to adapt to 
scenario (a) and assessed the performance using clinical data.  

II. METHODS 
We briefly describe the original iME in Sec. II.A and outline 

how it is adapted to handle scenario (a) in Sec. II.B, and 
evaluation methods in Sec. II.C.  
A. The original iME  

The following three major components of the algorithm are 
described: the deformation model, the cost function, and the 
optimization algorithm.  

Deformation model: An image at a quiescent motion phase, 
@ AB CD , was chose as a reference phase and a point A  at t0 
moves to a point  

AE F A G H AB CDB C               (1) 
at phase t, where a motion vector H is uniquely defined by A, t0 
and t. An image at phase t can then be calculated from the 
reference image as  
 @I AEB C F @ AB CD .             (2) 

The motion vector H is modeled by a finite number of knots 
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using cubic B-splines as 
H AB CDB C F JKBLM C

NC O L P A
NA O KKQLLFR ,   (3) 

where NA  and NC  are the knots spacing in the spatial and 
temporal domain, respectively, S and L are the corresponding 
discrete sampling indices, JTBU  are the cubic B-spline 
coefficients, QU is the number of knots in time, b is the 1-D 
cubic B-spline, and P  is a 3-D tensor product of cubic 
B-splines.  

Cost function: The warping parameters JTBU are estimated by 
minimizing a regularized weighted least-squared difference 
between the warped reference image and the target images 
JTBU F VWXYKZ[\B]^_` JTBU^ G a JTBU^ ,      (4) 
where _` JTBU^  is a similarity metric 

_` JTBU^ F b AB CY @ AcB C O @d AcB C e
fgh�ij ,(5) 

where Nm is the number of discrete phases in one heart beat, w( 
) is a weighting function, and a JTBU^  denotes weighted two 
quadratic penalty terms, one in space and the other in time.  

Optimization: We use an iterative coordinate descent-type 
method with the conjugate gradient (CG) algorithm to 
minimize the cost function Eq. (4). The cost function is 
minimized with respect to one cardiac phase m at a time using 
CG sweeping through phases, then repeat the process for the 
next iteration. This local optimization method allows for 

making the size of the Hessian matrix manageable. Further, to 
save computation time, the Hessian matrix was updated once in 
every five iterations. The detail of the algorithm can be found in 
[1].  
B. Modifications for low-dose 2-scan CT-CFA  

We have made two modifications to the original iME: (1) 
the reference image @ AB CD  is obtained from a separate CT 
angiography image; and (2) a 3-D median filter is applied to 
the noisy CFA scan images, @k AEB C F YlmKVZ @ AEB C , and 
the smooth images @k AEB C  are used in the place of f AEB C  in Eq. (5).  

Problems with image noise: Since the reference image is obtained 
from a standard (full) dose scan, the reference image is much less 
noisy, thus, it allows us to avoid matching noise to noise discussed in 
Introduction. In addition, applying a median filter decreases the noise 
in target images, while maintaining the anatomical edges reasonably 
well.  

Problems with two scans: The use of the reference image 
from a different scan, however, poses a challenges in terms of 
mis-registration due to different breath-holding levels different 
heart motion, and different contrast enhancement levels.  

C. Evaluation methods 
Patients: The study was approved by the institutional review 

board. Patients who agreed to participate in the study were 
undergone two CT scans using a 320-detector row CT 
(Aquilion One, Toshiba, Otawara, Japan). The first scan was a 
prospectively-gated CT angiography scan at the end-systole at 
a full dose and the second scan was a retrospectively-gated 
CT-CFA scan for the entire cardiac phases at a low dose, 
typically 20% of the full dose.  

Image reconstruction: An image volume at the end-systole 
(typically at 40% of R-R interval) was reconstructed from the 
full-dose CTA scan which was used as the reference image, 
and 20 images with a 5% R-R increment were reconstructed 
from the low-dose CT-CFA scan, which was used as the target 
images after a 3×3×3 median filter was applied. Images which 
covered a volume of 200 mm × 200 mm × 160 mm by 
512×512×160 or 320 voxels centering the heart, were 
reconstructed by the system’s default cardiac algorithm with a 
body kernel.  

iME and motion vector fields (MVFs): The proposed iME 
was performed using NVIDIA’s graphic processing unit 
C2070 with C and CUDA programming platform (NVIDIA, 
Santa Clara, CA). The number of knots was 16×16×11-15 
knots in the x, y, z (longitudinal) axes, which corresponded to 
Δx=14.6 mm, Δy=14.6 mm, and Δz=12.0-16.0 mm, and 20 
knots in the temporal axis.  

Once the cardiac motion vector field (MVF) from the 
reference image to the target images at 20 cardiac phases of 
the CT-CFA scan was estimated, a cardiac motion from the 
end-diastole to the end-systole of the CT-CFA scan was 
calculated by inverting the estimated MVF using a method 
proposed by Ref. 2 and concatenate it with 20 different phases, 
respectively (Fig. 1d) 

H AEB CnoB C F Hph AB CDB Cno G H AB CDB C .   (3) 
Assessment: The accuracy of the estimated MVFs was 

evaluated by an attending cardiologist with 20 years of 
experience (H.A.) comparing with the physiological 
knowledge and actual images.  

 
Figure 1. Diagrams to outline various strategies for motion estimation. Blue 
dashed curve, the the true motion path; blue solid circles, locations at 
discrete phases. (a) The motion paths between the adjacent phases (red 
arrows) are estimated sequentially. (b) One of the phases is used as an 
anchor phase (red open circle) and the motion from the anchor to other 
phases are estimated. The original iME uses this strategy. (c) The anchor is 
obtained from a different scan and the motion from the anchor to all of the 
phases  are estimated. The proposed, modified iME uses this strategy. (d) A 
new anchor phase is decided (open blue circle) and the motion from the new 
anchor to other phases (blue solid arrows) are obtained by concatenating the 
inversed motion path (red solid arrow) to the old anchor (red open circle) 
and the estimated motion to other phases (red dashed arrows).  
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III.  RESULTS 
A total of 30 patients were included in the study and in a 

majority of cases the locations of surrounding structures such as 
chest wall, aorta, spines looked consistent with two scans, 
while the noise levels and pulmonary vessels looked different 
from each other in terms of the locations and shapes. The 
following 3 cases have been assessed in more detail.  

Case A was a case with a reasonably good match between the 
two scans in terms of the contrast of chambers and the 
thicknesses of left ventricle myocardium (Figs. 2a-2b), 
although the noise levels were significantly different from each 
other as expected. The estimated MVFs from the end-diastole 
and end-systole in the standard case (Figs. 3a-3c) seem to 
capture the following features very well, which are typical in 
the systolic motion: a large contraction motion at the lateral 
wall of the left ventricle in all three images, a quick expanding 
motion of the left atrium near the lateral wall in sagittal and 
axial images (arrows), and a motion oblique but somewhat 
parallel to the inter-atrial septa of the left atrium (circle). These 
motions were delineated as well as the previous studies which 
uses retrospectively-gated scans with the full dose. 

Case B was a case with a mismatch in contrast enhancement 
levels in the two scans (Figs. 2c-2d). The right ventricle and 
right atrium were barely enhanced in the CT-CFA scan 
probably because the scan timing was several seconds later 
than the coronary CT angiography scan. Despite that, the 
MVFs seemed reasonable (Figs. 3d-3f): the lateral walls of 
both left ventricle and right ventricle were contracting inward 
(arrows) while the inter-ventricular septa did not move 
significantly (circle). And the left atrium was expanded 
iso-tropically. We initially thought before the study that it 
might be necessary to pre-process images or change the 
similarity metric to normalize the difference in pixel values of 
blood chambers; however, it seems that the modified iME was 
able to absorb the difference.  

Case C was a case with a mismatch in shape of the 
myocardium (Figs. 2e-2f). The myocardium of the left 
ventricle was much thicker and both the left atrium and the 
right ventricle were significantly smaller in the coronary CT 
angiography scans while the myocardium was thinner and the 
left atrium were larger in the CT-CFA scan. The estimated 
motion vectors (Figs. 3g-3i) looked very large at the 
lateral/anterior-base of the left ventricle (arrow) as well as the 
lateral wall of the right ventricle (circle), possibly due to the 
effect of different shapes. The MVF on the sagittal image (Fig. 
3i), however, looked very reasonable.  

By the time of the conference, the assessment will include 
all of the 30 cases and a semi-quantitative assessment will be 
performed. The observer will grade MVFs with a 4-point 
scale: ‘Excellent’ (the MVFs were spatially and temporally 
smooth and agreed with wall motion subjectively at a level 
similar to previous studies [1-3], ‘Good’ (the smoothness and 
the agreement with the wall motion were good but worse than 
‘excellent’), ‘Fair’ (the smoothness and the agreement with 
the wall motion were even worse but the CFA may provide 
qualitatively sufficient information), and ‘Unacceptable’ (the 
MVFs looked weird and the CFA information was not trust 
worthy). We will perform the rating with the original iME and 
the proposed/modified iME and the difference between their 
ratings will be assessed with a P<0.05 being significant.  

IV. CONCLUSIONS 
We have modified an image-based motion estimation method 
(iME) for a low-dose CT-CFA scan with a full-dose coronary 
CT angiography scan. The modified iME performed well 
despite the various mis-matches between the two scans and a 
large image noise in CT-CFA images. One of the three cases 
seemed to present suboptimal motion vector field, possibly 
indicating a need to improve the modified iME further. A 
systematic semi-quantitative assessment will be performed 
with 30 cases by the time of the conference.  
Acknowledgement—This work was supported by NIH 
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Figure 2. Cardiac CT images obtained by coronary CT angiography scans at 
full (100%) dose levels (a,c,e) and by CT-CFA scans at 10-20% dose levels 
(b,d,f): (a,b) Case A, (c,d) case B, and (e,f) case C. Window width/level are 600 
H.U./50 H.U. 
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Figure 3. The estimated MVFs superimposed on axial (a,d,g), coronal (b,e,h), 
and sagittal (c,f,i) cardiac CT images obtained by coronary CT angiography 
scans at full (100%) dose levels: (a-c) Case A, (d-f) case B, and (g-i) case C. 
Window width/level are 600 H.U./50 H.U. 
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� 
Abstract—In this paper, we propose a novel reconstruction 

algorithm, which combines a conventional reconstruction with 
local tomography (LT) reconstruction. An advantage of this 
combination is that it provides edge enhancement, while keeping 
the overall appearance of the reconstructed image the same and 
reconstructing HU values accurately. We test the algorithm on a 
synthetic example and show that the HU values are indeed 
reconstructed fairly accurately. Then, using cardiac clinical data 
collected by the National Institutes of Health (NIH), we show that 
the algorithm helps to reduce blooming artifacts from calcified 
plaque and stents in the coronary arteries. 
 

Index Terms—local tomography, iterative reconstruction, 
cardiac imaging, reduction of blooming artifacts. 

I. INTRODUCTION 

Blooming artifacts from calcified plaques and stents can 
compromise reader confidence and diagnostic accuracy of 
coronary computed tomography angiography (CCTA). Hybrid 
Local Tomography (HLT) image reconstruction algorithm is a 
novel reconstruction technique that combines a conventional 
reconstruction (e.g., iterative- or FBP-based) with high spatial 
resolution Local Tomography (LT)-based edge-enhanced 
reconstruction, potentially reducing artifacts from calcified or 
stented regions. 

The purpose of this paper is to describe the HLT algorithm, 
the workflow for practical applications of HLT, and evaluate 
using a set of clinical cases collected by the National Institutes 
of Health (NIH) with the Toshiba Aquilion ONE 320-detector 
row CT scanner whether HLT reconstruction improves 
diagnostic accuracy and reader confidence. 
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II. HYBRID LOCAL TOMOGRAPHY (HLT) ALGORITHM 

Local Tomography (LT) is an established technique for 
reconstructing sharp spatial features, e.g. edges, in an object 
(see below and [1–4]).  Besides its ability to resolve regions 
with sharp changes of density better than conventional image 
reconstruction algorithms, LT has a number of other advantages 
over conventional reconstructions, such as computational 
simplicity and ability to deal with truncated data.  One of its 
disadvantages is that LT images look different from 
conventional reconstructions because LT does not reconstruct 
the attenuation coefficient in Hounsfield units (HU).  Hence, it 
is sometimes difficult to differentiate between tissue types and 
even to see the presence of the X-ray contrast agent in the blood 
using an LT-based reconstruction.  

In this paper, we propose a Hybrid Local Tomography (HLT) 
algorithm, which provides edge-enhanced reconstruction, while 
also providing fairly accurate HU values.  The main idea of the 
HLT algorithm is to efficiently combine a conventional (e.g., 
iterative or any other exact/approximate image reconstructions) 
and LT-based reconstructions to improve quality of image 
produced by a conventional reconstruction algorithm [5]. 

Let ( )cf x  denote an image reconstructed by a conventional 

(i.e., exact or quasi-exact) algorithm.  Such an algorithm can be, 

for example, iterative or of the FBP type. Let 1( )f x  denote the 

reconstructed LT image. As follows from the LT theory [1–4], 

1f  preserves and enhances all the edges (or features with high 

spatial frequency content) visible from the data in the object 
being scanned. On the other hand, low-frequency features 
contained in 1f  carry little useful information regarding edges 
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or sharp changes of the attenuation coefficient �  and may even 
create artifacts in LT-based images. Hence, we propose to 

remove low frequency content from 1f .  As such, let 1f  be the 

result of applying a high-pass filter to 1f  in the image domain: 

1 1f f !� � .  Here !  is a high-pass filter, and the star denotes 

convolution in the image domain.  The hybrid reconstruction 

formula we propose is 1hlt cf f cf� 
 , where c  is some 

constant.  In order to provide the best image quality using the 
proposed algorithm, one needs to balance the frequency 

contents of cf  and 1f . The optimal value of c  can be 

determined using, for example, synthetic simulations and/or 
multiple case studies.  In our study described below, an expert 
opinion was used to determine the optimal value of c . 

From the above description, it is clear that the proposed HLT 
algorithm belongs to the general family of the so-called 
frequency-split approaches [6-7], where different frequency 
contents of an image are reconstructed using different methods, 
and then the two sub-images are combined. However, there is 
one important difference between previously suggested 
frequency-split approaches and the HLT approach.  

Normally, the goal of any frequency-split approach is to 
reconstruct the original image as accurately as possible. 
In our approach, the high-frequency sub-image is not intended 
to represent the high-frequency content of the original image, 
but rather an edge-enhanced version of it. 

III. NUMERICAL EXPERIMENTS 

A. Synthetic Testing of HLT Algorithm 

In the first experiment, we simulated a circular source 
trajectory, and the phantom consisted of various ellipsoids of 
different densities; the data were contaminated by the Poisson 
noise, and the HLT image reconstruction workflow consisted of 
the following steps: 
 

(1) raw data denoising (e.g., using bilateral filtration), 
(2) iterative reconstruction to compute cf ,  

(3) computation of the LT function 1f ,  

(4) high-pass filtering 1f  to produce 1f ,  

(5) combining 1hlt cf f cf� 
 , and  
(6) performing denoising in image domain (e.g., using 
  a total variation-based (TV) regularizer).  

 
Steps (2) – (5) of the presented above workflow are the core 

steps of the HLT algorithm workflow.  Steps (1) and (6) are 
optional and can be applied only if the reconstructed images are 
too noisy for performing clinical analysis by a radiologist.  

Some intermediate and the final results for a synthetic test are 
illustrated in Fig. 1. In this test, to reconstruct the conventional 
image cf , we used our iterative algorithm (IR) similar to one 

presented in [8]. We used 10 subsets and the IR algorithm was 
run for 12 full iterations. The LT image was computed by 
backprojecting the second order derivative of the data along 
detector rows.  

To compute the filtered LT image 1f , the high-pass filter !  

was chosen to be the identity minus a moving average over a 
cube of size 7x7x7 voxels. To calculate the HLT image, hltf , 

the predetermined optimal value of constant c = 2100  was used. 
As the last step (6), fairly minor image enhancement using 

TV-based denoising was also applied to hltf . An analysis of 

the results show that HU values in the HLT reconstructed 
volume are close to the true ones.  

In Fig. 1, panels (a) and (b) show the same slices through the 
volumes cf  (IR) and 1f  (LT), respectively. In Fig. 1, panels (c) 

and (d) show the slices through the original hltf  and its 

denoised version, respectively. As can be seen from Fig. 1(c) 
and 1(d), image denoising applied at step (6) was pretty minor.  
 

  
                      (a)                                                  (b) 
 

  
                      (c)                                                  (d) 
 

Fig. 1. A slice through the reconstructed volume of a synthetic phantom.  

(a) cf ,  (b) 1f ,  (c) hltf , and (d) results of TV-based image denoising 

applied to hltf .  Three rectangles in (d) were used for computing average 

values of the attenuation coefficient in different parts of the phantom. 
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The three rectangles shown in Fig. 1(d) were used for 
computing average values of the attenuation coefficient in 
different parts of the phantom, including its background part 
(rectangle #1) and two embedded objects (rectangles #2 
and #3). The computed HU values are 23, 329, and 319 in 
squares #1, 2, and 3, respectively. The correct HU values are 
0, 300, and 300, respectively.  Thus, we see that the HU values 
provided by the HLT algorithm are rather close to the 
exact values. 

B. Evaluation of HLT Algorithm Using NIH Clinical Data 

CT data collected at the National Heart, Lung, and Blood 
Institute (NHLBI) of the National Institutes of Health (NIH) 
during evaluation of 33 patients who underwent invasive 
coronary angiography and CCTA using the Toshiba 
Aquilion ONE 320-detector row CT scanner was used in this 
study.  

Two datasets were reconstructed: a conventional CCTA 
(STD) from the Aquilion ONE scanner console and Hybrid 
Local Tomography CCTA (HLT) from a standalone (offline) 
workstation. For the HLT algorithm, we used the same 
parameters as in the synthetic test described in section III.A. 

Two blinded readers independently assessed coronary 
segments from each reconstruction in separate sessions. 
Epicardial coronary arteries greater than 2 mm were included 
in the analysis. Reader confidence was assessed with a 4-point 
Likert score. Coronary angiograms from each patient (Fig. 3) 
were used to perform Quantitative Coronary Angiography 
(QCA) by a reader blinded to CCTA data. QCA stenosis >50% 
was considered significant coronary artery disease. 

 
TABLE I 

DIAGNOSTIC ACCURACY OF STD vs. HLT RECONSTRUCTION 
UTILIZING QUANTITATIVE CORONARY ANGIOGRAPHY 

AS THE REFERENCE STANDARD 
 

OVERALL STD (95% C.I.) HLT (95% C.I.) 

Area Under Receiver 
Operating Curve (p=0.03) 

0.87  (0.833-0.904) 0.93 (0.902-0.956) 

Sensitivity 0.78 (0.660- 0.875) 0.89 (0.688-0.955) 
Specificity 0.96 (0.934-0.98) 0.97 (0.950-0.989) 
Positive Predictive Value 0.81 (0.686-0.896) 0.88 (0.772-0.945) 
Negative Predictive Value 0.96 (0.926-0.975) 0.98 (0.954-0.991) 

CALCIFIED SEGMENTS STD (95% C.I.) HLT (95% C.I.) 

Area Under Receiver 
Operating Curve (p=0.03) 0.85  (0.793-0.899) 0.93 (0.881-0.960) 

Sensitivity 0.78 (0.644-0.879) 0.91 (0.797-0.969) 

Specificity 0.93 (0.867-0.964) 0.95(0.895-0.979) 

Positive Predictive Value 0.81 (0.675-0.904) 0.88 (0.759-0.948) 
Negative Predictive Value 0.91 (0.851-0.954) 0.96 (0.914-0.987) 

 
(a) 

 
(b) 

Fig. 2. Image reconstruction results for one NIH clinical case with 
cardiac coronary artery stent. Standard (STD) reconstruction (”a”) 
versus HLT reconstruction (“b”) showing in-stent stenosis within a 
stent located in the Left Anterior Descending Coronary Artery (LAD). 
The white arrows point to the stent locations. 

 

 

Fig. 3. Coronary angiogram with severe in-stent stenosis for the NIH 
case shown in Fig. 2. The white arrow points to the stent location. 
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CT data was compared to the “gold standard” QCA results to 
determine sensitivity (fraction of people with the disease that 
the test correctly identified as positive), specificity (fraction of 
people without the disease that the test correctly identified as 
negative), positive predictive value (probability that subjects 
with a positive test have the disease), and negative predictive 
value (probability that subjects with a negative test don't have 
the disease). 

A total of 442 target segments were identified; 209 segments 
contained calcified plaque and 11 segments had stents. Mean 
confidence scores improved between the STD and HLT 
reconstructions (3.3 vs. 3.5, p<0.0001, particularly in stented 
segments (2.1 vs. 3.4, p<0.0001) and calcified segments 
(2.9 vs. 3.2, p<0.0001).  

A p value <0.05 was considered significant.  The results of 
clinical evaluation are summarized in Table I, which indicates 
that there was improved diagnostic accuracy of HLT over STD. 

C. Clinical Case with Cardiac Coronary Artery Stent 

To illustrate the results of this study, we present images for 
one selected clinical case with cardiac coronary artery stent. 
The images of Fig. 2 show examples of STD (“a”) and 
HLT (“b”) reconstructions, respectively, for the selected case. 
The white arrows point to the region of interest - a metal stent 
in the Left Anterior Descending Coronary Artery (LAD).  Due 
to metal stent blooming artifact, the STD image (Fig. 2a) might 
lower confidence in assessing the severity of the in-stent 
stenosis (narrowing of the blood vessel indicated by a dark area 
within the stent). Conversely, the HLT image (Fig. 2b) clearly 
indicates a severe in-stent stenosis. This conclusion is 
independently confirmed by an image of the coronary 
angiogram presented in Fig. 3 showing near total occlusion of 
the artery at the level of the stent. 

IV. CONCLUSIONS 

� We presented a new HLT image reconstruction algorithm 
and the workflow for its practical applications.  HLT 
allows to efficiently combine a conventional (e.g., iterative 
or any other exact/approximate image reconstructions) and 
LT-based reconstructions to improve quality of image 
produced by a conventional reconstruction algorithm. 

� We also presented the results of assessment of HLT 
diagnostic accuracy for evaluating coronary arteries with 
calcified plaque and stents. The clinical assessment of the 
HLT algorithm was performed by the NIH readers blinded 
and independent of the reconstructions.  

� The NIH readers found that there was significant overall 
improvement in diagnostic accuracy with the HLT 
reconstruction technique, including in regions with 
calcified plaque. There was also increased reader 

confidence, particularly in calcified vessels and stented 
segments. 

� The novel HLT imaging technology may enhance 
detection of significant coronary artery disease particularly 
in challenging coronary segments. 

V. DISCUSSION 

We think that the HLT algorithm will work well and can be 
beneficial in other clinical applications where the presence of 
calcium or metal results in the blooming artifact that can mask 
parts of the region of interest.  HLT can also be applicable for a 
variety of industrial CT applications, including non-destructive 
testing. These applications will be the subject of additional 
studies.  

ACKNOWLEDGMENTS 

Authors would like to thank A. Rao, MD; K. Parikh, MD; 
J. Yu, MD; S. Shanbhag, MD; and S. Rollison, RT(R)(CT), 
NIH, for their help in performing the clinical analysis of 
diagnostic accuracy of the HLT algorithm.  We would also like 
to thank Toshiba Medical Research USA (TMRU) for technical 
support and, in particular, J. Schuzer, RT(R)(CT), TMRU, for 
collecting clinical data sets at NIH and additional information 
needed for performing HLT reconstructions. 

REFERENCES 

[1] A. G. Ramm and A. Katsevich, The Radon Transform and 
Local Tomography. CRC Press, 1996. 

[2] A. Katsevich , “Improved cone beam local tomography” Inverse 
Problems, vol. 22, pp. 627–643, 2006. 

[3] A. Faridani, K. Buglione,  P. Huabsomboon et al.,  “Introduction 
to local tomography” in Radon transforms and tomography. Contemp. 
Math., vol. 278, Amer. Math. Soc., pp. 29–47, 2001. 

[4] V. Krishnan and E. T. Quinto, “Microlocal analysis in tomography” 
in Handbook of Mathematical Methods in Imaging (O. Scherzer, ed.), 
Springer, New York, pp. 847–902, 2015. 

[5] A. Katsevich and M. Frenkel, “System and method for hybrid local 
tomography image reconstruction,” U.S. Patent 9 042 626, May 5, 2015. 

[6] G. Shechter, T.  Köhler, A. Altman,  and R. Proksa “The 
frequency split method for helical cone-beam reconstruction” Medical 
Physics, vol. 31, pp. 2230-2236, 2004. 

[7] L. Fu, J. D. Pack, and B. D. Man , “Frequency-Split Iterative 
Tomographic Reconstruction in Targeted Region-of-Interest” in 
Proceedings of The 13th International Meeting on Fully Three-
Dimensional Image Reconstruction in Radiology and Nuclear Medicine, 
pp. 224 – 227, 2015. 

[8] D. Kim, S. Ramani, and J. A. Fessler , “Accelerating X-ray CT 
ordered subsets image reconstruction with Nesterov’s first-order 
methods” in Proceedings of The 12th International Meeting on Fully 
Three-Dimensional Image Reconstruction in Radiology and Nuclear 
Medicine, pp. 22 – 25, 2013. 

The 4th International Conference on Image Formation in X-Ray Computed Tomography

196



Total Variation Constrained Weighted Least Squares
Using SIRT and Proximal Mappings

Jens Gregor, Philip Bingham and Lloyd F. Arrowood

Abstract—Tomographic image reconstruction can be formu-
lated as a weighted least squares problem. Regularization is
often added to ensure uniqueness and/or smoothness of the
solution. For low dose applications, be they few-view and/or low-
count oriented, total variation has become a popular option.
Rose et al recently proposed a framework based on ART-
like reconstruction and proximal mappings. In this paper, we
show that reconstruction can be achieved by an appropriately
modified version of SIRT. The result is an algorithm that more
readily facilitates parallel implementation. Experimental results
are provided for phantom data.

I. INTRODUCTION

Limiting X-ray exposure is important for imaging of living
organisms as well as certain man-made objects. Typically,
this means acquiring data using fewer views and/or reducing
the dose associated with each view. This makes the task
of reconstructing a tomographic image substantially more
challenging.

X-ray CT imaging can be cast as a weighted least squares
(WLS) problem for which regularization is used to ensure
uniqueness and/or smoothness of the solution. For example,
Sauer and Bouman [1] showed that a second-order Taylor-
series expansion of a Poisson log-likelihood leads to a WLS
problem. Fessler et al showed that separable quadratic sur-
rogate (SQS) methods for optimizing Poisson log-likelihoods
also lead to WLS inner minimization problems [2], [3]. In both
formulations, weighting has statistical meaning related to the
modeled variance of the projection data.

Mathematically, let A=[aij ] denote a non-negative system
matrix, and let x=[xj ] and y=[yi] denote vectors represent-
ing the unknown image and log-normalized projection data,
respectively. Furthermore, let W = diag {wi} be a diagonal
statistical weighting matrix with positive diagonal entries,
and let Q be a Tikhonov regularization matrix chosen to
emphasize structural characteristics of x that are undesirable.
Quadratically regularized WLS image reconstruction can then
be stated as

x∗ = argmin
0≤x

1
2‖Ax− y‖2W + β 1

2‖Qx‖22. (1)

Common examples of Q include the identity matrix, which
yields a minimum norm solution, and a finite-differences en-
coding matrix, which penalizes roughness thereby encouraging

J. Gregor is with the Dept. of Electrical Engr. & Computer Science, Univ.
of Tennessee, Knoxville, TN 37996. Email: jgregor@utk.edu. P. Bingham
is with Oak Ridge National Laboratory, Oak Ridge, TN 37931. Email:
binghampr@ornl.gov. L.F. Arrowood is with Consolidated Nuclear Security,
LLC. Oak Ridge, TN 37830. Email: lloyd.arrowoodIII@cns.doe.gov.

smoothness. When A and Q have disjoint null spaces, the cost
function in (1) has a unique minimizer as it is strictly convex.

We have shown that SIRT can be made to solve a statisti-
cally weighted reconstruction problem like (1) instead of the
geometrically weighted one solved by the classical version of
the algorithm [4]. As part of that work, we also showed that
SIRT is indistinguishable from SQS when applied to such
problems in spite of the two algorithms being derived from
entirely different premises.

Building on their seminal work on image reconstruction
centered around total variation (TV) minimization [5], Rose
et al recently proposed a framework for low dose X-ray CT
based on TV constrained WLS reconstruction [6], namely,

x∗ = argmin
0≤x

1
2‖Ax− y‖2W s.t. TV(x) ≤ ε (2)

where TV(x) =
∑

i ‖∇ix‖. By sparsifying the gradient
magnitude image, a solution can be obtained that exhibits
smooth regions with well-defined edges. They solve the convex
optimization problem using a relaxed, incremental proximal
gradient scheme which consists of a two-step iteration. First,
the WLS term is minimized using an ART-like algorithm.
Regularization in the form of a proximal mapping keeps the
image somewhat close to the one produced in the previous
iteration. Second, the TV constraint is satisfied by mapping the
image to the closest point on the surface of an L1-ball. This
mapping is carried out using the Chambolle-Pock algorithm
[7], [8] combined with a method by Duchi et al [9].

In this paper, we show that the WLS minimization can
be achieved by an appropriately modified version of SIRT
implemented using ordered subsets. The result is an algorithm
that more readily facilitates parallel implementation and thus
supports contemporary multi-core CPU and many-core GPU
computer architectures. Emphasis is on algorithmic feasibility.
Experimental results are provided for phantom data.

II. ALGORITHMIC DETAILS

A. WLS Minimization

In order to support use of SIRT, we replace the incremental
WLS formulation of the original WLS-TV algorithm by the
following minimization problem:

x∗ = argmin
0≤x

1
2‖Ax− y‖2W + β 1

2‖x− x̄‖22. (3)

Initially, x̄ = 0 which leads to a minimum norm solution.
Once the TV constraint satisfaction step discussed below has
been executed, x̄ is set equal to the solution thereof. Thereby
the next iteration of the WLS minimization becomes subjected
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to a proximal mapping that discourages deviation from the
TV solution. As the computation progresses, the value of β is
gradually increased to further enforce this behavior. That is,

β = β0

(
� k
20�+ 1

)
(4)

where β0 is a user-defined initial value. We used β0 = 10/ ‖y‖
for the experimental work reported below.

We now derive a SIRT-like algorithm for solving (3). Let
the diagonal matrices corresponding to the inverse row and
column sums of A be given by R = diag {1/ri} and C =
diag {1/cj} where ri�

∑
j aij and cj�

∑
i aij . The classical

SIRT iteration can then be expressed as [10]:

x(k+1) = x(k) + α CA′R (y −Ax(k)). (5)

This is a gradient descent with diagonal preconditioner C of
the cost function 1

2‖Ax− y‖2R. Weighting by R means that
minimization of the residual errors is per unit length.

We are interested in weighting by W to account for the
statistical nature of the underlying data. With reference to
[4], this can be achieved by applying SIRT to a slightly
modified but related problem. Let Ã = [ãij ] and ỹ = [ỹi]
where ãij � wiriaij and ỹi � wiriyi. Furthermore, let R̃=
diag {1/r̃i} and C̃=diag {1/c̃j} where r̃i �

∑
j ãij =wir

2
i

and c̃j �
∑

i ãij . By applying the identities Ã′R̃Ã=A′WA
and Ã′R̃ỹ = A′Wy to the SIRT iteration for minimizing
the cost function 1

2‖Ãx− ỹ‖2
R̃

, we obtain a gradient descent
with diagonal preconditioner C̃ of the WLS cost function
1
2‖Ax− y‖2W . Adding the gradient of the x̄-based proximal
mapping leads to the desired SIRT-like algorithm, namely,

x(k+1) = x(k)+α C̃(A′W (y−Ax(k))+β(x̄−x(k))). (6)

This is a Richardson Iteration. Since the eigenvalues of matrix
C̃(A′WA+ βI) are strictly positive, i.e., 0 < λmin ≤ λmax,
it follows that convergence is guaranteed for an arbitrary initial
choice x(0) if 0 < α < 2/λmax with the fastest rate of
convergence obtained for α∗ = 2/(λmax + λmin) [11]. We
note that said matrix is identical to the one for minimum norm
regularization for which the following near-optimal value has
been derived [4]:

α∗ ≈ 2

1 + β
(

1
minj c̃j

+ 1
maxj c̃j

) . (7)

Relative to α=1, use of α∗ may double the convergence rate.
SIRT establishes the low-frequency components of an image

faster than the high-frequency components. Ordered subsets
are commonly used to accelerate convergence. We follow
the approach taken for SQS which has each full iteration
use the gradients of M partial cost functions representing a
partitioning of the data. Preconditioner C̃ remains as defined
above. Each subset is assumed to have a view of all voxels.

B. TV Constraint Satisfaction

Should the WLS minimization violate the TV constraint,
the image is mapped to the closest point on the surface of an
L1-ball of radius ε. This is achieved by solving

x̄ = argmin
x

1
2‖x− x∗‖22 s.t. TV(x) ≤ ε (8)

using the Chambolle-Pock algorithm [7], [8] which applies to
problems of the form

s∗ = argmin
s

G(s) + F (Ds) (9)

where G and F are convex functions, and D is a linear
transform. For the present problem, G is the proximal mapping
based on x∗, F is an indicator function representing the TV
constraint, viz.,

δε(x) =

{
0 if TV(x) ≤ ε
∞ otherwise , (10)

and D is the discrete gradient operator. The solution to (9) is
found by iterating over two proximal mappings, namely,

u(k+1) = proxσ[F
∗](u(k) + σDv̄(k)) (11a)

v(k+1) = proxτ [G](v(k) − τDTu(k+1)) (11b)

v̄(k+1) = 2v(k+1) − v(k) (11c)

where

proxρ[H](s) = argmin
s′

H(s′) + 1
2ρ‖s− s′‖22. (12)

Next, we summarize the computation when applied to (8). See
the note by Rose and Sidky [12] for more details.

The proximal mapping of F ∗, which denotes the convex
conjugate of F , involves the mentioned projection onto the
L1-ball. The sequence of operations can be written as

u = u(k) + σ∇v̄(k) (13a)
h = [ ‖uj‖2 ] (13b)
s = P(h/σ; L1-ball(ε)) (13c)

H = diag {si/hi} (13d)

u(k+1) = u− σHu (13e)

where u should be interpreted as a multi-column matrix that
represents 2D or 3D operations as appropriate with the jth
row vector given by uj =[uj1 uj2 · · · ], h is a vector whose
elements represent the row vector norms of u, diagonal scaling
matrix H is defined to have zero entries for elements of h
that are zero, and projection operation P is carried out using
a method by Duchi et al [9].

The proximal mapping of G can straightforwardly be ex-
pressed as

v = v(k) − τ∇′u(k+1) (14a)

v(k+1) =
v/τ + x(k+1)

1 + 1/τ
(14b)

To ensure convergence, σ and τ must satisfy L2στ < 1
where L = ‖∇‖2; for 2D, L =

√
8 while for 3D, L =

√
12.

However, σ=τ=1/L seems to work in practice [6].

C. WLS-TV Algorithm

The proposed WLS-TV algorithm implements the above
computations as follows. Variables x(0), x̄, u(0), v(0), and
v̄(0) are initialized to zero. Then an outer loop is entered that
first produces an approximate solution to (3) in the form of
x(k+1) which is the result of running a single, full iteration of
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Fig. 1. The number of ordered subsets is decreased during the computation.

the SIRT-like algorithm given by (6) using M ordered subsets.
At this point, the TV constraint has typically been violated.
This causes an inner loop to execute the updates given by (13)
and (14) either until TV(v(k+1)) has come close enough to
the value of the TV constraint or for a small, fixed number of
iterations. Eventually, x(k+1) and x̄ are set equal to v(k+1).
Depending on the iteration, β is also updated to tighten the
proximal mapping for the WLS minimization. Then execution
of the outer loop continues.

The early iterations of the WLS-TV algorithm serve to
produce an approximate solution which subsequent iterations
refine. This suggests initially advancing the WLS minimization
as fast as possible in order to quickly violate the TV constraint
and thus activate the associated correction. From then on, the
WLS minimization should advance in a more controlled man-
ner so that it doesn’t move too far away from the TV solution.
We use the following heuristic scheme to achieve this behavior.
Initially, M is set equal to the number of projections thereby
making each projection its own subset. This accelerates the
rate of convergence. We then systematically decrease M till
we have just a single subset that contains all the projections.
This slows the rate of convergence. With reference to Fig. 1,
the subset decrease is based on repeatedly reducing M by a
factor of two and making each configuration run for the same
number of iterations as all the other configurations to the extent
possible. Once created, the subsets are randomly perturbed to
subsequently allow sequential processing without regard to the
actual order.

III. PARALLEL IMPLEMENTATION

The ART-like WLS-TV algorithm by Rose et al [6] is
difficult to parallelize since the incremental WLS update
is based on a single ray and the small number of voxels
intersected thereby. This limits the number of cores that can
contribute effectively to the computation.

The SIRT-like algorithm proposed here, on the other hand,
uses many rays to update all voxels during every sub-iteration
and is thus quite amenable to parallelization. Forward projec-
tion can be carried out simultaneously for all rays considered
and can thus be executed in parallel using equally many cores.
Backprojection must ensure unique access to the voxels. Our
present implementation does that by partitioning the image
into subvolumes which can be updated independently of one
another. When a core becomes responsible for a subvolume, it
computes and applies the system matrix elements for all rays

that intersect it (using interpolation). Backprojection can thus
be done in parallel using a number of cores that equals the
number of subvolumes.

IV. EXPERIMENTAL RESULTS

We report preliminary results for a 2D Shepp-Logan phan-
tom. We generated 360 projections spaced 1◦ apart and
added Poisson noise corresponding to a count rate of 1,000
photons per ray. We conducted a WLS reconstruction using
32 iterations of the modified SIRT algorithm without applying
the TV constraint but with the minimum norm regularization
in effect. We also conducted WLS-TV reconstructions using
TV constraints of ε=1.20 × TV(x) and ε=1.02 × TV(x),
respectively, where x denotes the original, noise free phantom.
The reconstructions were recomputed using 180 projections
spaced 2◦ apart to illustrate the effect of using fewer views.

As shown in Fig. 2, TV constrained reconstruction is seen
to produce smother images with more uniform regions than
unconstrained reconstruction. Tables I and II provide mean
and standard deviation values for the dark gray background
ellipse (ROI 1: ground truth value 0.20) and the three larger
black and gray organ ellipses (ROI 2–4: ground truth values
0.00, 0.00, and 0.30). Figure 3 plots improvement of image
quality in terms of the relative error

∥∥x(k) − x
∥∥ / ‖x‖ as a

function of iteration. TV constrained reconstruction is seen to
produce images that are substantially closer to ground truth
than does unconstrained reconstruction.

TABLE I
ROI μ± σ STATISTICS: 360 PROJECTIONS

ROI Unconstrained ε=1.20× TV(x) ε=1.02× TV(x)

1 0.20 ± 0.031 0.20 ± 0.011 0.20 ± 0.006
2 0.00 ± 0.003 0.00 ± 0.003 0.00 ± 0.004
3 0.00 ± 0.004 0.00 ± 0.004 0.00 ± 0.004
4 0.30 ± 0.033 0.30 ± 0.011 0.30 ± 0.005

TABLE II
ROI μ± σ STATISTICS: 180 PROJECTIONS

ROI Unconstrained ε=1.20× TV(x) ε=1.02× TV(x)

1 0.20 ± 0.035 0.20 ± 0.016 0.20 ± 0.012
2 0.00 ± 0.006 0.00 ± 0.005 0.00 ± 0.006
3 0.00 ± 0.008 0.00 ± 0.006 0.00 ± 0.007
4 0.30 ± 0.035 0.30 ± 0.013 0.30 ± 0.007
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Fig. 2. Reconstructions: (a-c) 360 projections, (d-f) 180 projections; (a,d) WLS; (b,e) and (c,f) WLS-TV using ε based on ×1.20 and ×1.02, respectively.
Noise free phantom TV value: 1468. Reconstructed TV values for noisy data: (a-c) 3050, 1763, and 1498; (d-e) 3041, 1760, and 1496. TV constrained
solutions are thus obtained as desired. Graylevels windowed to [0-0.8].
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Image-domain denoising for myocardial blood flow
estimation in dynamic CT

Dimple Modgil, David S. Rigie, Michael D. Bindschadler*, Adam M. Alessio* and Patrick J. La Rivière

I. INTRODUCTION

Clinical evaluation of coronary artery disease (CAD) can
benefit from the quantification of myocardial blood flow
(MBF). Currently, there are several techniques that can be
used to detect and evaluate atherosclerosis including invasive
catheter-based angiography, non-invasive computed tomogra-
phy angiography (CTA) or magnetic resonance angiography
(MRA) [1]. It has been shown that the addition of MBF
information leads to better outcomes and reduced costs in the
diagnosis and treatment of CAD [2]. There is great interest
in using CT to assess myocardial perfusion, especially since
CTA is already being used in the emergency room setting to
assess chest pain. Dynamic CT holds the promise of achieving
true quantitative MBF imaging [3]. This entails acquiring a
series of CT images of the myocardium during uptake and
washout of iodinated contrast agent. The resulting pixel-based
or regional time-attenuation curves (TACs) can be analyzed
using physiological models of iodine exchange to estimate
MBF in absolute units (ml/g/min).

The principal drawback of dynamic CT for MBF estimation
is the potential for a large radiation dose imparted to the patient
during this multi-frame exam. Acquiring each frame at very
low dose leads to very noisy images and TACs. Some groups
have sought to exploit frame-to-frame temporal correlations
to reduce noise. They have used techniques such as bilateral
filtering as well as iterative reconstruction methods [4], [6],
[5], [7], [8]. Previously, we have explored techniques to
smooth the noisy data in the sinogram domain using sinogram
restoration in 4D [9] and the KL transform in the temporal
domain [11].

In this work, we compare several image-domain smoothing
techniques, including a novel technique for noise reduction
using vectorial total variation (VTV) that was previously
introduced by our group for spectral CT [10] and dynamic
CT [12]. This method is a generalization of the total-variation
method to multiple time frames of dynamic CT data. In our
previous work, we applied VTV only to 2D dynamic CT
slices. In this work, we apply VTV to 3D volumes using
simulated and patient data. We compare the two variants of
VTV technique to scalar, frame-by-frame TV smoothing as
well as with bilateral filtering in the spatial and temporal
domains for the task of MBF estimation [13].

*Adam Alessio and Michael Bindschadler are with the Departments of
Bioengineering and Radiology at the University of Washington. The other
authors are with the Department of Radiology, The University of Chicago.

II. METHODS

A. Iterative Denoising using total variation (TV) penalty

We perform iterative image-domain denoising by solving
the following data-constrained optimization problem:

u∗ = argminu {TVX (uuu)} s.t. ‖uuu−uuunoisy‖2 ≤ ε, (1)

where uuu represents dynamic image series (N pixels x M
frames), TVX refers to a set of modified total variation
penalties (to be described below) and ε is a free parameter
that controls the strength of the regularization. We used the
data-constrained optimization because this allows for a direct
comparison between various types of penalty terms. To solve
this constrained optimization problem iteratively, we use the
primal-dual algorithm proposed by Chambolle and Pock [15].

Total variation regularized CT reconstruction algorithms
have been studied extensively due to the approximate gradient
sparsity of CT images [14]. Several works have demonstrated
that such schemes may yield accurate reconstructions from
noisy data in CT [16], [17]. The total variation penalty term,
TVX , can be defined for a multi-frame image series in a variety
of ways.

1) Scalar total variation or frame-by-frame TV: The most
straightforward way to extend TV to multiple frames in
dynamic CT is to sum over the total variation in each frame.
This approach does not impose any coupling between the
frames. We denote this by TVS,

TVS(u) =
M

∑
m=1

TV (um), (2)

where,

TV (um) =
N

∑
j=1
||∇um||2. (3)

2) Vectorial total variation: Another way to extend TV
to multiple frames is to use a novel edge-preserving penalty
that can be viewed as a variant of the total variation. After
approximate registration, we expect that all frames should
have essentially the same edge structure, so it is advanta-
geous to process them simultaneously and encourage this
type of coupling. To accomplish this, we use the “vectorial"
TV (VTV) penalty recently proposed for multi-energy CT
reconstruction[10]. The VTV penalty is given by the following
equation.

TVN(uuu) =
N

∑
j=1
‖[Duuu] j‖∗ =

N

∑
j=1
‖σ([Duuu]) j||1 (4)
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In this formulation, we view our image series uuu as a vector
function, where each spatial coordinate maps to a vector of
image values. The quantity, [Duuu] j is the discrete approximation
to the Jacobian matrix corresponding to the jth pixel, and ‖.‖�
is the nuclear norm, which is given by the sum of singular
values, σ . In particular the matrix [Duuu]]] j in 2D will have the
following structure,

[Duuu] j =

⎡⎢⎢⎢⎢⎣
(

∂u1
∂x

)
j

(
∂u1
∂y

)
j

: :
: :(

∂uM
∂x

)
j

(
∂uM
∂y

)
j

⎤⎥⎥⎥⎥⎦
M×2

(5)

where each row corresponds to the gradient of one image
frame at pixel j in 2D and M is the number of frames.
By minimizing the nuclear norm of this matrix, we are
encouraging it to be low rank, which will encourage images
that are approximately piece-wise constant and have gradient
vectors pointing in the same direction.

We applied VTV to one slice at a time (2D VTV) as
well as using three slices to smooth a slice (3D VTV). It
has been shown analytically that the amount of smoothing
in TV is directly proportional to the smoothing parameter ε
and inversely proportional to the size of the object [18]. This
results in reducing the contrast level in the smoothed image
while reducing noise. The use of three slices for smoothing in
VTV increases each objects’s size and thus helps preserve the
contrast in the smoothed images.

B. Simulations

We generated dynamic material phantoms to mimic the
exchange of iodine in the myocardium. Simulated projection
data were generated using our polychromatic projector [11]
and the dynamic material phantom data [13]. Noise matching
was done on the simulator to model the photon fluence with
various tube currents. Noisy projection data were generated for
30 acquisitions of the dynamic phantom spaced at 1 second
intervals, with tube current set at 25, 70, or 140 mAs. We
looked at four different myocardial blood flow rates in order
to simulate different disease states: 0.5, 1.0, 2.0, 3.0 ml/g/min.
The projection data were corrected for water-based beam
hardening (BH). The five processing/reconstruction methods
considered were:

1) Filtered backprojection (FBP) on noisy sinogram data
and the reconstructed images beam hardening corrected
(BHC) for iodine and bone [19].

2) Scalar TV applied to BHC noisy images as reconstructed
above referred to as ’2D STV’.

3) VTV applied to, single slice at a time, BHC noisy
images as reconstructed above referred to as ’2D VTV’.

4) VTV applied to, 3 slices at a time, BHC noisy images
as reconstructed above referred to as ’3D VTV’.

5) Spatio-temporal bilateral filtering applied to BHC noisy
images referred to as ’BF’.

Four different ROIs (5x5 pixels) were chosen in the left
ventricular myocardium in the reconstructed images for the

the task of estimating MBF. The average CT number was
computed for these ROIs and plotted as a function of time
to obtain the time-attenuation curves (TACs). We used the
two-component model (as described in [13]) to estimate the
myocardial blood flow. Our estimation performance metric is
the root mean square percentage error (%RMSE) in the MBF
estimates, averaged over 4 ROIs, 10 noise realizations, and 4
flow rates.

C. Patient Data

Dynamic CT perfusion study was performed on patients
stressed with regadenoson. 50 mL of iodinated contrast was
administered to the patient at 5 mL/s. CT data were acquired
for one axial bed position at end diastole for 12 frames at 140
kVp, 18 mAs. The total effective dose to the patient was about
2 mSv. The images were reconstructed with vendor FBP. The
noisy images were smoothed using the three versions of TV
as well as bilateral filtering.

III. RESULTS

The smoothing parameters for the various TV methods as
well as for the BF method were chosen so as to minimize the
%RMSE in flow estimates. Figure 1 shows the %RMSE in
MBF estimates for 25 mAs tube current and for 1s, 2s and 3s
sampling.

Figure 1. Variation of %RMSE in MBF estimates for 25 and 70 mAs

For unsmoothed data, the %RMSE in MBF estimates in-
creases sharply with sampling interval, while the % RMSE

The 4th International Conference on Image Formation in X-Ray Computed Tomography

202



for the TV and BF methods grows much more slowly on
increasing the sampling interval. This can result in potential
dose savings since we can get almost equally accurate MBF
estimates by reducing the dose by a factor of three. We observe
that the two VTV methods give the most accurate MBF
estimates at lower tube currents. Figure 2 shows the zoomed-in
view of the cardiac region in the reconstructed images and the
TACs extracted from images reconstructed using the various
methods and 25mAs tube current.

Noisy

2D VTV 2D STV

3D VTV BF

Figure 2. Cardiac region in the images reconstructed using various methods
for simulated data at 25 mAs and TACs in the apical region with 2s sampling

Figure 3 shows sample TACs and reconstructed images for
a patient data using various methods.

Noisy

2D VTV 2D STV

3D VTV BF

Figure 3. Reconstructed images and TACs for myocardial segment 14 for a
patient

3D VTV method gives us the sharpest image amongst all
these methods while bilateral filtering results in more blurring.
We observe that smoothing images also makes the TACs
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Method RMSE of Fit (HU)
Noisy 18.28

2D STV 15.29
2D VTV 14.66
3D VTV 14.08

BF 14.09
Table I

AVERAGE RMSE OF FIT OF TACS TO THE MBF MODEL ACROSS 17
MYOCARDIAL SEGMENTS FOR A PATIENT

smoother. The smoothing parameters used for the various
methods were such that the resulting smoothed images were
noise-matched in a static ROI. The TACs (averaged over 25
voxels) were used to obtain the MBF estimates using the two-
compartment model. We find that the average RMSE of fit to
the two-compartment model [13] of a given TAC decreases
with smoothing as shown in table I. A better fit to the model
TAC may lead to a better MBF estimate. So smoothing could
help with more accurate MBF estimates with dose savings
in dynamic CT. However, the true MBF for the patient is
not known. Both the 3D VTV method and bilateral filtering
gave the best fit of the resulting TACs to the MBF model.
Ultimately, the choice of smoothing parameter and method
will involve a tradeoff between bias and variance in MBF
estimates .

IV. CONCLUSIONS

In this paper, we compared several image-domain denoising
methods applied to a sequence of dynamic cardiac CT images.
We found that our proposed 3D VTV method achieves best
MBF estimator performance at low tube currents and sparse
temporal sampling using simulated data. The performance of
other smoothing methods including bilateral filtering becomes
comparable to the 3D VTV method at higher tube currents.
We applied our smoothing methods to a patient study. All
of the smoothing methods reduce the noise in the TACs
and provide a better fit of the TACs to the MBF estimation
model. The proposed 3D VTV method leads to TACs with a
good fit to the MBF model (reduced RMSE of fit by ~23%
compared to original images). In the future, we will apply
these methods to more patient studies in a trial comparing
quantitative CT to quantitative PET to determine the optimal
smoothing approach.
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Abstract—Cone Beam tomography, being potentially less ex-
pensive than helical CT, may allow a generalization of 3D imaging
to annual screening of disease like osteoporosis or osteoarthritis.
Frequent assessment of anatomical metrics over bones and joints
motivates the design of reconstruction algorithms capable of
accurate retrieval of bone microstructure from low dose acqui-
sitions. In this paper, we assess the behaviour of two 3D over-
complete transform for real CT image representation and their
performance for sparse regularization of CBCT reconstructions
over a human knee dataset featuring complex microstructure.

I. INTRODUCTION

Sparse priors have been extensively used, for the past few
decades as a regularizing tool for common inverse problems
in imaging. The literature about design of efficient sparsifying
transform and sparsity promoting algorithm is huge, and
it would be difficult to establish an exhaustive list of all
approaches that have been applied to the problem of CT
reconstruction. Instead we will focus on two specific tools,
one arising from the field of harmonic analysis, known as
dual-tree complex wavelet transform (DTCWT) and the other
from the statistics community: dictionary learning.

Our aim here, is to try to overcome some limitations of well-
known sparsifying transform, like the loss of texture informa-
tions often attributed to the total variation model or the lack
of directionality of some wavelet with high order vanishing
moments like Daubechies’. A previous study with a similar
approach has been conducted in [1], shearlet transform yielded
better results that TV, but only in a 2D setting. Although
extensions of ridgelet, curvelets, shearlets, . . . to 3D have
been studied, and seem to provide optimal sparsity properties
for some class of functions, we first tried to address DTCWT
as a numerically efficient 3D separable and semi orthogonal
transform. It should be noticed that, in the framework of
3D imaging, lack of directionality of common real wavelets
and computational cost of non separable wavelets become
increasingly challenging obstacle to practical use of many
interesting wavelet basis.

Work financially supported by France CIFRE
convention No. 2013/0971 and Thales Electron Devices Moirans.

We will show that properties featured by the DTCWT like
directionality and shift invariance although being related to an
important redundancy, are manageable on today’s hardware
when using moderate image size like 5123 voxels.

Dictionary learning techniques received an important atten-
tion in various field of inverse problems, its use in the field of
medical imaging, have shown promising results [2], and many
approaches even include an adaptive dictionary learning as a
part of the reconstruction algorithm [3], [4].

However, to our knowledge, statistical learning of atoms
remained mostly restricted to 2D images, as a consequence,
extension of dictionaries of 2D data to 3D, although compu-
tationally demanding, seems to be an interesting lead.

II. BACKGROUND

A. Dual-Tree Complex Wavelets transform in CT

The rational behind the design of dual-tree complex
wavelet transform has been exposed in [5], we may retain
that DTCWT possess the following desirable properties:
shift invariance, reduced aliasing in the analysis operator,
high directionality and efficient separable filterbank based
transform with small support filters. Previous work in 2D [6]
suggested, that, also theoretically less efficient for providing
a best k-approximation to the class of smooth objects with
discontinuities along C2 curves, some specific application
were able to reconstruct signals with less artifacts using
thresholded DTCWT coefficients than curvelets. Practical use
of 3D DTCWT for video denoising has also ben studied in
[7], and outperformed classical separable wavelet although
it appeared that 2D directionality was more relevant for
modeling 2D signal than its extension to 3D for 2D+time
signals. Successfull use of 2D DTCWT has also been
reported in fingerprint reconstruction tasks [8], whose visual
appearance resemble microstructure observed inside human
bones along various orientations.

B. Dictionary Learning Techniques

Many wavelets design rely on statistical properties shared
by most of the natural signals to a certain extent: regularity,
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stationarity, polynomial behaviour, . . . that have been studied
in analytical framework and exploited on purpose. However,
dictionary learning methods, generate directly atoms from
a predefined class of signals, without prior, seeking for a
possibly overcomplete dictionary able to provide a sparse
approximation, this consideration gave birth to many formu-
lations of sparse dictionary learning.
Here, we restricted our attention to a constrained version of
the l1 convex relaxation version of sparse recovery, related to
the LASSO problem :

min
D∈C

1

n

n∑
i=1

‖αi‖1 s.t ‖xi −Dαi‖22 ≤ λ (1)

Mairal in [9] studied this problem, as well as various other
sparsity inducing learning techniques, including non convex
ones in the more general framework of sparse coding and
matrix factorization, and showed how to practically address
them in high dimensional settings.

III. MATERIAL AND METHODS

A. Sparsity Terminology

In [10] the author recall that compressible signals can be
caracterized by their appartenance to a weak lp ball, and de-
rives another caracteization using the l2 norm of the difference
between a signal x and its best k-term approximation using k
coefficients (denoted xk) in the basis Φ which decays as :

‖x− xk‖ ≤ C.R.k
1
2− 1

p (2)

As the later definition is used in many applications of approxi-
mation theory and compressive sensing, we will use it in order
to compare our two over complete basis. Best k-approximation
being provided by hard thresholding in the case of DTCWT,
and by LASSO regression for the dictionary basis.

B. Implementation of the DTCWT

Implementing separable complex wavelet transform requires
first a basic understanding of the relation between multireso-
lution analysis and filterbanks. The specific case of filterbank
design for complex wavelets has been tackled in [5], especially
the method to obtain nearly analytic wavelets (without negative
frequencies), which is the key feature for high directionality.
We used the Q-shift filter based solution to generate the half
sample delay as a hilbert transform. This methods mimics
the 90◦ phase shift applied in single sideband modulation,
and has the nice property of perfect reconstruction, short
support (6tap) and orthogonality. In the framework of convex
optimization, fully orthogonal wavelet trees at every stage are
desirable, even in the case of redundant transformations, in
order to construct tight frames and match the requirements
of easy proximity operator computation in both analysis and
synthesis formulation, see [11]. In practice we used the (9,7)
bi-orthogonal Antonini filter at the first stage only, without
significant convergence problem. It should be noticed that
directionality given by the nearly analytic behaviour of CWT
comes with a redundancy ratio of greater importance with the

growth of the number of spatial dimension D as 2D, which
gives the 3D DTCWT a redundancy factor of 8. In order
to take advantage of recent advances in high performance
computing, we implemented our own GPU version of the n-D
DTCWT using Cuda.

C. Dictionary learning for 3D CT images

To conduct our study on reference dataset, we used a
CT version of the Human Visible Project [12], eventually
concatenated, cropped and scaled to form 9 cubes of data.
Among the various formalizations that have been used to
set up dictionary learning methods, we choose eq. 1. We
did so because the optimization problem it casts can be
parametrized using only one information that can be, under
some assumption, easily interepreted as the variance of a
stationary additive centered noise inside a learning patch.
Before learning, every patch is centered, reduced and scaled
to a unitary vector, we did not used whitening in order to keep
local correlation informations (low frequencies) and ensure
optimal performances for reconstructions. The value λ = 0.01
equivalent to 1% of the patch norm for our pre-processing
settings gave us satisfying results when challenged using
compressibility assessment exposed in the next section.
A constant patch of norm 1 was added to the dictionary
resulting from solving the above problem. In practice, we
used the software SPAMS [13], to solve this optimization
problem, using trainDL method in mode 1 with 1000 iterations

D. Dictionary operator in CT reconstruction

A dictionary, in finite length, discrete time signal processing,
can be defined as a p × n matrix D, potentially featuring an
overcompleteness ratio of n/p, whose columns are discrete
atoms ψi of size p:

D =

⎛⎜⎜⎜⎝
ψ00 . . . ψn−10

ψ01 . . . ψn−11

...
...

...
ψ0p−1 . . . ψn−1p−1

⎞⎟⎟⎟⎠ (3)

Once dictionary is learned, it is easy to define Dfullimage,
a matrix that is simply the block-diagonal reproduction of
the dictionary D, where each row corresponds to one specific
voxel to be reconstructed. The synthesis operator is still a
simple matrix-vector multiplication. In practice although we
use this definition in order to compute image/patch correlations
through Dᵀ

fullimage , it is interesting to add more overcom-
pleteness to the full dictionary by overlapping patches during
the reconstruction.
This method allows to smooth the signal at patch boundaries,
avoiding macroblocking artifacts similar to those arising when
using block DCT for jpeg compression.
Unfortunately, in order to setup this method, we had to
define a new operator Doverlap that is not an equivalent of
Dfullimage but a slightly different version that exhibits non
zero terms at patches from neighbouring spatial locations
(columns) for a given voxel (row). The overlapping rows sees
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their contribution weighted by a factor equal to the inverse of
the number of different patch involved in the overlap.
Here is an example of such Doverlap matrix that reconstruct
a 1D signal of size 2p − 1 made of two patches of size p
overlapping at one spatial site.

Doverlap =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ00 . . . ψn−10 0 . . . 0
ψ01 . . . ψn−11 0 . . . 0

...
...

...
...

...
...

ψ0p−2 . . . ψn−1p−2 0 . . . 0
1
2ψ0p−1 . . . 1

2ψn−1p−1
1
2ψ00 . . . 1

2ψn0

0 . . . 0 ψ01 . . . ψn−11

...
...

...
...

...
...

...
0 . . . 0 ψ0p−1 . . . ψn−1p−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4)

Then the reconstruction of the signal from its coordinates in
the dictionary D can be expressed as:

Doverlap

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α0

α1

...
αn−1

β0

β1

...
βn−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0

x1

...
xp−1

...
x2p−2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5)

This method was also implemented using Cuda for our 3D
patch setting.

E. Sparse Reconstruction algorithm

There is an abundant literature about optimization methods
for solving sparsity related problems, many of them are
related to convex relaxation of l0 norm like the l1 or lp with
0 < p < 1. In the current study, we restricted ourselves to
one of the most simple algorithm, derived from the forward
backward splitting algorithm, thats uses a nesterov accelerated
first order method called Fista [14] in order to solve the
following problem:

min
x∈Rn

1

2
‖ADx− y‖22 + λ|x|1 (6)

where A is our cone beam tomographic projection operator,
D is our dictionary, and x is the unknown expression of the
3D volume in the dictionary basis, whether this dictionary is
our semi orthogonal DTCWT transform, or our overcomplete
dictionary learned from a pre-existing dataset. Our practical
implementation includes a GPU ray casting projector with 3D
linear interpolation and a GPU voxel based back projector with
2D linear interpolation.

IV. NUMERICAL EXPERIMENTS

A. Validity of signals model for generic CT images

In order to assess the validity of the 3D Dual Tree Complex
Wavelets tight frame and the 3D dictionary, we decided to

Fig. 1: Robustness of the best k-term approximation error.

study the decay profile of the l2 error presented in 2 over a
man head CT image of size 2563. For DTCWT, we challenged
the number of decomposition levels, and for the dictionary, we
challenged the overcompleteness of our dictionary for a given
learning dataset made of 8 other images of size 2563 with a
reconstruction overlap of 1 voxel in every direction for patches
of size 6 × 6 × 6. This methodology first helped us to tune
learning parameters like the size of the training set, and the
λ in eq. 1. In figure 1 we can see that, above 4 levels of
decomposition, best k-term error decay in the 3D DTCWT
tight frame seems to follow a power law (linearized using a
log/log scale) suggesting that CT images lies in a weak lp
ball where p is close to 1.7. However, due to the absence
of multiscale structure, the dictionary approach exhibits a
more complex pattern, the LASSO sparse coding method is
unable to provide a global approximation with less than 103.5

coefficients. Then two decay profiles appears sequentially, the
first similar to DTCWT between 103.5 and 104.5 but still
inferior in quadratic error and the second part in the sparsity
range over 104.5 where sparse coding over the dictionary
basis outclasses the DTCWT. We can notice that, beyond 107,
DTCWT seems to be the only method capable of providing
a nearly perfect reconstruction, however, as summing small
errors over a large number of terms may generate numerical
instability, we prefere avoiding interpretation here.

B. Sparse reconstruction of human knee specimen

Our experiment was conducted on a homemade rotating
platform using a Thales 2630S flat panel detector and a IAE
RTC 600 HS 0.6/1.2 X-Ray source. 600 images, binned in
780 × 720 (368μm equivalent pixels) were acquired at 70
kVp and 8mA over a 300◦ angular range, no denoising filter
was applied nor beam hardening correction. Attenuation maps
were obtained using a constant I0 estimation. Reconstruction
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(a) ADMM-TV (b) ADMM-Daubechies

(c) Fista-DTCWT (d) Fista-Dictionary

(e) Short-Scan FDK

Fig. 2: Visual overview of an axial slice with 5 different
reconstruction methods

of 5123 voxels of size 244 × 244 × 488μm, was performed
using a single NVidia GTX Titan X, with 100 Fista iterations
and a regularisation parameter λ equal to 0.05 for the DTCWT
and 0.01 for the dictionary, with a 1.66 redundancy ratio and
minimal overlap. Run time was approximately 18 minutes and
28 minutes respectively for DTCWT and dictionary sparsify-
ing transform. Other methods used here comes from RTK [15].

V. CONCLUSION

The results of the present study shows practical feasibility
of sparse regularization of CBCT reconstruction using highly
redundant dictionaries on a single high end personal computer.
In our specific use case, exploiting sparsity prior in the

DTCWT domain yielded visually better results than 3D dictio-
nary learning, total variation and Daubechies wavelet models.
However, probably due to the inhomogeneity of the learn-
ing dataset, our reconstruction yielded severe macroblocking
artifacts near thick bones, better results may be obtained
by carefully selecting the learning dataset and reconstruction
parameters.
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OBJECT CLASSIFICATION IN BAGGAGE-CT IMAGERY USING RANDOMISED

CLUSTERING FORESTS
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ABSTRACT

We present a random forest-based Bag of Visual Words
(codebook) approach for threat classification in noisy 3D
baggage-CT imagery. Features are extracted from a dense
sampling grid and encoded using extremely randomised clus-
tering forests [1]. An SVM classifier using these feature
encodings is shown to outperform a state-of-the-art visual
cortex model [2] in two classification tasks. In addition to
improved classification accuracy, we also demonstrate a re-
duction of several orders of magnitude in processing time over
the cortex model. Crucially, these results are achieved with-
out applying any noise or artefact reduction, which brings
into question the relevance of the widely-held assumption
that computationally expensive artefact reduction techniques
are a necessity in automated image-understanding tasks for
low-quality baggage-CT imagery.

Index Terms— Classification, Bag-of-Words, Random
forests, baggage CT

1. INTRODUCTION

The key role of baggage screening in the transport security
domain has lead to an increased interest in the development
of automated threat detection strategies. Traditionally, X-
ray based 2D imaging technologies have been used for this
purpose [3]. Due to variations in object orientation, clutter
and density confusion, contraband objects are often challeng-
ing to detect in 2D X-ray images. Recently, the use of 3D
Computed Tomography (CT) based screening systems have
become more widespread as a means of addressing these
limitations. Typically, Dual-Energy Computed Tomography
(DECT) scanners are used to allow for material-based detec-
tion of explosives [4]. This primary, non-object-recognition
based objective of typical baggage-CT scanners, coupled with
the demand for high throughput, means baggage-CT imagery
is typically of a much poorer quality than that encountered in
the medical domain and presents with substantial noise, metal
streaking artefacts and poor voxel resolution [5] (Figure 1).

A. Mouton is with the Deptartment of Computer Science, University of Bath,
UK (email: am2742@bath.ac.uk; andremouton.email@gmail.com).
T.P. Breckon is with the School of Engineering and Computer Sciences,
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Weapons Detection (2010), sponsored by HOSDB, DfT, CPNI and MPS.

Fig. 1: Cluttered baggage-CT scan with streaking artefacts.

Prior work related to the automated classification of ob-
jects within complex non-medical 3D volumetric imagery is
limited. Chen et al. [6] address the classification of pistols
in DECT imagery. The problem is, however, simplified to an
examination of the characteristic cross sections and no exper-
imental results are presented. Megherbi et al. [7] propose
the use of a classifier-based approach using volumetric shape
characteristics for the recognition of pre-segmented bottles in
complex 3D CT imagery. While the study demonstrates rea-
sonable results, only a very limited dataset is considered. Flit-
ton et al. [2] have presented what may perhaps be considered
the current state-of-the-art in automated object recognition in
such complex 3D imagery. Particularly, a novel 3D exten-
sion to the hierarchical visual cortex model for object recog-
nition is used for the automated detection of threats in pre-
segmented 3D CT baggage imagery. The approach is shown
to outperform a traditional BoW approach with correct de-
tection rates in excess of 95% and low false-positive rates.
In addition to incurring a large computation overhead (in the
construction of the cortex model), performance is shown to
decline in the presence image noise and artefacts.

The Bag of (Visual) Words (BoW), or codebook, model
[8] has enjoyed success in various object recognition and im-
age classification tasks . BoW approaches require a clustering
of the feature space to generate visual codebooks. Traditional
clustering techniques (e.g. k-means clustering [9]) are com-
putationally expensive when the feature space is large. Moos-
mann et al. [1] demonstrate state-of-the-art classification per-
formance at a significant reduction in computational cost by
constructing visual codebooks using Extremely Randomised
Clustering (ERC) forests. Similar forest-based clustering ap-
proaches have enjoyed success in a variety of image classifi-
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Fig. 2: Example scans containing handguns (top) and bottles
(bottom) in cluttered surroundings representative of common
airport luggage. Rendering colours chosen to highlight target
objects (delineated in white).

cation, registration and segmentation tasks [10, 11].
We extend the use of ERC forests to the previously un-

considered domain of threat classification in noisy volumet-
ric baggage-CT imagery and demonstrate that state-of-the-art
performance is obtainable without considering the compu-
tationally expensive noise and artefact reduction techniques,
traditionally considered a necessity.

2. METHODS

We adopt the following traditional BoW classification frame-
work [12]: 1) feature detection and description; 2) visual
codebook generation and vector quantisation and 3) classi-
fication. The methods presented here represent the optimal
choices based on extensive empirical studies [13, 14].

Feature detection and description: We adopt a dense
feature point sampling strategy (as per [15]), whereby key-
points are sampled uniformly and randomly. An invariance to
uniform changes in image scale is obtained by sampling in-
terest points from three image scales. At each of the scales
a limit of τN = 0.006N on the number of randomly sam-
pled points is enforced (where N is the number of voxels in
the Gaussian scale-space image and τN is determined empiri-
cally). For the data used in this study (N ∼ 3× 105), the pro-
posed sampling strategy typically leads to an increase of two
orders of magnitude in the number of sampled points com-
pared to the original 3D SIFT keypoint detection approach of
Flitton et al. [16] (making conventional k-means unsuitable).

Flitton et al. [17] have shown that simple density statistics-
based descriptors outperform more complex 3D descriptors
(SIFT [16] and RIFT [18]) in object detection within low res-
olution, complex volumetric-CT imagery. In accordance with
these findings, the Density Histogram (DH) descriptor [17]
is used here. The descriptor characterises the local density
variation at a given interest point as an N-bin histogram de-
fined over a continuous density range. The optimal descriptor
parameters are selected in accordance with [14] and result in

a 60-dimensional feature vector.
Visual codebook generation: Extremely Randomised

Clustering (ERC) forests assign separate codewords to every
leaf node in a given forest (i.e. a forest containing N leaf
nodes, yields a codebook of size N ). The BoW representa-
tion for a given image is obtained by accumulating the code-
word counts after applying the forest to all the descriptors in
the image. The resulting histogram of codewords is then used
in subsequent classification in the same way as any standard
BoW model. In contrast to k-means clustering, ERC forests
are supervised. Trees are trained in a top-down recursive fash-
ion [19] using a set of labelled training descriptors, where the
labels are obtained from global image annotations (i.e. all de-
scriptors from a given image share the same label). A simple
thresholding function is used as the node split function for all
internal nodes of the forest:

f(vi, θj) =

{
0 vi < θj

1 otherwise
(1)

where vi, i = 1, . . . , D is a single feature attribute se-
lected from a D-dimensional descriptor vector v ∈ RD and
θj is a scalar valued threshold (D = 60). The optimality cri-
terion used for node splitting is the classical Information Gain
(IG) [20]. Randomness is injected into the trees by consid-
ering a fixed-size random subset of the available node split
function parameter values at each node.

Classification is performed using a Support Vector Ma-
chine (SVM) classifier with a Radial Basis Function (RBF)
kernel.

3. RESULTS

We considered the classification of two target objects (hand-
guns and bottles). The performance of the proposed ERC
codebook-based model was evaluated against the baseline vi-
sual cortex-based approach of [2].

The data used in the study was captured on a CT80-DR
dual-energy baggage-CT scanner (Reveal Imaging Inc.), at
anisotropic voxel resolutions of 1.56×1.61×5.00mm. A fan-
beam geometry was adopted with a focus-to-isocentre dis-
tance of 550mm, a focus-to-detector distance of 1008.4mm
and nominal tube voltages of 160kVp and 80kVp. Two dis-
tinct datasets were constructed for each of the target classes
(handguns and bottles). Each dataset was composed of the
given target object scanned in random poses (to obtain rota-
tional invariance) and surrounded by various ‘clutter’ items
(e.g. clothing, books, mobile phones etc.) to provide bags
representative of those encountered at airport security check-
points (Fig. 2). The target objects were subsequently isolated
prior to feature extraction, using a 3D sliding-window oper-
ator. The two object classes were considered independently
of one another. The handgun and bottle datasets consisted of
1255 samples (284 target; 971 clutter) and 1704 samples (534
target; 1170 clutter) respectively. Ten-fold cross-validation
testing was performed using the identical data and data-splits

The 4th International Conference on Image Formation in X-Ray Computed Tomography

210



Fig. 3: Examples of correct and incorrect (False-Positive (FP) and False-Negative (FN)) results or the proposed codebook
classification model.

Method Class TPR (%) FPR (%) Precision Time (s)

ERC Codebook Handgun 99.71 ± 0.51 0.28 ± 0.21 0.990 ± 0.013 186.89
Bottle 98.88 ± 0.68 0.60 ± 0.25 0.987 ± 0.021

Cortex [2] Handgun 96.81 ± 2.64 1.10 ± 0.93 0.962 ± 0.029 > 3.6× 103

Bottle 96.62 ± 3.23 1.01 ± 1.63 0.977 ± 0.034

Table 1: Comparison of the proposed ERC codebook to the visual cortex model [2]
.

used in [2], allowing for a direct performance comparison
between the ERC Codebook and the visual cortex-based ap-
proach of [2].

The cost C and the kernel width γ of the RBF kernel used
in the SVM classifier were optimised using a standard grid-
search cross-validation procedure [21]. Internal nodes in the
ERC forests were optimised by performing 30 tests at each
node - this value was fixed for all nodes. Trees were grown
to a maximum depth of DT = 10, with a lower bound of
IGmin = 10−4 on the information gain. The settings resulted
in trees with approximately 1000 leaf nodes each. For a for-
est containing T = 25 trees, codebooks therefore typically
contained approximately 25000 codewords.

Experiments were performed on an Intel Core i5 machine
running a 2.30GHz processor with 6GB of RAM. The random
forest methods were implemented in C++ using the Sherwood
decision forest library [22]. The processing times, measured
over the entire 10-fold cross-validation procedure and aver-
aged over the two experiments (bottles and handguns), are
recorded in the final column of Table 1.

Table 1 shows the quantitative results of the aforemen-
tioned experiments averaged over the 10 folds. The proposed

codebook approach (dense feature sampling, ERC forest en-
coding and SVM classifier) produced state-of-the-art classifi-
cation results for both the handgun (TPR = 99.71%; FPR =
0.28%) and bottle (TPR = 98.88%; FPR = 0.60%) datasets,
which correspond to significant improvements over the base-
line cortex model [2] (Handguns: TPR = 96.81%; FPR =
1.10% and Bottles: TPR = 96.62%; FPR = 1.01%).

Figure 3 illustrates several examples of correct and in-
correct classifications produced by our proposed codebook
models. The presence of high-density objects (coloured
red/orange), were the predominant factor contributing to
False-Positive (FP) handgun classifications, while handguns
containing low-density handles relative to the barrels led to
False-Negative (FN) classifications.

The two major factors contributing to false-positive bot-
tle classifications were: 1) the presence of items with circular
cross sections similar to that of a full bottle and 2) the pres-
ence of image regions similar in density to the liquids used
in the training set. It is worth noting that these observations
are in accordance with those made in the previous works of
Flitton et al. [2, 14].

Finally, we emphasise again that noise and metal arte-
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fact reduction [5, 23, 24] have not been considered in this
work. While this demonstrates the robustness of the dense
feature sampling to background noise and artefacts, it more
importantly brings into question the widely-held assumption
that such techniques are a necessity in automated image-
understanding tasks for low-quality baggage-CT imagery. A
more extensive evaluation of this observation is being con-
ducted in an ongoing study.

4. CONCLUSIONS

We have presented a random forest-based codebook approach
for the classification of threats in low-resolution, cluttered
volumetric baggage-CT imagery and demonstrated improve-
ments over the state-of-the-art [2] of > 3% and > 2% in
the TPR for handgun and bottle classification respectively
and reductions of 70% and 40% in the corresponding FPR.
These improvements, together with a reduction of several or-
ders of magnitude in processing time, were achieved without
performing any noise or artefact removal, representing an im-
portant finding in a domain where these computationally ex-
pensive pre-filtering techniques have traditionally been con-
sidered mandatory. Future work will consider an extension to
multiple target classes and present a more extensive investi-
gation into the relevance of denoising and artefact reduction
in this domain.
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Abstract— All passengers and their carryon luggage are 

inspected for explosives prior to boarding an aircraft.  The 
primary screening technology for inspecting carryon luggage is 
X-ray radiography systems.  There is great interest in the 
development of automatic threat detection algorithms for these 
systems because of their cost-saving potential.  In this paper we 
describe the development and testing of a chain of processing 
algorithms for classification of threats from 3D image 
reconstruction volumes of data from a four-projection, dual 
energy X-ray scanner developed by ScanTech Identification 
Beam Systems.  
 

Index Terms—computed tomography, image reconstruction, 
automatic threat detection, airport security 
 

I. INTRODUCTION 
LL passengers and their carryon luggage are inspected for 
explosives prior to boarding an aircraft.  To save on 

screening costs, a number of automated systems are deployed.  
The primary screening technology for inspecting carryon 
luggage is X-ray radiography systems.  The classification of 
objects as threats or non-threats is made by analyzing the 
measured distribution of one or more X-ray energy spectra 
over a few views (angles).  From this information one attempts 
to determine the effective atomic number and density of all 
materials in the field of view of the scanner.  Accurately 
determining these quantities for all objects in a piece of 
luggage is extremely difficult due to the limited number of 
views and high level of clutter in luggage. 
 Recent years have seen significant advances in few-view 
Computed Tomography (CT) image reconstruction 
algorithms.  In this project we leverage these advancements in 
CT imaging to reconstruct volumetric images from the 
SENTINEL® III, a four-view, dual-energy X-ray carryon 
luggage scanner developed by ScanTech Identification Beam 
Systems.  Since this scanner collects dual energy data, we are 
able to reconstruct volumetric images of the effective atomic 
number and electron density (electrons.mol/cm3).  These 
images are then segmented and features are extracted from 
each segment.  Segments are classified as threats or non-
threats based on the distribution of their features based on a 
machine learning classification algorithm. 

 
The authors are with Lawrence Livermore National Laboratory, Livermore, 
CA 94550.  Corresponding author: Kyle Champley (champley1@llnl.gov). 

II. SENTINEL® III SCANNER 
The ScanTech SENTINEL® III scanner employs four dual 
energy X-ray projections.  The four X-ray projections are 
composed of a collection of linear detector arrays placed 
around the rectangular system gantry.  A sketch of this four 
view geometry is shown in Figure 1.  Note that the projections 
lie in three different planes while the projections of 
conventional X-ray CT system are essentially co-planar.  Dual 
energy spectra are measured with so-called sandwich 
detectors.  These detectors are composed of a high-energy 
detector placed behind a low-energy detector with a copper 
filter between the two detectors. 

 
Figure 1. ScanTech SENTINEL® III X-ray projection geometry. The 
red box shows a slice parallel to the tunnel entrance plane of the field 
of view of the scanner. 

III. DESCRIPTION OF ALGORITHMS 
We take an X-ray CT approach to imaging in order to 

achieve the best image quality and highest accuracy possible.  
First the radiographs are converted to attenuation data and 
outliers are identified and corrected.  Second, we apply a dual 
energy decomposition algorithm to remove beam hardening 
artifacts.  Here the polychromatic attenuation values are 
converted into essentially monochromatic attenuation values 
at the mean system spectral response energies.  Then few-view 
CT image reconstruction algorithms are applied independently 
to the low and high-energy data.  We employed a 
segmentation-feedback loop to this reconstruction process to 
improve image quality.  The low and high attenuation 
coefficient images are converted to volumes of the effective 
atomic number and electron density distributions.  The high-
energy 3D image volume is segmented.  Features from each of 

Automatic Threat Detection for a Dual-Energy 
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these 3D segments are extracted from the low attenuation, 
high attenuation, effective atomic number, and electron 
density volumes and fed into a classification algorithm. 

Narrow slit collimators in front of the source and detector 
modules relax the need for scatter correction algorithms.  The 
loss of image quality and image accuracy due to the lack of  
employing a scatter correction algorithm are overshadowed by 
poor image quality achieved from reconstructing with four 
views.  Thus we did not apply any scatter correction 
algorithms to the data. 

  

A. Dual Energy Decomposition 
Dual energy decomposition [1] is employed to remove beam 

hardening artifacts from the measured data.  We use the 
energy basis functions of the total Klein-Nishina cross section 
and the reciprocal of the energy cubed.  This is commonly 
referred to as the Compton/ Photoelectric basis [1] because 
these functions approximate the Compton and photoelectric 
cross section components.  After the decomposition takes 
place we transform the components back to attenuation 
coefficients at the mean system spectral responses of the 
spectra pair [2].  This decomposition procedure requires 
accurate models of the spectral response pair.  The 
determination of this spectral response pair is outlined in 
section IV. 

 

B. Few-View CT Image Reconstruction 
Mathematically speaking, the problem of few-view CT 

reconstruction is solving an underdetermined system of linear 
equations in the presence of noisy measurements.  Modern 
approaches to this problem use constrained optimization 
techniques to reconstruct the voxelized 3D image.  These 
constraints shrink the solution space and thus shrink the null 
space of the forward operator.  Shrinking the null space helps 
to reduce image artifacts such as streaking.  Common image 
constraints include non-negativity, image sparsity, and image 
gradient sparsity.  Many few-view CT image reconstruction 
algorithms work by clever combination of Simultaneous 
Algebraic Reconstruction Technique (SART) and Total 
Variation (TV) regularization. 

We make use of the Adaptive Steepest Descent- Projection 
onto Convex Sets [3] (ASD-POCS) reconstruction algorithm.  
We have found much success with this algorithm.  The use of 
this algorithm alone did not provide sufficient reduction of 
artifacts and quantitative accuracy, so we employed an image 
reconstruction- segmentation feedback loop to improve image 
quality.  This segmentation-reconstruction feedback loop 
encourages increased smoothing between voxels in the same 
segment.  Figure 2 shows some representative slices from a 
reconstructed data set of a collection of glass bottles filled 
with different aqueous solutions packed in a box of clothing. 

 
Figure 2. Reconstructed slices of data from the ScanTech 
SENTINEL® III scanner. (left) Slice parallel to floor. (right) Slice 
parallel to tunnel entrance plane. 

 

C. Conversion to Effective Atomic Number and Electron 
Density 

The CT image reconstruction algorithm provides us with 
estimates of the distributions of the attenuation coefficients of 
the object being imaged at two different energies.  Let σ(γ, Z) 
be the electron cross section (cm2 / (electrons . mol)) of the 
element with atomic number Z at the energy, γ, measured in 
keV.  These cross sections may be extended to non-integer Z 
by linear interpolation.  Let ρe denote the electron density 
(electrons . mol / cm3) of an object.  Then the attenuation 
coefficient of an object can be expressed as ρeσ(γ, Z).  Let γL 
and γH denote the mean system spectral responses of the two 
measured spectra.  Note that in the dual energy decomposition 
step, we decomposed our polychromatic attenuation pair into a 
monochromatic attenuation pair at these energies.  Then our 
reconstruction algorithm produced estimates of the attenuation 
coefficient maps at these two energies.  Denote these maps by 
fL and fH.  Then we may determine ρe and Ze, the effective 
atomic number, by solving the following system of two 
equations fL = ρeσ(γL, Ze) and fH = ρeσ(γH, Ze). 

 

D. Volume Segmentation  
The volume is segmented into objects by first separating it 

into slices.  Those slices are broken into superpixels (using the 
SLIC superpixelization algoritm [4]) and a graph is created to 
represent the adjacencies and statistics of those superpixels 
(mean and standard deviation of the contained pixels).  All the 
superpixels with mean values below a user chosen threshold 
are merged, and then the graph is aggregated until a 
predetermined merging cost is reached. The graphs, 
representing objects in each slice, are aggregated across slices 
to complete the segmentation of the volume.  

In any slice, the number of superpixels is chosen such that 
each superpixel represents approximately 400 raw pixels.  The 
cost for merging graph nodes is given by 

 

where  is the cost of merging nodes i and j,   and  
are the number of pixels in nodes i and j,  and  are the 
mean values of the pixels in nodes i and j, and  and  are 
the standard deviations of the pixels in nodes i and j.  There is 
no cost for merging nodes with mean values below the user 
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chosen threshold, and a severe cost to merging nodes with 
values on either side of the threshold (the cost in equation 1 is 
multiplied by 100). 

 

E. Classification Algorithms 
Following the Volume Segmentation algorithm described in 

the previous section; we apply a post processing algorithm to 
detect a multi-model distribution in individual segments.  If 
these modes are spatially separable we split the segments by 
properties and use a 3D median filter to reduce noise.   

For each segment we extract a number of features, these 
included the mean, median, mode, standard deviation, and 
skew of the 4 images (ρe, Ze, fH, fL), the voxel count, and the 
total estimated density of the entire image.  Of these features, 
eight were used in the final classifier.  The features used 
included: the voxel count, ρe median, Ze mean, Ze skew, fH 
mean, fL mean, fL skew, and total Ze.  Of these features, voxel 
count, Ze mean, and fL skew were the most significant in terms 
of the final classifier.  These eight features for each segment 
were fed into a random forest classifier [5].  The random 
forest classifier used included 225 classifier trees and a 
minimum leaf size of 3. 

 

IV. SPECTRAL MODELING AND CALIBRATION 
Material property (defined as the combined effective atomic 

number, Ze, and electron density, ρe) is derived from 
measuring the attenuation of the two polychromatic spectra 
defined by the x-ray source, detectors, and filtration by any 
materials lying between. Accurate knowledge of those spectra 
is essential for accurate decomposition. For the SENTINEL® 
system the details are complex. 

The source spectra are determined by the energy of the 
electrons striking the anode/target of the source, the target 
material (tungsten) and the azimuthal angle of each detector 
element relative to the target surface. The spectral response of 
the detector is governed by the energy-absorption properties of 
the low- and high-energy scintillators and by filtration due to 
internal components of the detector “sandwich.” Additionally, 
internal absorption in the path of each source-detector ray is 
uniquely determined by the thickness and orientation of all 
materials (windows, tunnel-walls and filters, conveyor belt) 
traversed by that ray. The angularly-dependent spectra were 
calculated using a model by Finkelshtein and Pavlova [6]. X-
ray transport and absorption is based on LLNL’s EPDL data 
base [7]. 

While it is important to use the best spectral information 
available, there is inevitably some degree of uncertainty in the 
composition of some the objects between source and detector. 
For this purpose, two linear arrays of 1-cm wide metal strips 
(1-mm aluminum and ¼ mm copper) were laid across the 
entrance windows to the tunnel. Final adjustments to the 
spectral models were then made as addition or subtraction of 
small amounts of aluminum in the path, such that the “as-
measured” and “as-modeled” attenuations closely matched.  

 

V. METHODS 
The test plan was designed to primarily support the research 

and development goals of developing and evaluating 
algorithms to identify and characterize objects, not to emulate 
actual luggage. The goals were to provide samples with a 
broad range of material properties, deployed with in a range of 
container environments and imaging challenges, in a range of 
locations and orientations within their packages, with the 
constraint that the identity, location and orientation of every 
object be recorded and indexed so that results could be 
evaluated against the actual configuration. 

The test samples comprised water, graphite, magnesium, 
Teflon, Delrin, silicon, and two aqueous solutions of alkali-
halide salts. For conciseness, the polymer trade-names 
“Teflon®” and “Delrin®” are used loosely here to refer to 
generic samples of polytetrafluoroethylene (PTFE) and a 
polyoxymethylene co-polymer (POM). One of the alkali-
halide solutions was mixed using LiCl, the other a 
combination of KBr and RbBr. All specimens were 
approximately 5-cm diameter, and 15 cm long. All liquids 
were provided in containers of polyethylene, aluminum, and 
glass to evaluate the effects of container attenuation. 

 
Figure 3. Plot of the Ze vs. RhoE properties for characterized 

materials used in the Tests. 

 
The range of material properties deployed in the 

experiments is shown in Figure 3. The effective atomic 
number, Ze, is defined such that the material’s x-ray 
transmission through a sample thickness of 2.5 g/cm2 
optimally matches (in a least-square sense) a mixture of two 
neighboring elements in the periodic chart [8] by linear 
interpolation of their cross sections. 

The test objects were deployed at three clutter densities. 
Low-clutter configurations were deployed in 1-ft x 1-ft x 4-ft 
boxes, objects deployed parallel to the horizontal, vertical and 
axial directions (x, y, z), such that objects did not overlap in 
the views. Medium- and high-clutter configurations were in 1-
ft cubical boxes, with one object in the center of the box, and 
three additional objects placed near the sides. High clutter 
boxes have the additional objects on all of the six sides. In 
some cases the side objects were chosen to severely block one 
side (1-inch stack of magazines or ¼-inch iron plate). All 
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configurations were deployed once each with a low-density 
(polystyrene foam) of medium-density (flannel) fill. All 
configurations were also deployed with and without a 15-
gauge aluminum casing to simulate attenuation by hard-sided 
luggage. Medium- and hi-clutter boxes were scanned in six 
different orientations with respect to the belt motion. The full 
data set comprised 616 distinct scans, exclusive of scans 
included to monitor system performance and stability. The 
tests provided data to evaluate the effects of clutter, enclosure, 
container, location, orientation, blocking and packing on 
reconstruction, segmentation, classification and property 
measurements.  Photographs of a test object with and without 
aluminum shielding are shown in Figure 4. 

 

 
Figure 4. Photographs of a test data box with flannel fill, with and 
without the aluminum casing. 

Our classification tests evaluated the ability of our algorithms 
to identify the presence of either Delrin, LiCl solution, or KBr 
solution.  

VI. RESULTS 
A scatter plot of the estimated median Ze and ρe values for 

water, LiCl solution, and magnesium is shown in Figure 5.  
One can visually see the discrimination ability using only 
these two features. 

 

 
Figure 5. Scatter plot of the median of the Ze and rhoe values.  Open 
circles mark the theoretical values. 

Plots of the probability of false alarm versus probability of 
detection are show in Figure 6 for the three targets: Delrin, 
LiCl solution, and KBr solution. 

 
Figure 6. Probability of false alarm versus probability of detection. 

VII. CONCLUSION 
In this paper we have described a collection of algorithms 

for the classification of objects with dual energy, few-view 
radiography systems.  The approach is centered on the goal of 
reconstructing quantitatively accurate volumes of the effective 
atomic number and electron density distributions of the object 
in the field of view of the scanner. 

Results show the feasibility and effectiveness of this 
approach. 
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�� Abstract—Computed tomography (CT) is a valuable tool for 
three-dimensional measurement of industrial components. 
However, CT reconstructions are often corrupted by CT artifacts 
caused by beam hardening, x-ray scatter, off-focal radiation, 
partial volume effects or the cone-beam reconstruction itself. 
Especially, if highly attenuating objects are investigated, these 
artifacts lead to a severe degradation of image quality and may 
prevent an accurate metrological assessment of the object. In 
order to correct for these artifacts, our approach uses computer 
simulations of the CT measurement process to calculate an 
estimate of the contribution of artifacts to the measured 
projection data. Based on an appropriate model of the object, e.g. 
an initial reconstruction or a CAD model, two simulations are 
carried out. One simulation considers all physical effects that 
cause artifacts using dedicated analytic methods as well as Monte 
Carlo-based models. The other one represents an “ideal” CT 
measurement without any artifacts i.e. a measurement in parallel 
beam geometry with a monochromatic, point-like x-ray source 
and no x-ray scattering. The difference gives an estimate of the 
contribution of artifacts and is used to correct the measured data. 
The performance of the proposed method is evaluated for 
measurements of single- and multi-material objects conducted on 
a commercial industrial CT system. The correction results are 
compared to tactile reference measurements as well as to 
reference artifact reduction algorithms. Our approach allows for 
the reconstruction of volumes that are nearly free of artifacts and 
thus clearly outperforms the other artifact reduction algorithms. 
 

Keywords—Artifact correction, cone-beam CT, industrial 
computed tomography, metrology 

I. INTRODUCTION 
In recent years CT has been increasingly used in metrology 

since it provides high measurement point density, requires 
comparably short measurement times, and allows the non-
destructive assessment of internal features [1]. Coordinate 
measuring machines with CT sensor are available to meet very 
stringent requirements for resolution, measurement 
uncertainty, or for measuring large objects. However, the 
investigation of metallic or highly attenuating components is 
still challenging as the reconstructed volumes are often 
corrupted by severe CT artifacts [2]. These CT artifacts are a 
result of inappropriate modeling of the x-ray physics within 
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the reconstruction process. Widely used analytic 
reconstruction algorithms, for instance, assume the acquired 
projection data to be the monochromatic x-ray transform of 
the measured object. However, this assumption neglects 
several physical effects of the CT data acquisition such as 
beam hardening, x-ray scatter, off-focal radiation or partial 
volume effects. As a consequence artifacts associated with 
these effects are introduced to the reconstructed volumes.  

First of all, artifact correction was achieved using a 
reference measurement of a master part with high precision 
tactile, optical, or tactile-optical sensors on a multisensor 
coordinate measuring machine with CT. This method is still 
applied if traceability and absolute precision are required. 
Considering software-based artifact correction, there are 
basically two strategies: The consideration of the x-ray 
physics within the reconstruction process or the correction of 
the acquired projection data prior to the reconstruction. The 
first type of approach is usually implemented as an iterative 
reconstruction scheme that incorporates dedicated models of 
the interaction between x-rays and matter within its forward 
model. Several models that allow for the consideration of CT 
artifacts have been proposed [3]. However, since the 
reconstruction problem has to be solved iteratively, these 
algorithms have the drawback of high computational cost. 
Therefore, the second type of approach applies correction 
terms prior to an analytic reconstruction. In case of multi-
material components containing metal so called metal artifact 
reduction (MAR) algorithms are commonly applied. MAR 
algorithms identify the metal trace within the acquired 
projection data by a forward projection and replace it using 
different interpolation schemes [4, 5, 6, 7, 8]. However, 
interpolation errors may introduce new artifacts. More general 
precorrection approaches are based on physical considerations. 
A correction curve which maps the measured intensities to 
monochromatic intensities can be calculated or derived from a 
reference measurement [9] [2]. Scattered x-rays and off-focal 
radiation can be estimated and corrected by convolution 
approaches [10] [11]. CT artifacts such as cone-beam artifacts 
or non-linear partial volume artifacts cannot be corrected by 
precorrection approaches. Thus, we propose an alternative 
method that uses an a priori model of the object to derive a 
correction term in image space. Based on this model two 
simulations are performed. One of them considers all effects 
that cause artifacts while the other one represents an ideal CT 
measurement. Since the correction is applied to an analytic 
reconstruction the approach is comparably fast and can be 
applied to any CT artifact that is included in the simulation. 
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II. MATERIAL AND METHODS 

A. Simulation-Based Artifact Correction 
Analytic reconstruction algorithms only lead to reconstruction  
results without artifacts in case of ideal projection data , i.e. 
data that are the x-ray transform of the measured component: 
 

                    (1) 
 
Here   represents distribution of the object’s attenuation 
coefficient and  is the x-ray transform operator which 
corresponds to a monochromatic forward projection of the 
object. Subsequently, the unknown function  can be 
recovered from a CT measurement by applying the inverse x-
ray transform . However, conventional CT systems 
acquire projection data  which deviate from ideal data due to 
beam hardening, off-focal radiation, the contribution of 
scattered x-rays and partial volume effects. Thus, the 
projection data measured by the detector element  are 
given by: 

 
 (2) 

 
in which  describes the scatter contribution,  the 
intensity distribution of the focal spot,  the detected x-
ray spectrum, and  the line integral over the 
attenuation coefficient from the focal spot position  to the 
detector. Since , the application of the inverse x-ray 
transform does not yield  but a function g that is 
corrupted by artifacts: 

  
   

             (3) 

According to equation (3) the function  can be recovered 
from  by subtraction of the artifact term .  
Therefore, the proposed approach aims at deriving an estimate 
of the artifact term  which is subsequently used to get 
an estimate of the ideal reconstruction :  
 
           (4) 
 
Here  and  represent estimates of the ideal data  and the 
measured data , respectively. In order to calculate  and , 
we perform CT simulations using an a priori model  of 
the measured object. That model is derived from the initial 
reconstruction  by segmentation:  
  
                  (5) 
 
Here  represents the segmentation operator which is, for our 
purpose, a marching cubes algorithm. In case of multi-material 
components, the segmentation is only applied to the meatal 
component. The ideal data  is generated by a monochromatic 
forward projection of reference energy : 
 
             (6) 
 

In order to generate the real data , all physical effects of the 
CT measurement are modeled in the simulation process. Beam 
hardening is simulated by a polychromatic forward projection 
based on a modification of the semi-empirical tube spectrum 

 of Tucker et al. [12], and on tabulated values of the 
attenuation coefficient of the object , the prefilter , and 
the x-ray detector , as well as the corresponding intersection 
length . The contribution of off-focal radiation is 
approximated by convolving the simulated polychromatic 
intensities with an off-focal kernel  that is determined by a 
calibration measurement. Nonlinear partial volume artifacts 
are reproduced by an appropriate subsampling of the 
simulated intensities. The contribution of scattered x-rays  is 
calculated using a hybrid approach that uses a Monte-Carlo 
scatter simulation with a reduced number of photons to 
determine the free parameters of an analytic scatter 
convolution algorithm  [13]. Using the detected spectrum , 
 

,     (7) 

the simulated projection data are calculated as follows: 
 
  (8) 
 
Finally, the difference between  and  is reconstructed to 
derive the correction term. However, if the measurement as 
well as the simulations is performed in cone-beam geometry, 
cone-beam artifacts may remain in the corrected volume. In 
order to correct also for cone-beam artifacts, the simulation as 
well as the reconstruction of the ideal data  has to be 
performed in parallel beam geometry. In that case the inverse 
x-ray transform operator  of equation (4) is not the same 
for  and  and the difference has to be calculated in image 
domain which requires one additional reconstruction. 

B. Data Acquisition 
The proposed approach was evaluated for measured data of 
single-material components (ruby sphere, die-cast zinc hinge) 
and a multi-material component (multi-material plug). The 
measurements were conducted on a Werth TomoScope® 200 
that is equipped with a commercial micro-focus x-ray tube and 
an energy integrating flat detector. The acquisition parameters 
for each measurement are given in table 1. 

TABLE I: ACQUISITION PARAMETERS OF THE CT MEASUREMENTS 
Component Tube 

voltage 
Tube 
current 

Prefilter Projections 
per 360° 

Pixel 
size at 
isocenter 

Ruby 
sphere 

150 kV 150 μA 0.5 mm 
Al 

400 10 μm 

Die-cast 
zinc hinge 

215 kV 180 μA 1 mm Sn 800 43 μm 

Multi-
material 
plug 

225 kV 170 μA 1.2 mm 
Sn 

1200 25 μm 

C. Evaluation of Correction Results for Single-Material 
Components 
The metrological assessment of single-material components is 
commonly performed by evaluating a surface mesh that is 
calculated from the CT reconstruction. The presence of 
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artifacts within the CT reconstruction leads to deviations of 
that surface representation from the real surface. In order to 
demonstrate the potential of the proposed approach to increase 
to accuracy of the surface representation, the triangle mesh of 
the initial and of the corrected reconstruction is compared to a 
tactile reference measurement. The reference measurement 
was performed using a Werth Touch Probe TP 200 that uses a 
tactile sensor to derive a highly accurate point cloud of the 
components surface with deviations of less than two 
micrometer.  

D. Evaluation of Correction Results for Multi-Material 
Components 
For the measurement of the multi-material component there is 
no tactile reference measurement available. Therefore, the 
correction result of the proposed approach was compared to 
commonly used artifact reduction algorithms namely 
normalized metal artifact reduction (NMAR) [5] and iterative 
reconstruction with total variation regularization [14]. 

III. RESULTS 

A. Single-Material Components 
Figure 1 shows the CT reconstructions of the die-cast zinc 
hinge measurement. While the CT reconstruction without 
correction shows strong CT artifacts, the application of the 
simulation-based artifact correction leads to images that are 
nearly free of artifacts. The reduced amount of artifacts also 
leads to a higher accuracy of surface meshes that are 
calculated from the CT reconstruction. Figure 2 shows the 
deviation of the surface mesh from a tactile reference 
measurement. When no correction is applied, there are large 
deviations. The simulation-based artifact correction leads to a 
surface mesh that deviates almost fits the reference 
measurement.

 
Fig.1. Reconstructions of the die-cast zinc hinge displayed at different window 
levels. The left column shows the reconstruction without correction. The right 
column shows the results of the simulation-based artifact correction. 

 
Fig. 2. Deviation of the triangle meshes from the tactile measurement. 
Results displayed in the left column are calculated from the reconstruction of 
the die-cast zinc hinge without correction. Results displayed in the right 
column are calculated from the simulation-based artifact correction of the die-
cast zinc hinge.

Fig. 3. Reconstructions of the ruby sphere. The left column shows the 
reconstruction without correction. The right column shows the results of the 
simulation-based artifact correction.

 

Fig. 4. Deviation of the triangle meshes from the tactile measurement. 
Results displayed in the left column are calculated from the reconstruction of 
the ruby sphere without correction. Results displayed in the right column are 
calculated from the simulation-based artifact correction of the ruby sphere. 
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Figure 3 demonstrates the application of the simulation-based 
artifact correction to reconstructions that are mainly corrupted 
by cone-beam artifacts. Therefore, a calibration sphere was 
measured with a very high cone angle. The cone-beam 
artifacts that appear as bright streaks at the pole of the sphere 
in the standard reconstruction can be totally removed by the 
simulation-based artifact correction. Figure 4 shows a similar 
result for the deviation to the tactile measurement.  
 

B. Multi-Material Components 
Figure 5 shows the CT reconstructions of the multi-material 
plug using an analytic reconstruction, normalized metal 
artifact reduction, iterative reconstruction with total variation 
regularization as well as the simulation-based artifact 
correction. The analytic reconstruction suffers from severe CT 
artifacts that appear as dark streaks within the reconstructed 
volume. While the normalized metal artifact reduction and the 
iterative reconstruction are not able to remove the streak 
artifacts, the proposed simulation-based artifact correction 
leads to images that are nearly free of artifacts.   

IV. CONCLUSION 
We presented a new method that uses CT simulations to 
correct for CT artifacts. It was successfully applied to CT 
measurements of single- and multi-material components and 
provides volumes that are almost free of artifacts. Furthermore 
we demonstrated that the simulation-based artifact correction 
can increase the accuracy of surface meshes that are calculated 
from the CT reconstructions. In case of multi-material 
components, this approach is clearly superior to inpainting-
based metal artifact reduction techniques (when the object 
contains a high proportion of metal) and iterative 
reconstruction algorithms that do not incorporate sophisticated 
models of the interaction between x-rays and matter within the 
reconstruction process. 
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Fig. 5. Analytic reconstructions of the multi-material plug. A: Reconstruction without correction. B: Normalized metal artifact reduction. C: Iterative 
reconstruction with total variation regularization. D: Simulation-based artifact reduction. 
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Abstract—One of the principal disadvantages of Cone Beam
Computed Tomography (CBCT) is the contribution of secondary
radiation originating from scattering of photons in the object and
detector. The presence of these scattered photons causes streaks
and cupping artifacts in reconstruction images. The effect is more
dominant and challenging in the case of MeV energy due to
higher scatter to primary ratio (SPR). Additionally, the incident
high energy photons which are scattered are more forward
directed and hence more likely to reach the detector. Moreover,
for MeV energies, the contribution of photons produced by
annihilation and bremsstrahlung process also becomes important.
We propose validation of projection wise scatter correction
method using continuously-thickness adapted kernels method
on MeV range data. Scatter correction is performed for a
homogeneous gear made of iron in a robust iterative manner
suitable for high SPR, using pencil beam kernels. The simulated
kernels are analytically parameterised to obtain a continuous
map of kernels with respect to the thickness of the object. The
result obtained show effectively improved reconstruction values
after scatter correction proving the efficiency of the method for
MeV data.

I. INTRODUCTION

One of the main artifact causing factor in CBCT is scattering
of photons inside the object and the detector. Scattered photons
are altered from their original path after interaction with
matter. This additional share of scattered X-rays results in
increased measured intensities, since the scattered intensities
simply add to the primary intensity. This effect is seen in back
projection reconstruction algorithms as overestimated intensi-
ties thus corresponding to an underestimation of absorption.
This results in artifacts like cupping, shading, streaks etc on
the reconstruction images.

The effect of scattering becomes more prominent when the
input X-ray energy is high. Specially in case of MeV energy
a number of aspects are needed to be taken into account.
First of all, there is an appreciable increase in the forward
Compton scattering of the photons and hence they are more
likely to reach the detector. Also, these scattered photons are
more energetic and therefore more likely to escape from the
scattering object. By increasing the incident energy, the energy
of charged particles released (recoil electrons and positrons)

in the scattering object also increases, resulting in a marked
increase in the number of photons generated through the
bremsstrahlung process. At photon energies in excess of 1.022
MeV, positrons are generated through pair production, which,
upon annihilation, produce photons that can contribute to the
scatter fluence.

There are some existing scatter correction methods for MeV
source. For example, Maltz et al. [1] employ a method of
scatter correction in MeV range using beam stop arrays. They
derive an expression that allows to estimate the scatter in an
image taken without the array present, given image values in a
second image with the array in place. Such methods face prob-
lems like increased X-ray exposure due to more than one scans
per projection and prolonged scanning time. Steven et al. [2]
use scatter kernel superposition (SKS) method for correction
cupping artifacts for low dose MeV CBCT images of arbitrary
objects. However, the scatter signal is modeled as the sum of
the scatter contributions from a group of pencil beams passing
through the object. They approximate the scatter distribution,
as the convolution of primary signal with scatter kernels.
However, pencil beam kernels are thickness dependent kernels
and there is an appreciable change in the amplitude and
shape of these kernels with respect to small variation in the
thickness of the object. The classical convolution based scatter
correction methods [3] [4], are based on a discrete set of
thickness-dependent kernels and for a range of thickness only
one kernel is used. These methods give satisfactory results in
many applications. However, when a high range is considered,
the SPR is expected to be very large and the different steps
of the SKS correction algorithm have to be reconsidered. In
particular a better sampling of the kernels with respect to the
thickness of the object is required to get an accurate model
of variability in shape and in amplitude of the scatter kernels
over the whole thickness range.In this article, we focus on
scatter correction by continuously thickness adapted Scatter
Kernel Superposition (SKS) method [5]. Continously thickness
adapted method tackles this issue by generating a continuous
kernel map with respect to thickness. The method description
in detail can be found in [5]. A case study of the set up with
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iron gear as the object with a 6 MeV source is described below.
We do not take into account the contribution of electrons and
photons produced after bremsstrahlung in this paper.

II. METHOD AND MATERIALS

A. Scatter Correction Using Pencil Beam Kernels

In the SKS scatter correction approach [5], the scatter signal
can be modeled as the sum of the scatter contributions from
a group of pencil beams passing through the object and the
detector. For each pencil beam input, a resulting kernel which
has the weight of the scatter to primary ratio is determined.
The total scatter signal S(m,n) with m and n as the pixel
position on the detector, can then be modeled as:

S(m,n) =
∑
k

∑
l

P (k, l)hT (k,l)(m− k, n− l) (1)

where,
hT is the thickness (T ) dependent kernel, with amplitude

equal to the ratio of the scattered signal at the current pixel
to the primary signal, at the pencil beam centered pixel. P is
the primary signal contributed by the photons passing directly
without any attenuation, O is the full beam intensity; The
thickness is calculated with the Beer Lambert law

T (k, l) ≈ 1

μ
ln
O(k, l)

P (k, l)
(2)

with μ being the attenuation constant of the object under
consideration at the mean energy of the spectrum used. The
pencil beam kernel hT can be fitted into the equation formed
by four circularly symmetric Gaussian functions describing the
shape of the kernel:

hT (m− k, n− l) = A exp

(
− (m− k)

2
+ (n− l)

2

2σ2
1

)

+B exp

(
− (m− k)

2
+ (n− l)

2

2σ2
2

)

+ C exp

(
− (m− k)

2
+ (n− l)

2

2σ2
3

)

+D exp

(
− (m− k)

2
+ (n− l)

2

2σ2
4

)
(3)

Where parameters A,B,C,D, σ1, σ2, σ3, σ4 are function of
thickness T .

The four Gaussian are necessary to fit the shape of the
kernels at the energy range used. The first two Gaussian
represent the contribution of the object and the last two that of
the detector. The four Gaussian model is absolutely necessary
in order to clearly separate the low frequency contribution of
the object and high frequency contribution of the detector. The
low frequency contribution of the detector scatter generates a
strong peak in the center pixel of the detector where the pencil
beam is impinged. This shape calls for the necessity of four
Gaussian model to ensure a good fitting of the kernels.

B. Generation and fitting of kernels

For the generation of kernels, Monte Carlo (MC) simula-
tions were performed in the CT module of CIVA software
[6]. Developed by CEA LIST, CT module of CIVA combines
deterministic and MC approach for the generation of primary
and secondary radiation in tomography [7].

Source 

Pencil beam 

Homogenous slab 

Detector 

b) 

Fig. 1: a) Schematic of the kernel simulation using pencil
beam b) generated 2D kernel
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Fig. 2: Schematic representation of the projection wise scatter
correction process

Imaging geometry corresponding to the acquisition set up
was modeled in CIVA for the simulation of kernels. Pencil
beam source was impinged on slabs of same material as
the object under study and discrete set of point spread 2D
kernels were obtained on the flat panel detector. Equation 3
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was fit on these kernels using non-linear least square fitting
and the values for parameters A,B,C,D, σ1, σ2, σ3, σ4 were
calculated for these discrete sets of kernels.

To obtain the continuous kernel map, we
analytically calculated the expression for the parameters
A,B,C,D, σ1, σ2, σ3, σ4 in terms of the thickness of the
object [5]. To obtain these expressions, the values of the
parameters obtained for discrete set of kernels were fitted
with respect to the thickness using non linear least square
curve fitting technique. The low frequency contribution of
the object are given by σ1, σ2 which are expected to increase
with the thickness of the object due to high order scattering.
The high frequency contribution of the detector given by
σ3, σ4 are expected to remain constant with the thickness of
the object.

C. Iterative Scatter Correction

The iterative scatter correction scheme described in Figure
2 consists of the following steps:

1) The measured projection is taken as the first estimate of
the primary.

2) Equivalent thickness is calculated for each pixel by using
equation (2).

3) Pixel wise convolution is performed by choosing the
suitable kernel for the respective thicknesses.

4) Scatter is estimated using equation 1.
5) The primary estimate is updated using a multiplicative

approach to ensure positive primary estimate at each
iteration step

Pn+1(m,n) = P 0(m,n)× Pn(m,n)

Pn(m,n) + Sn(m,n)
(4)

Steps 1 to 5 are repeated until convergence is achieved.

D. Acquisition set up with iron gear

The acquisitions are performed on a linear accelerator 6.0
MV source. The source to detector distance was 3.18 m and
the source to object distance was 2.45 m. The acquisitions
were performed on gear made of iron as shown in Figure 3
with a maximum diameter of 7.5 cm. The detector used was
a flat panel detector of pixel size of 200 μm, consisting of a
10 mm copper window.

Fig. 3: Photo of iron gear sample
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Fig. 4: Simulated kernels for variation in thickness of iron
slabs

III. RESULTS

Figure 4 shows the simulated kernels obtained using MC
simulations for different iron slab thickness. The acquisition
set up and geometry is kept same as the experimental set up for
the acquisitions of the iron slab. Figure 5 displays an example
of the fitting of parameters to obtain a continuous map of
kernels, in this case σ1 with respect to thickness. It increases
with respect to the thickness of the object due to the increase
in contribution of the higher order scattering from the object.

Reconstruction was performed on the uncorrected and cor-
rected projections using FDK algorithm in CIVA software.
Figure 6 a) displays the reconstruction slice obtained with un-
corrected projections. The scatter correction on the projections
was applied using continuously thickness adapted kernels. The
result obtained is shown in Figure 6 b). Figure 7 displays the
cropped view of the reconstructions. We can notice horizontal
artifacts on the reconstruction images (see Figure 6 a) due to
the jamming of the rotational axis during the acquisition and
not due to scatter.

36.250653.0)(1 
� tt�

σ1
 

Thickness (mm) 

Fig. 5: Fitting of parameter σ1 in terms of thickness(t)

Figure 8 shows the plot profile of the uncorrected and
corrected reconstruction images. Table 1 summarizes the mean
and standard deviation of the reconstructed values for cor-
rected and uncorrected data in air and iron region calculated
using binary masks. It can be clearly seen that scatter cor-
rection improves the contrast of the reconstruction image.
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Uncorrected value of 0.172 cm−1 for the linear attenuation
coefficient of iron is estimated. After the scatter correction,
we obtain a value of 0.41 cm−1 for the linear attenuation
coefficient of iron. In the considered energy range, the value
of linear attenuation constant per cm for mean energy 1100
keV is 0.44 cm−1. The relative absolute error is reduced from
to 29.8% to 6.8%.

a) b) 

Fig. 6: Reconstruction slice with a) Uncorrected projections
b) Corrected projections

a) b) 

Fig. 7: Cropped reconstruction slice with a) Uncorrected
projections b) Corrected projections
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Fig. 8: Plot profile of uncorrected and corrected projections

Further scope of improvement in the reconstruction value
can be implemented here after considering the contribution of
the photons produced with bremsstrahlung process.

mean (cm−1) std. dev.

Uncorrected iron
air

0.172 ± 0.095
0.085 ± 0.0044

Corrected iron
air

0.414 ± 0.032
0.038 ± 0.0026

Mean spectrum value iron
air

0.44
0.0001

TABLE I: Mean and standard deviation values for aluminum
and air region for uncorrected and corrected reconstruction
slices

IV. CONCLUSION

Significant improvement in the quantitative reconstruction
values for the homogeneous object like the iron gear is
obtained. The relative absolute error between the obtained
reconstruction value and the true value at the spectrum of the
linear attenuation coefficient is reduced from to 29.8% to 6.8%
validating the efficiency of the method for MeV energy range.
A scope of further improvement is possible by including the
contribution of the electrons and photons by bremsstrahlung
process.
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Abstract—A small scale physical model of a river and its bed 

was built to study sediment transport. This model was installed 
through a CT scanner in order to validate a data acquisition 
system coupling a CT scan and a particle image velocimetry 
(PIV) system. The PIV structure is fixed to the scanner, which 
moves along 2.6 meters rails. This combined system provides 
high spatial and temporal resolution measurements of bed 
density and fluid velocity. The data acquisition is time-
synchronized and co-located greatly improving our 
understanding of the dynamics inside the scanned object. The 
bed topography and porosity as well as the fluid velocity profiles 
near the bed were successfully derived. These parameters are 
essential to link hydrodynamic processes over the bed and 
sediment transport. The methodology holds promising 
advancements in experimental sedimentology, and could also find 
interesting applications in other non-medical fields.  

 
Index Terms— CT scan, particle image velocimetry (PIV), 

physical model, particle-fluid dynamics 

I. INTRODUCTION 
-RAY computed tomography (CT) technology has 

useful applications in geosciences providing density and 
porosity of non-homogenous materials (Ketcham and Carlson, 
2001; Ketcham and Iturrino, 2005; Otani and Obara, 2004). 
The medical CT scanner is interesting because of its large 
opening (i.e., 80 cm), allowing a field of view (FOV) up to 65 
cm for the reconstructed image. Dynamic systems could also 
be studied with the CT scan by doing temporally resolved 
measurements. This paper reports on the use optical imaging 
techniques to characterize the effect of different flow types on 
sediment transport. The method consists of coupling a medical 
CT scanner and a particle image velocimetry (PIV) system. 
The two datasets are combined to provide an image with 
density values as well as velocity vectors.  

The modeling of sediment transport is one application that 
would benefit from the proposed methodology since 
parameterization of shear velocity and sediment density at the 
boundary layer is essential but otherwise difficult to determine 
(Sternberg, 1971; Grant and Madsen, 1979). The combined 
image is interpreted with current knowledge of the sediment 
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dynamics. The specific objectives of this work are to 1) add a 
high-resolution grid of velocity vectors to the CT scan image 
and 2) optimize the acquisition parameters to get the best 
resolution and image quality. Spatial and temporal 
acquisitions were tested. For spatial measurements, steady 
flows were used. For temporal measurements, water waves 
were used considering that the vector field changes rapidly 
with time. This new perspective would greatly improve the 
quantification of hydrodynamic properties and sediment 
transport using experimental work.  

II. MATERIALS AND METHODS  
A movable sand-bed model was built in the 

Multidisciplinary Laboratory of CT Scan for Non-Medical 
Use at the Institut National de la Recherche Scientifique 
(Québec, Canada). A rectangular flume (0.30 m x 0.30 m x 
7.0 m) made with 0.025 m thick transparent acrylic material 
was inserted into a medical X-ray CT scanner (Siemens, 
Somatom Definition AS+ 128) as conducted by Yamada et al. 
(2013) and Montreuil (2014). The CT scanner moves on 
2.6 meters rails along the flume. The water depth in the flume 
is 0.14 m. The sand bed is composed of quartz (SiO2), Ottawa 
sand, with grain median diameter (d50) of 217 μm and uniform 
density. The bed height is 0.05 m. In addition, as the 
examination table is static and the gantry moves along the 
object, the use of large fixed physical models is possible. First, 
a steady flow is created using a water pump joining the two 
water tanks placed at each extremity of the flume. A 
honeycomb diffuser reduces the turbulence at the water inlet. 
Second, a wavemaker is installed at one extremity to generate 
waves. A wave absorber made of angular pebbles is placed at 
the other extremity. The wave period is 1.5 seconds. 

A. CT scan measurements 
The CT scanner measures attenuation coefficients which are 

scaled in Hounsfield unit (HU). The HU values vary from  
-1024 to +3071 HU providing 4096 levels of grey, where air 
and water values are -1000 and 0, respectively. Images were 
obtained with a tube current of 600 mAs at a tube voltage of 
140 kV. Perfusion mode is used. In this mode, the scan does 
not move allowing PIV co-located measurements. The 
collimation is 64 x 0.6 mm providing a set of 64 images every 
0.15 seconds (i.e., 6.6 Hz) of the cross-section. In the 
longitudinal axis, the image is 0.038 m long. The image is 
reconstructed by a dedicated computer and reconstruction 
parameters are defined in the Syngo software. The convolution 
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kernel used for the image reconstruction is the B30f which is a 
relatively soft smoothing filter. The field of view used in the 
cross-section for the reconstruction is 0.30 m. The isotropic 
voxel edge length is 0.6 mm. An analogue signal from the CT 
scan is sent to the PIV for acquisition synchronization. 

B. Particle image velocimetry  
A LaVision planar particle image velocimetry (PIV) 

measurement system is mounted on the CT scanner allowing 
time-synchronized and co-located measurements. To avoid 
astigmatism effect, a mirror is placed upstream of the scan to 
reflect the image in the scan zone to the PIV camera located 
downstream (Fig. 1). The camera is protected from the X-ray 
by a lead sheet. Image distortion due to optical path or oblique 
viewing is corrected automatically using a calibration plate. 
The calibration is a length scale conversion for orthogonal 
camera viewing.  The PIV is set to acquire 2D images of the 
flow velocity in the longitudinal axis of the flume (sagittal 
plane). A pulsed laser beam is formed into a light sheet and is 
fired twice with a short time delay (dt). Both illuminations are 
recorded by one double-frame high resolution CCD camera. 
The recorded pair of images is divided into small interrogation 
windows of 32 x 32 pixels. The resulting vector field grid 
resolution is 1 mm and the field of view is 0.35 m x 0.29 m. 
The dt is adjusted according to the measured velocities to 
make sure that the movement of a particle is smaller than a 
quarter of the interrogation window size. The dt value is 6 ms 
for steady flow and 11 ms for waves. Increasing the dt 
increase the detection of high velocity but neglect the slow 
movements. It appeared that the dt was unnecessarily short for 
steady flow and was increased for waves, for which the dt was 
fast enough. During the time interval dt, between the laser 
shots, the particles of each interrogation window have moved 
by a displacement ds. The velocity is then simply given by the 
ratio ds/dt. The calculation of the particle displacement ds is 
done by fast FFT-based cross-correlation of two 
corresponding interrogation windows. Only vectors calculated 
with a great correlation are conserved. The interrogation 
window overlap is 75 %, which has the effect of smoothing 
the velocity vector field. The PIV system samples at 6.66 Hz 
during 3 seconds and starts at the same time as the CT scan 
measurements. This way, there is one PIV grid of vector for 
each CT scan image. There is approximately one velocity 
vector for two CT scan pixels.   

C. Data post-treatment 
The HU values can directly be interpreted as a function of 

density in this study because the sand used is 99.5% pure 
silica (i.e., uniform) and a voxel can only contain water and 
sand. Otherwise, the regression used to convert HU values into 
density would vary as a function of the atomic numbers 
(Boespflug et al. 1994). The artefacts in the water column 
mostly affect the side of the image in the cross-section. Thus, 
only pixels in the center of the flume are interpreted. In the 
longitudinal axis, this area corresponds to the PIV plane of the 
flume. However, HU values in the ripple region itself need to 

be interpreted with care because streaks can appear near the 
bed. The interface of water and sand is first determined by 
thresholding. The sand density (ρs) is determined by 
equation (1), where the measured HU value (HUm) is 
compared to HU value of water (HUw) and of pure quartz 
(HUq) using the density of pure quartz ("q). 

 

      (1) 
 
The porosity (n) is defined as: 
 

         (2) 
 

The porosity of well-sorted sand is approximately 0.4, 
meaning that 0.6 (i.e., 1-0.4) multiplied by the pure quartz 
density (2.64 g/cm3) is equal to the sand bed density 
(1.6 g/cm3). The images of the CT scanner and the PIV are 
superposed using a reference point with a known position in 
the two coordinate systems, which is located on a PIV 
calibration plate. This plate is also scanned with the CT 
scanner. Only instantaneous measurements are shown in the 
results section (i.e., snapshots).  

 

 
 

 
Fig. 1. Top: A rectangular flume (0.30 m x 0.30 m x 7.0 m) was inserted into 
a medical X-ray CT scanner (Siemens, Somatom Definition AS+ 128). The
PIV system is fixed to the CT scanner. Bottom: The laser (black) of the PIV
system shoots in the CT scan measurement zone, the light is reflected to the 
mirror (on the support) and back projected to the camera (blue). 
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III. RESULTS AND DISCUSSION 

Co-located and time synchronized images of fluid motion 
are taken over a ripple. The experimental setup is used to test 
two types of acquisition sequences. First, the PIV and the CT 
scanner, which are fixed together, move at different locations 
in a short period of time to describe the hydrodynamics of a 
steady flow in space (section A). Second, the PIV system and 
the CT scanner are located at a fixed point making fast 
temporal measurements of wave motion (section B). 

A. Spatial analysis of a steady flow 
The PIV and the CT scan measure the flow properties in front 
of a ripple (Fig. 2a). Then, the scanner is moved after 30 
seconds on the top of the ripple for another 3 seconds of 
measurements (Fig. 2b). The scan is moved again after 30 
seconds behind the ripple (Fig. 2c). The ripple moves in the 
current direction. The results show that the hydrodynamics of 
a steady flow over a ripple are observed with high spatial 
resolution. The velocity profiles near the bed determine the 
bottom shear stress (τb). This parameter is important because it 
is related to the force per unit area acting on the sand bed. The 
sediment transport is a function of that parameter as well as 
the grain size and the porosity of the bed (Van Rijn, 1984). 
The reference bed porosity value 0.4 gives a sand bed density 
(ρs) of 1.6 g/cm3

, which is similar to measurements. The sand-
water interface (dashed black line) is delimitated by using a 
threshold HU value (i.e., 1400). This way, it is possible to 
calculate the ripple displacement by doing repetitive scans. 
Consequently, the bedload transport of sediments can be 
calculated. The front face of the ripple (i.e., the stoss face) is 
the divergence zone resulting in erosion. The so-called lee 
face is the convergence zone on the trailing edge of the ripple, 
where accretion results in ripple migration. 

B. Temporal periodicity of wave motion  
The PIV and the CT scan do not move and they measure 

only in the ripple trough (Fig. 3). The images show the 
hydrodynamic features of a wave passage in that area. The 
ripple trough is a zone of interest for sediment transport 
because sand re-suspension by eddies are expected there. The 
vector orientation and length are coherent with typical wave 
induced movements (i.e., orbital). The current is oriented in 
the wave propagation direction under the wave crest (Fig. 3a). 
Then, the current is oriented downward during the wave 
trough approach (Fig. 3b) and finally totally reverses, little 
oriented upward, before the passage of the second wave (Fig. 
3c).  

It would be expected to find higher sediment concentration 
just after the wave passage. Further analyses of CT artefacts 
are needed to better quantify the suspended matter 
concentration in that region. The problem is the change in 
geometry of the experimental setup (e.g., the wave passage or 
ripple formation) which changes the absolute HU values 
within the image. However, the technique shows the potential 
to characterize rapid flow variations and bed deformation with 
time.   

 
 

Fig. 2. Sand ripple and steady flow: instantaneous sediment density is
measured with the CT scanner (colored background) combined with fluid 
velocity vectors measured using the PIV (red vectors). The hydrodynamics of 
a steady flow is illustrated a) behind, b) on the top and c) in the front of the 
ripple (yellow). The time lap between two images is approximately 30 
seconds.  
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IV. CONCLUSION 
The PIV system was successfully synchronized with the CT 

scanner. This adds velocity vectors to the image of density that 
could ultimately give the transport rate of sediments. This is 
fundamental information to understand the physics of particle-
fluid dynamics and improve the modeling of the underlying 
processes, and was never achieved before. Still, we made 
several observations to be taken into account to improve 
further experiments. The stability of the experimental setup is 
fundamental and the image appears to be really sensitive to 
that factor. The acquisition restriction mostly comes from tube 
thermal loading. The noise in the water pixels greatly affects 
the accuracy of suspended particle concentration detection. By 
optimizing the tube voltage and current as well as the beam 
collimation, the pause between the scans and the noise in the 
image could be reduced. For the X-ray image artefacts, further 
work will be conducted to better described the effects of the 
geometry setup on the reconstructed image as well as test 
different reconstruction algorithms. The beam hardening 
artifacts are also a challenge that needs to be addressed 
considering that no correction is applied for sand. Overall, the 
experiment showed interesting results that could have many 
applications in different non-medical research field providing 
a fast temporal acquisition and high spatial resolution data. 
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Fig. 3.  Ripple trough and wave current: instantaneous sediment density
measured with the CT scanner (colored background) combined with fluid 
velocity vectors measured using the PIV (red vectors). The hydrodynamics 
induced by waves in the ripple trough (yellow) is illustrated for a) the wave 
passage, b) the wave trough and c) the backwash occurring before the wave 
passage (i.e., approaching wave). The time lap between two images is 
approximately 0.3 s and the wave period is 1.5 s. 
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Abstract—Projection and backprojection operations usually are 
the computational bottlenecks in a variety of tomographic 
imaging algorithms. The distance-driven (DD) algorithms offer a 
highly sequential memory access pattern and low arithmetic cost 
on CPU platforms. However, the original DD algorithm has an 
inner loop that adjusts the calculation depending on the relative 
position between voxel and detector cell boundaries. The 
irregularity of the branch behavior makes it difficult to 
implement the DD on massively parallel vector computing devices 
(such as Graphics Processing Units).  In this work, we implement 
a branchless DD algorithm that is highly parallelizable and 
amenable to vectorization on GPUs. We demonstrate that the 
proposed implementation obtains the same results as the original 
DD algorithm to a reasonable precision, while significant speedup 
is achieved compared with a state-of-the-art 32-core CPU 
implementation. 
Index Terms—GPU, branchless distance driven, projection, back 
projection, computed tomography 

I. INTRODUCTION 
A variety of computed tomography (CT) algorithms are based 
on a linear system model , where  is the system 
matrix,  is an object being scanned, and  is the measured 
data. The projection and backprojection (P/BP) operators, 
namely  and , frequently arise in CT image reconstruction 
algorithms (both analytical and iterative), as well as in many 
physical modeling and artifacts correction algorithms. The 
entries of  are commonly computed on-the-fly to allow 
flexible selection of acquisition parameters and reconstruction 
voxel sizes. With the huge size of data from the state-of-the-art 
scanners and the ever increasing complexity of CT algorithms, 
there is a strong demand for efficient algorithms for P/BP 
operations. 

Various CT P/BP models differ in their trade-off 
characteristics between computational speed and modelling 
accuracy. Ray tracing (line-integral) models ignore the finite 
size of detector cells and treat the x-ray paths as ideal 
pencil-beams[1], [2]. Area- or volume-integral models take into 
account of the finite sizes of both the image voxels and the 
detector cells, although calculating the exact intersection area 
or volume is difficult [3]–[5]. Distance-driven (DD) algorithms 
[6] instead compute the overlap lengths or areas between the 
voxel and the detector cell after mapping their boundaries to a 
common axis. The original DD algorithm [6] offers a highly 
sequential memory access pattern and low arithmetic cost. It 
simultaneously avoids high-frequency artifacts in some other 
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Global Research for providing computing resources and helpful discussion. 

methods and ensures that the P/BP operations are adjoint of 
each other. 

One drawback of the original DD algorithm is that its inner 
loop adjusts the calculation with an if-else branch depending on 
the relative position between voxel and detector cell 
boundaries. For fan beam or cone-beam tomography, the 
pattern of voxel and detector cell boundaries is non-uniform 
when it is mapped to a common axis, resulting in irregularity 
and poor predictability of the branch behavior and making it 
difficult to implement on many-core vector computing devices 
such as Graphics Processing Units (GPUs). Divergence of 
parallel execution paths is detrimental to GPU performance.  

GPUs and other multi-core devices have been shown to 
drastically accelerate the calculation of certain CT P/BP 
models[7]–[12]. However, GPU implementations of DD 
algorithms have not been reported to our knowledge. For 
example, Muller et al. accelerated CT reconstruction with a 
graphics-based P/BP on GPU by using the RGBA channels and 
2D texture operation [11] or shading language in FDK 
algorithms [13], [12]. Compute Unified Device Architecture 
(CUDA) based GPU acceleration for CT FDK reconstruction 
with a 3�4 camera matrix-based P/BP was reported in [14]. 

To overcome the irregular branch behavior of the original 
DD algorithm, Basu and De Man presented a branchless DD 
model [15] by factorizing the DD operation as three branchless 
steps: integration, linear interpolation, and differentiation. All 
three steps are highly parallelizable and pipelinable. In this 
study, we implement the branchless DD P/BP algorithm on 
GPU. We apply the GPU-accelerated branchless DD to 
iterative tomographic reconstruction and evaluate its accuracy 
and computational speed.  

II. METHOD 

2.1. Original DD Algorithm 
In one-dimension (1D), an object is modeled as a piecewise 
constant function .  Its values are  and  over intervals 

 and , respectively. For a detector cell at 
location , the detector measurement is the integral  

1

1

1 ( ) .j

j

y

j y
j j

p f x dx
y y







�
� �  (1)  

Because the source signal  is piecewise constant, the DD 
model carries out this integration by calculating the extent of 
overlap  

     (2) 
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assuming  and .  

  In a two-dimensional (2D) fan-beam geometry, the voxel 
and detector cell boundaries are mapped to a common  or  
axis. Then the coefficients of the system matrix are given by the 
overlap length weighted by voxel size, ray slope, and 
normalized by detector size.  

In a three-dimensional (3D) cone-beam geometry, detector 
cell and voxel boundaries are mapped to a common plane. The 
overlap areas are calculated as the product of overlap lengths. 
The coefficient of the system matrix is the overlap area 
weighted by voxel size, the ray slope, and normalized by the 
detector area.   

One drawback of the original DD algorithm (2) is that with 
curved detectors, detector cell boundary positions become 
non-uniform when mapped to the common axis or plane. The 
original DD algorithms has an inner loop that goes through all 
detector cell/voxel boundaries, and the calculation has to be 
adjusted depending on whether the next boundary is a voxel or 
detector cell boundary, hence an if-else branch is needed. Such 
branch behavior is detrimental to computational efficiency on 
GPUs because of the divergence of parallel execution paths.  

2.2. Branchless DD Algorithm 
A branchless DD algorithm [15] was previously proposed as a 
variant of implementation for the DD model in which the inner 
loop is essentially branchless, making it highly parallelizable 
and amenable to efficient implementation on GPUs. In 
branchless DD, the integral in equation (1) is re-formulated as 
the difference of antiderivatives 

� � � �� �1
1

1 ,j i i
j j

p F y F y
y y 





� �
�

  (3) 

where  

� � ( ) ,
t

F t f x dx C
�#

� 
�                                                      (4) 

 
and C  is an arbitrary constant. C  has no effect on the final 
result but it is proposed in [15] to subtract the DC component to 
reduce the dynamic range of ( ).F x  The advantage of this 
formulation is that since  is piecewise constant, ( )F x is 
piecewise linear, hence ( )kF x ,  can be very 
efficiently evaluated from ( )iF x  and 1( )iF x 
  by dedicated 
texture interpolation hardware on GPUs. 
 

In a 3D cone-beam geometry, equation (3) becomes 

  (5) 

where  are coordinates of detector cell boundaries mapped 
to the common plane, 

 is an integral image.  can be easily evaluated on the 
voxel grid by summation  
Once the integral image is generated, evaluating equation (5) 
can be achieved in a constant time with texture interpolation 
hardware (Fig. 1).  

2.3. CUDA Implementation of Forward Projection 
The branchless DD projection can be performed by the 
following steps.  

(1) Integration. Two sets of integral image volumes, 
( ) , {1,..., }i

x xF i N� and  ( ) , {1,..., }j
y yF j N� , are generated.  

are for each x-z slice ; .  are for each y-z slice . Which set 
of integral images is used depends on the orientation of the 
common plane. The integral images are stored in the texture 
memory on GPU for utilization of the texture cache and 
interpolation hardware.  

(2) Linear interpolation. As shown in Fig. 2(a), four vectors 
, , ,L R U De e e eDe e e eL R UR U  are defined by connecting the x-ray source and 

four middle points of the detector cell boundaries. With four 
intersection points (marked by red dots in Fig. 2 (b)) on the 
integral image, a rectangular area can be defined. The texels 
marked by blue dots in Fig. 2(b) are fetched with linear 
interpolation. 

(3) Differentiation. The 2D overlap is calculated by taking the 
difference between the fetched texture values according to 
equation (5). The projection value is calculated by 
accumulating the overlap values (i.e.: the products of overlap 
areas and voxel values) through all image slices and then 
reweighting the sum by the x-ray path slope and the voxel size. 

 
In CUDA implementation, one thread calculates one detector 

cell value for one view angle. To achieve the benefit of texture 
cache and hardware based interpolation, the integral image 
volumes are bound to texture objects. A typical configuration 
of a CUDA thread block is (64, 8, 1), where the three 
dimensions correspond to the row index of the detector, the 
column index of the detector, and the view angle index, 
respectively. The first dimension of the thread block will be 

 
Fig. 2.  Illustration of branchless DD projection. (a) demonstrates the 
branchless DD projection and  (b) shows the calculation of the 2D DD kernel 
on one integral image. 

X-ray source

Detector cell

One slice of the integral images set 

(a) (b)

 
Fig. 1.  Illustration of evaluation of equation (5). (a) is the image  and 
(b) is the corresponding  integral image .  
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adjusted according to the number of rows on the detector. At 
the same time, we keep the product of the first two dimensions 
a multiple of 32. The third dimension is kept to one to guarantee 
no branch divergence.  

 
2.4. CUDA Implementation of Backprojection 
To calculate the backprojection using the branchless DD model, 
the integral volumes are generated for every projection view. 
For each voxel, one of the two possible common planes for 
backprojection is selected according to the view angle, as 
shown by the red or blue planes in Fig. 3(a). After the common 
plane is determined, four middle points on the voxel boundaries 
are projected to the detector surface. They have four 
intersections on the detector as shown in Fig. 3(a). A 
rectangular overlap value is determined as illustrated in Fig. 
3(b). The texels are fetched and the 2D overlap area is 
calculated by (5). The backprojection at the voxel is the 
accumulation over all projection views of 2D overlap values 
(i.e.: the products of overlap areas and detector values) 
weighted by ray slope and voxel size.  

    In our CUDA implementation, one thread calculates the 
backprojection value for a single voxel. The integral images of 
the projection data are also bound to the texture objects in 
clamping addressing mode. A thread block for backprojection 
is configured to address the Z, X and Y index of the image 
volume, respectively. We keep the total number of threads in 
the thread block a multiple of 32. Different from the projection 
procedure, the if-else instruction appears in the for-loop inside 
the kernel to decide which middle plane will be used. However, 
because all the voxels are backprojected from the same 
projection view set, the branch divergence will not happen 
inside the kernel. 

III. Results 

3.1. Experimental configuration 
 The GPU used in our experiments is the NVIDIA GeForce 
Titan X. Two Intel Xeon 16-core CPUs with  core clock of 
3.1GHz are used. The SART algorithm is employed to 
demonstrate cone-beam CT reconstruction [16]. The 
GPU-based branchless DD implementation is compared with a 
CPU-based 32-thread original DD implementation in terms of 
computing speed and numerical accuracy.  

3.2. Forward and Back-projection 
The CT geometry is described in Table 1. The projection data is 
collected evenly over 360o. We fix the image volume and 
detector size but increase the number of projections from 100 to 
4400 in 100-view steps.  

 
The P/BP time and speedup with respect to number of views 

are shown in Fig. 4. We can see that the time for projection and 
backprojection increases almost linearly with the number of 
views. The speedup ratio is low when the number of views is 
small. This is presumably because of the overhead for data 
transfer between CPU and GPU. With more views, the speedup 
gradually increases and reaches a plateau. It indicates that when 
the number of views increase, the relative overhead of data 
transfer becomes less when compared to the computation time 
on GPU, and the benefit of GPU acceleration dominates. The 
speedup factor can be up to 10X for projection and 11X for 
backprojection. We further analyzed the kernel functions of 
projection and backprojection by the CUDA Visual Profiler 
version 7.5. The duration of projection and back projection 
kernels is 1.016 s and 0.807 s, respectively. The Streaming 
Multiprocessors in both projection and backprojection are fully 
utilized. Generating the integral images approximately 
occupies 0.13 s and 0.15 s.  

 
3.3. Iterative OS-SART Reconstruction 

Numerical simulations were conducted to investigate the 
effectiveness of the GPU based branchless DD for iterative 

Fig. 3.  Illustration of branchless DD backprojection. (a) demonstrates the 
selections of different center planes according to the current projection view 
angle, (b) are the corresponding projection plane 1 and plane 2 with respect to 
different center planes. The texels are fetched at the black dots on the integral 
images.  

One voxel

Rotation plane

Upper and lower intersections on integral image
Left and right intersection points on integral image
The point fetching the texel on integral image

Projection plane 1

Projection plane 2

(a) (b)

TABLE I 
THE CONFIGURATION OF CT GEOMETRY 

Parameters Value 

Source-to-iso-center distance 541mm 
Source-to-detector distance 949mm 

In-plane detector cell size  1.0239mm 
Cross-plane detector cell size 1.0963mm 
Number of detector columns 888 
Number of detector rows 64 
Reconstruction FOV 250mm 
Detector offset (-1.28,0)mm 

 

 

 
Fig. 4.  CPU v.s. GPU P/BP compute time (and speedup) with respect to 
number of views.
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Fig. 5.  The 512x512x64 FORBILD head phantom reconstruction with OS-SART. (a) and (b) are the transverse, sagittal and coronal planes of the reconstructed 
image volume from GPU based branchless DD model and CPU based DD model respectively in a display window [1.0, 1.2]. (c) the errors between CPU and 
GPU result along transverse, sagittal and coronal planes in a display window[-0.005, 0.005].  

GPU Reconstruction result GPU and CPU reconstruction differencesCPU Reconstruction result

(a) (b) (c)

reconstruction algorithms. 2200 views of noiseless 
monochromatic CT data were evenly acquired over 360o. The 

 image volume is the center interception of a 
FORBILD head phantom [17]. The dynamic range of the 
phantom is . It is projected on to a  detector 
and then resized to the 888x64 detector by averaging 4x4 
detector area into one detector cell. The linear attenuation 
coefficient of the phantom was reconstructed by the OS-SART 
algorithm, using 145 iterations. The number of OS is 10. 

The reconstructed image volumes from GPU and CPU 
implementations along transverse, sagittal and coronal planes 
are shown in Fig. 5(a) and Fig. 5(b), respectively. The 
differences between CPU and GPU are shown in Fig. 5(c). The 
Root-Mean-Square-Errors (RMSEs) [18] with respect to the 
ground truth in CPU and GPU implementations are both 0.0282, 
while the RMSE between CPU and GPU results is 0.0017. The 
RMSE is still decreasing after 145 iterations. The high 
frequency artifacts in sagittal and coronal planes in both GPU 
and CPU results are caused by the high contrast array of small 
dots in the phantom.  The relative structural similarities (SSIMs) 
[18] of the GPU results along transverse, sagittal and coronal 
slices of the image volume with respect to the CPU results are 
all larger than 0.999. Overall, the GPU and CPU reconstruction 
results are very consistent. 

IV. DISCUSSIONS AND CONCLUSIONS 
 In this paper, we implemented GPU-based branchless DD 
projection and backprojection algorithms. The speedup factor 
is up to 10X and 11X for forward and backprojection, 
respectively, when compared with a state-of-the-art 32-thread 
CPU implementation. The high performance of the GPU 
implementation is achieved not only by the branchless 
execution but also by the texture cache mechanism and the 
dedicated  interpolation hardware in GPU.  There is about 0.5 s 
overhead for the data transfer between CPU and GPU and the 
calculation of integral images. To further improve speed, more 
advanced GPU algorithms can be used to calculate the integral 
images [19] and the data transfer latency can be concealed by 

asynchronous mechanisms.   

    In our GPU implementation, calculation of the integral 
image causes some precision loss. On the one hand, the 
precision is limited by the single-precision floating point 
arithmetic [19] which can be partially solved by subtracting the 
DC components of the image volume. On the other hand, some 
precision loss is due to the texture interpolation hardware on 
GPUs, because texture coordinates are represented by 9-bits 
fixed point values on GPUs.  
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High Resolution Laboratory Grating-Based X-Ray
Phase-Contrast CT

Manuel Viermetz, Lorenz Birnbacher, Marian Willner, Peter B. Noël, Franz Pfeiffer, and Julia Herzen

Abstract—The conventional form of computed tomography
using X-ray attenuation without any contrast agents is of limited
use for the characterisation of soft tissue in many fields of
medical and biological studies. Grating-based phase-contrast
computed tomography (gbPC-CT) is a promising alternative
imaging method solving the problems of soft tissue contrast
without the need of any contrast agent. The combination of high
resolution and high sensitivity already showed convincing results
at the synchrotron [1]. While high sensitivity measurements are
possible using a conventional x-ray sources the spatial resolution
does often not fulfil the requirements for specific imaging tasks,
such as visualisation of pathologies. The focus of this study
is the increase in spatial resolution without loss in sensitivity.
To overcome this limitation and further improve the effective
pixel size a super-resolution reconstruction based on sub-pixel
shifts involving a deconvolution of the image data during each
iteration is applied. In our study we could achieve an effective
pixel sizes of 28 μm. The results show the increase in resolution
without any drawback in terms of sensitivity or the ability to
measure quantitative data. The combination of sparse sampling
and statistical iterative reconstruction allowed to maintain the
total measurement time to be equal to the standard measuring
procedure using filtered back projection. In conclusion, we
present high quality and high resolution tomographic images
of biological samples to demonstrate the experimental feasibility
of super-resolution reconstruction.

I. HIGH RESOLUTION AT GRATING-BASED
PHASE-CONTRAST-CT SETUPS

To overcome the limited soft tissue contrast in conven-
tional absorption-based imaging, several new X-ray phase-
contrast imaging methods have been developed [2]. While
most of these techniques are restricted to highly brilliant X-
ray sources like synchrotron radiation sources, grating-based
phase-contrast imaging [3] has been successfully adapted to
work with conventional X-ray sources [4] and has become
a promising candidate for medical diagnostics and industrial
testing [5]–[9].

In terms of contrast the differential phase x-ray imaging
method allows better differentiation of sample materials than
conventional absorption imaging. However, not only contrast
is important for an imaging system, but also sufficient spatial
resolution is necessary for optimal results.

In this study we achieve higher spatial resolution without
significant loss in overall performance with a grating-based
phase-contrast CT setup.

Manuel Viermetz, Lorenz Birnbacher, Marian Willner, Franz Pfeiffer and
Julia Herzen are with the Department of Physics, Technische Universität
München, Germany. E-mail: manuel.viermetz@tum.de

Peter B. Noël is with the Department of Radiology, Klinikum rechts der
Isar, München, Germany

Source
DetectorMagnification Oversampling

a
2a

b

Fig. 1. Illustration of the two setup geometries evaluated to increase the
resolution. At the magnification sample position, only geometric magnification
is used. An oversampling approach is applied with the sample located at the
other position further away from the source. The effective pixel size and the
influence of source magnification resulting in source blurring are the major
differences between the two configurations.

II. PATH LINE TO HIGH RESOLUTION

One straight forward approach to increase the spatial resolu-
tion is to use a higher resolving detector with reduced physical
pixel size. This approach is very limited, as smaller pixels are
less sensitive to radiation, which is crucial when using low-
flux laboratory sources.

The most common method to achieve high resolution is
to exploit the geometric magnification effect. By placing the
sample closer to the source the effective pixel size gets reduced
resulting in an increased spatial resolution, as illustrated in
Figure 1. One drawback in this application is the significantly
smaller field of view. Another problem is the source magnifi-
cation effect. If the sample is positioned closer to the source,
the source magnification factor Ms = b/a increases, which
means that the projection is blurred by a magnified version of
the original source intensity profile.

A more sophisticated method to increase the spatial resolu-
tion by taking multiple sub-pixel shifted images of the same
scene is the super-resolution approach. Advanced algorithms
to reconstruct the high resolution image from the low reso-
lution images are needed [10], but problems such as source
blurring can be avoided since a sample position with less
geometric magnification and thus further away from the source
can be chosen.

III. EXPERIMENTAL SETUP

At the presented setup a high-flux rotating anode with a
molybdenum target operating at 40 kVp and a single-photon
counting Eiger 1M (Dectris Ltd.) detector are used for imaging
at a highly-sensitive Talbot-Lau interferometer [11], [12]. The
gold gratings have a period of 5.4μm and are produced by the
Karlsruhe Institute of Technology (KIT) [13]. The gratings are
positioned in a symmetric geometry with distances of 50 cm
optimised for high spectral acceptance leading to a visibility
of approximately 36% [14].
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The distance between source and detector is constant for all
experiments but the sample position is varied, as illustrated in
Figure 1. The number of tomographic angles is 800 in all
depicted data. The distances a and 2a for both configurations
lead to the same effective pixel size after processing of the
data. This allows the direct comparison of the results.

IV. GEOMETRIC MAGNIFICATION BASED RESULTS

At the magnification sample position, as depicted in Figure
1, the geometry of the system is utilised to allow imaging with
a small effective pixel size. The measured tomographic dataset
of a liver cirrhosis sample was processed and reconstructed
using filtered back-projection. In Figure 2, an exemplary
axial slice of the reconstructed volume is presented. It can
be seen that the features are strongly blurred and therefore
the increased resolution is nullified. This demonstrates that
geometric magnification of this extend cannot deliver sufficient
resolution improvement.
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Fig. 2. Axial slice of a filtered backprojection of a liver cirrhosis sample
at magnification sample position with 29μm effective pixel size. Due to the
geometry of the used setup strong blurring occurs nullifying the increase in
resolution.

V. SUPER-RESOLUTION BASED RESULTS

An alternative setup configuration is the oversampling sam-
ple position, which is located further away from the source
and is therefore less influenced by source blurring but with
doubled effective pixel size. To achieve high spatial resolution
super-resolution reconstruction is used. In the demonstrated
results 2x2 oversampling is applied, which means that four
low resolution images are acquired during the measurement
as illustrated in Figure 3.

After processing of all low resolution (LR) stepping scans
belonging to one projection angle a reconstruction algorithm is
applied to calculate the high resolution (HR) image. The pre-
sented implementation follows a super-resolution reconstruc-
tion method called iterative backprojection (IBP) [15]. The
principle has similarity to back-projection used in tomography.
In this approach, the HR image is estimated by back-projecting
the error (difference) between simulated LR images and the

LR img1 LR img2 LR img3 LR img4

Fig. 3. Illustration of the data acquisition procedure for 2x2 oversampling. In
total four low resolution (LR) images are taken, the upper left pixel is marked
with a yellow spot for each measurement. It can be seen that the sub-pixel
shifts lead to an overlap between the different images. This overlap can be
used to reconstruct the HR image.
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Fig. 4. Super-resolution reconstruction using an iterable workflow to minimize
the error of the high resolution image. From the high resolution image the
low resolution images are simulated. These simulated images are compared
to the originally measured ones. The deviation is then subtracted from the
high resolution image during the backprojection step.

measured LR images. This process is repeated iteratively to
minimise the error [10].

The IBP algorithm can be expressed by

x̂n+1 = x̂n +
∑
k

(yk − x̂n
k )× hBP , (1)

where x̂n represents the generated high resolution image
after iteration n, ŷnk = Wk x̂

n the simulated low resolution
image at oversampling position k and yk is the corresponding
measured LR image. Here, Wk is the physical model for the

−4.0

−2.0

0.0

2.0

4.0

6.0
re

fr
ac

tiv
e

in
de

x
de

cr
em

en
t
δ

·10−8

5mm

Fig. 5. Exemplary axial slice of a filtered backprojection of a liver cirrhosis
sample at the oversampling sample position. By using IBP super-resolution
reconstruction the effective pixel size is 28μm and a high quality represen-
tation of the sample is obtained.
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forward projection. System properties such as the PSF can be
implemented into this model for a better simulation result. The
errors yk − ŷnk are back-projected using the kernel hBP.

In Figure 4, the principle of the iterative process is illus-
trated. The number of iterations and the resulting quality is
highly dependent on the noise in the measured LR image data.

An exemplary axial slice of a liver cirrhosis dataset mea-
sured with oversampling and IBP super-resolution reconstruc-
tion is shown in Figure 5. The volume is sharply reconstructed
without any blurring or artefacts. Apart from the qualitative
improvement of the image the data remains also quantitative.
A calibration based on the electron density of a PMMA
tube (white) and the measured signal is used [16]. This is
important for the compatibility between datasets with and
without oversampling and IBP.

VI. COMPARISON OF HIGH RESOLUTION RESULTS

Both presented setup configurations achieve an effective
pixel size of 28 to 29μm and the exposure times for both
measurements as well as the number of angles are the same.

By the influence of the extended PSF of the system due to
the high source magnification factor the geometric magnifica-
tion approach cannot deliver the spatial resolution which can
be obtained by super-resolution reconstruction.

The increase in quality is therefore based on the chosen
sample position and the used oversampling reconstruction
method. For the oversampling sample position the source
magnification factor is 0.34, which means that the PSF for
this setup geometry is about five times smaller than at the
magnification sample position. This sharpened PSF leads to
almost no blurring of the low resolution images.

Further measurements confirm qualitatively that also the
sensitivity of the setup is not affected by application of the
super-resolution reconstruction. In Figure 6, an exemplary
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Fig. 6. Exemplary tomographic slice of a rat brain sample with a tumor. The
effective pixel size is 28μm after the IBP super-resolution reconstruction of
the oversampled data. The sample is represented sharply and tissue structures
are visible. In the lower part the tumor is clearly apparent and in the upper
right the cerebellum is shown.

phase-contrast tomographic scan of a rat brain sample allows
to differentiate structures in the brain such as the cerebellum
and cancerous tissue. High sensitivity of the interferometer
by optimised geometry and gratings are crucial parameters as
well as the reliable stability of the setup.

VII. MEASUREMENT TIME OPTIMIZATION

Applying the described oversampling approach gbPC-CT
with strongly increased spatial resolution can be performed
at the presented setup but the increase in measurement time
needs to be considered. A standard tomographic measurement
at this setup usually takes about 19 hours using the Eiger 1M
detector. For the oversampling measurement this duration is
about four times longer resulting in a total data acquisition
time of 76 hours. As this duration is not practical, further
improvements are necessary.

One straight forward time improvement can be reached by
increase of the X-ray flux. This has been done by reducing the
sample size to a diameter of about 1 cm and the water tank in
which the sample is inserted to correct for beam hardening is
only 15mm thick.
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Fig. 7. Axial slice of a tomographic scan of a liver cirrhosis sample at
oversampling sample position with 28μm effective pixel size. In A, the
filtered backprojection is used for the reconstruction based on the full dataset
measured within a total data acquisition time of about 44 hours. In contrast
to this, in subfigure B the statistical iterative reconstruction with only 50% of
the available projection angles is shown. Exploiting this reconstruction method
the measurement time can be reduced to approximately 22 hours.
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Another approach to reduce the data acquisition time is to
reduce the number of measured tomographic angles. To obtain
sufficient volume reconstruction quality a statistical iterative
reconstruction (SIR) instead of a filtered back projection (FBP)
is used. SIR can provide sharper and less noisy reconstruction
results if the regularisation parameters are chosen well. An-
other advantage of this method is that for comparable output
quality less projection angels are necessary than for a FBP
and thus SIR can be used to reduce the measurement time.

In Figure 7 A, the reconstruction with filtered back pro-
jection (FBP) of the differential phase contrast is shown. The
quality is comparable to the measurement of the larger sample
in the same setup configuration (see Figure 5), however the
total measurement time has been reduced to 55% by the
thinner water tank and smaller sample.

In Figure 7 B, the same dataset of the small liver cirrhosis
sample is reconstructed with only 50% of the available projec-
tion angles using SIR. It is obvious that by doing so the image
quality is reduced in comparison to the slice reconstructed via
FBP from all available data. However, no under-sampling or
other artefacts are visible. Only a slight increase of noise can
be observed.

Furthermore, it has to be mentioned that the geometry and
the gratings have been optimised for the spectral performance
of the used detector. However, the quantum efficiency of
the detector is the limiting factor. Development of detectors
with higher quantum efficiency can significantly reduce the
measurement time.

VIII. CONCLUSION

The measurements verify that super-resolution reconstruc-
tion methods such as IBP can be directly applied on differen-
tial phase-contrast measurements. By optimisation of the mea-
surement concerning the geometry and the PSF higher spatial
resolution than with conventional geometric magnification can
be obtained. The demonstrated results show that combining the
high sensitivity of the setup with the high resolution approach
can allow measurements at a laboratory X-ray source compara-
ble to synchrotron measurements. However, the usually lower
flux of the X-ray tube and the high number of overlapping
stepping curves lead to much longer measurement duration,
which is the major drawback at laboratory setups. It has been
shown that by the application of SIR the data acquisition time
can be significantly reduced to an extend which is practicable
for use in biological, medical, and material science studies.
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Abstract—In Multi-energy X-ray computed tomography
(MECT), relation between photon energy and reaction cross
section suggests information of material compositions. Using dif-
ferent energy spectra independently, traditional MECT requires
multiple scan periods and causes extra exposure dose. To alleviate
the total dose concern, we propose a new algorithm to reconstruct
from under-sampling data, either limited-angle or few-view
MECT data. A new group-wise low-rank penalty is designed
to constrain spectral attenuation images, searching relationship
among attenuation coefficients under different energies. Our
method gives accurate reconstructions of attenuation map with
under-sampled projection data, identifying its great potential in
new MECT system design and reconstruction strategy, which
could benefit in the aspects of lower dose and efficient imple-
mentation.

I. INTRODUCTION

The past decades have seen X-ray computed tomogra-
phy(CT) technology improved in both instrumentation and
reconstruction algorithms areas. The advanced X-ray emitter
and photon-counting detector array boost MECT from pa-
per talk to practice. In common X-ray emitter, accelerated
electrons hit on the target made of heavy material like Pd.
Bremsstrahlung effects of electrons emit X-ray distributed in
consecutive energy spectrum. X-ray photon carrying different
energy has different cross-section when reacting with ma-
terial, which cause problems (such as beam hardening) in
conventional CT. However, if we utilize this features, we can
benefit from information contained in energy domain. In 1976,
Alvarez et al firstly obtained energy spectral information in CT
reconstruction. [1] Later on, concepts like MECT, spectral CT
joined the most popular topics. [2] [3]

Meanwhile, prosperity in computer science build up calcu-
lation capability, which benefits iterative reconstruction algo-
rithms. Gorden published a tutorial on algebraic reconstruction
techniques (ART) in 1974, ART [4] laid the foundation
for future iterative reconstruction algorithms design. Methods
such as Model-based Iterative Reconstruction (MBIR) [5] [6],
total-variance (TV) [7] constraint improved image quality.
Generally, iterative methods outperform traditional analytical
algorithms, especially in low-dose or under-sampled data
acquisition, in which case the reconstruction problem is of
severe illness .

Nuclear norm or low-rank penalty are strong constraints
efficient in figuring out linear relations between frames. It

has been a well acknowledged tool in temporal CT and
spectral CT. In time-resolved CT, Chen used nuclear norm
to regularize the reconstruction of temporal frame series,
exploiting structural information of the object. [8]

The purpose of this paper is to present an accurate image
reconstruction method for under-sampling MECT like few-
view and limited-angle. Utilizing conjugation pairs of rays,
we firstly use other energy information as supplement to get
prior images. Then, a group-wise low rank constrain (GLC)
is applied to images to eliminate artifacts caused by data
deficiency or inconsistency.

II. METHOD

A. MECT System Model

In this work, we denote MECT projections as pk ∈
RNp(k = 1, 2, ...,K) under K different X-ray energy spectra
with NP being the dimension of pk, i.e., # of projection
views × # of detector bins per view. Let xk ∈ RNx

+ be the
map of linear attenuation coefficients at kth X-ray spectrum
with Nx being the number of discrete pixels in images. With
polychromatic model, projections from such a multi-energy
CT can be described as following,

pk = −ln
∫

Sk(E) exp (−Akx(E)) dE, k = 1, ...,K (1)

where Ak ∈ RNp×Nx is the system matrix characterizing the
geometrical configuration of data acquisition, and Sk(E) is the
normalized effective spectrum (

∫
Sk(E)dE = 1) combining

the effect of source spectrum and detector response which can
be wide (e.g. dual source systems) or narrow (e.g. energy
selective systems). According generally used single-energy
CT, the data fidelity term is commonly measured by a linear
relationship [4] :

Akxk = pk (2)

or, in noisy case with Gaussian, by a weighted least-square
term Φ(X) =

∑K
k=1 (Akxk − pk)

T
Wk (Akxk − pk) where T

denotes matrix transposition. Obviously, xk is a comprehen-
sive description of xk(E) under the spectrum Sk(E).

As shown in Fig. 1, the angular coverage for different energy
(by changing tube potential or energy threshold) can be either
interlaced distribution (few-view) or segmented distribution
(limited angle). For such an MECT reconstruction problem,
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Fig. 1: Different configuration of MECT. Top: CT system
geometry; Bottom: Segmental & Interlaced distribution of
multi-energy data

we intend to reconstruct Nx×K unknowns from Np×K data.
In a regular MECT system, one would expect Np ∼ Nx. With
our MECT configuration, Np ×K ∼ Nx, i.e., we reduce the
size of data by a factor of 1/K compared with a regular MECT
scan, which could mean reducing dose and scan time by 1/K.
Therefore, under such conditions, the data size for each energy
is Np � Nx so that the reconstruction is severely ill-posed and
severe artifacts will degrade image quality of reconstructions if
reconstruct xk from pk with general reconstruction methods.
In this work, we propose a level-grouped low-rank penalty to
incorporate the common information between pk’s .

B. Group-wise Low-rank Penalty

Low-rank penalty is especially suitable for spectral CT
reconstruction as the attenuation coefficient maps under dif-
ferent energy spectrum share same structural information
of imaging objects. For a certain range of materials, their
energy-dependent attenuation coefficients variations obey sim-
ilar μ−E curves. The success of basis material and Compton-
photoelectric decomposition methods told us the strong cor-
relation between the μ − E curves of different materials.
In typical medical imaging problems, the most important
materials can be separated into groups according to attenuation
level, e.g. osseous tissue with higher attenuation capacity and
soft tissue with lower attenuation capacity. In this work, we
propose a new low-rank penalty to constraint pixels within
groups based on their attenuation level.

For the convenience of this discussion, let us denote a
spatial-spectral matrix X ∈ RNx×Kfor final images:

X =
[
x1 x2 ... xK

]
(3)

Assuming pixels in an object can be categorized into M
groups, we define a characteristic vector χ with its elements
being:

χm
i =

{
1 if pixel i ∈ Group(m)

0 (else)
(4)

(We describe the pixel grouping in more detail in Section
II-C. ) Then we can form M spatial-spectral matrices of from
images xk:

Xm = Diag(χm)X (5)

Within each group, a strong low rank penalty can be applied
by:

minimize Ψ(X) =
M∑

m=1

Rank(Xm) (6)

With singular value decomposition (SVD), we can get the
nuclear norm of each matrix,

Xm = UmΣmVT
m (7)

where Um and Vm are orthogonal matrices consisting of
singular vectors of spatial-spectral image matrix Xm, and
Σm is a diagonal matrix with its diagonal elements showing
singular value of corresponding singular vector:

Σm =

⎡⎢⎢⎢⎣
σ1,m 0 · · · 0
0 σ2,m · · · 0
...

...
. . .

...
0 0 · · · σK,m

⎤⎥⎥⎥⎦ (8)

In this way, Eq. (6) can be also expressed as:

minimize Ψ(X) =

M∑
m=1

K∑
k=1

σl
k,m (9)

Here, we use l order nuclear norm for generality. When l is
set to 0, the nuclear-norm constraint degenerates to low-rank
penalty. If attenuation coefficients for different tissues within
a group are linearly dependent, the principle components will
represent most information of the image, while secondary
components will have relatively small contribution or even
ignorable.

C. Pixel grouping

Pixel grouping is intended to limit the type of matters within
a group. There will be many ways to do it, such as segmen-
tation and clustering. Here, we present a straightforward and
easy-to-implement way to do it.

In many applications, we are quite clear the material com-
position of objects being imaged. It is convenient to group
pixels according to their attenuation capacity, i.e. level-based
grouping. In this case, grouping is simplified to choosing
thresholds and the indicator vector is define by:

χm
i =

{
1 if T Low

m < xk,i ≤ THigh
m

0 (else)
(10)

Here, xk,i is an element of xk, and the thresholds T Low
m and

THigh
m for mth group vary according to the energy spectrum of

kth projection data Sk(E). Setting THigh
m = T Low

m+1 is a natural
choice, but not necessary. Notice that xk,m,xk,m ∈ RNx .
As we mentioned in Section II-A, xk is an comprehensive
measure of attenuation under kth spectrum. Assume we have
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two typical matters (Am and Am+1) of interest in group m
and m+1, we can calculate the threshold THigh

m with effective
attenuation coefficient of μ̃A,k under spectrum Sk(E).

THigh
m = aμ̃Am,k + bμ̃Am+1,k, a+ b = 1 (11)

In spectral CT imaging, we can pre-measure μ̃A,k experimen-
tally. Parameters a and b can be manually or automatically
adjusted. If MECT running in a stable condition with no
frequent tube potential or energy threshold adjustment, Eq.
(11) can be pre-calculated and optimized.

D. Method Implementation

Combining the data-fidelity term and the nuclear-norm
constraint term using Eqs. (2) and (9), we can express the
overall optimization problem with an objective function as
follow:

Φ(X) = argmin
X>0

(
K∑

k=1

∥∥Akxk − pk

∥∥2
2
+ λ
∑
m,k

σl
k,m) (12)

For simplicity, l1-norm for the nuclear term is chosen in
our implementation. For the data-fidelity term, image xk is
only related to projection data pk and system matrix Ak, so
corresponding updating under different energy spectrum are
unrelated. So it is convenient to apply ART separately to each
image,

x
(i)
k = x

(i−1)
k + αAT

k

[
pk − Akx

(i−1)
k

]
(13)

For the nuclear-norm term, we use Chen’s singular value
thresholding (SVT) function [8]. The function is defined by,

SVTλ(X) = U(Σ− λI)+V
T (14)

(Σ− λI)+ =

{
σi − λ, σi ≥ λ

0, σi < λ
(15)

In order to implement a simple but effective reconstruction
method for limited-angle MECT data, we propose the iterative
algorithm as pseudocode Algorithm 1.

III. EXPERIMENTAL RESULTS

To examine our algorithm, a dental phantom and projection
data as in [9] ars used so to ease result comparison. All images
are of 5122 pixels, and the detector array has 960 bins.

A. SegMECT reconstruction

In SegMECT, 360 views are uniformly distributed in a
round. Sequentially 120 views with step of 1◦ for each energy
are acquired separately at 60kVp, 90kVp and 120kVp, denoted
as p1, p2 and p3. To obtain a prior images for kth energy, we
use weighted projection from other energy (k′th) to form a
complete (non-consistent) data set. The weight is calculated
by the congregate ratio of conjugate rays in two energy:
wk,k′ =

∑
j pj∑

j′ pj′
with j and j′ forming groups of conjugate

rays. In this way we can get a filled-up full-angle projection

Algorithm 1 Group-wise Low-rank Constraint (GLC)

Input:

Projection data: pk, k = 1, 2, ...,K
Heuristic images: X0 = (x0

1, ...,x
0
K)

Thresholds: Tm,m = 0, 1, ...,M
Output: XI

1: repeat

2: for k = 1 to K do

3: x
(i)
k ← x

(i−1)
k + αAT

k

[
pk − Akx

(i−1)
k

]
4: end for

5: X̃
(i) ← (x0

1, ...,x
0
K)

6: for m = 1 to M do

7: X̃
(i)

m ← Diag(χm)X̃
(i)

8: X(i)
m ← SVTλ

[
X̃

(i)

m

]
9: end for

10: X(i) =
∑M

m=1 X(i)
m

11: until

∥∥∥X(i) − X(i−1)
∥∥∥
2
< ε
∥∥∥X(i−1)

∥∥∥
2

Fig. 2: upper: ART-reconstructed prior images from
filled-up projection data. bottom: Attenuation map re-
constructions of SegMECT with GLC. Energy from
left to right: 60kVp, 90kVp, 120kVp.

data for each energy. With the supplemented data, we can
reconstruct three prior images. As shown in the upper row of
Fig. 2, we can see some structure like teeth and jawbone. In
the meantime, prior images are suffused with severe artifact
introduced by inconsistency in filled-up data. We apply our
method using these priors of low quality. The accurate projec-
tion data in different energy are utilized mutually by GLC. It
recovers attenuation information and eliminate artifacts. The
image quality is improved with clearer structure, fewer artifact
and higher accuracy.

We decompose the reconstructions into two basis materials
(bone and soft tissue) according tri-energy attenuation coef-
ficient maps. Compared with other reconstruction algorithms
like FBP, Q-TV, PICCS, ART-TV in Fig. 3, our algorithm
obviously provides best result. Quantitative comparison is
shown in Table I.
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Fig. 3: Decomposition of the basis materials.
The first column shows full data FBP reconstruction result for reference.

TABLE I: MSE and PSNR: quantitative comparison between
different reconstruction results.

GLC FBP Q-TV PICCS ART-TV
MSE 0.0240 0.1628 0.0329 0.0417 0.1017
PSNR 25.05 16.74 23.68 22.66 18.78

B. MECT with interlaced energy distribution

For further evaluate the performance of our method, we
test on MECT data with interlaced distribution of energy, we
acquire views (1 + 15k)◦ at 60kVp, views (6 + 15k)◦ at
90kVp, views (11 + 15k)◦ at 120kVp (k = 1, ..., 24). As the
streak artifacts in each energy map are different, part of these
artifacts will be suppressed by GLC penalty. TV-constraint
[7]can help reducing residue streaks, while GLC maintains
most of the structural information. The heuristic prior images
and the reconstruction results are shown in Fig. 4. Obviously,
the algorithm helps to delineate the details of teeth and soft
tissue in the center of the FOV, while streaking artifacts are
suppressed to a lower level. Additional smoothing prior might
help reduce residual streaks.

Fig. 4: upper: ART-reconstructed prior images
bottom: Attenuation map reconstructions with GLC
tube voltage from left to right: 60kVp, 90kVp, 120kVp.

IV. CONCLUSION

In this work, we introduce a group-wise low rank constraint
(GLC) to propose an accurate spectral CT imaging for multi-
energy CT with under-sampled data. Different from low rank
penalty on full image space or patches, our GLC can model
the relationship of μ − E among similar matters within a
group in a more concise way. An easy-to-implement level-
based grouping strategy is presented. The proposed method is
tested with simulation studies on SegMECT [9] (limited-angle)
and few view cases. Results are of better quality compared
with algorithms like FBP, Q-TV, PICCS, ART+TV.
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Abstract—Novel cone-beam CT system designs allow acquiring
projection data using non-circular scan trajectories. For example,
twin robotic X-ray systems can acquire data on scan paths
composed of linear, circular, ellipsoidal or rectangular segments
and combinations thereof. The ideal isocenter is the point of in-
tersection of all central rays from the tube to the detector center.
The isocenter usually acts as a reference point to determine the
center of the reconstruction volume. With increasing flexibility
and complexity of scan trajectories it becomes more difficult
to determine a practical isocenter. In this work, we present
a novel and generic method to determine the isocenter of an
arbitrary planar scan trajectory. It iteratively finds an isocenter
which minimizes the distances to all central rays excluding rays
which were not designed to pass near an isocenter. Our method
shows high accuracy (distance of computed isocenter to reference
location <5.4 mm) and robustness (influence of additional central
rays not near the isocenter on computed isocenter <0.2 mm). This
method can support clinical use of more complex scan trajectories
with robotic X-ray systems.

I. INTRODUCTION

Cone-beam computed tomography (CBCT) is an established
modality in medical imaging which is used in a wide field
of applications. Since the intended use covers different fields
from diagnostic imaging to interventional imaging in the angio
suite and operating room there exist several dedicated systems.

Two examples for such CBCT systems are the Artis zeego
(Siemens Healthcare) and Multitom Rax (Siemens Healthcare)
shown in Fig. 1 where X-ray tube and detector are kinemati-
cally uncoupled [1].

Many systems can also acquire CBCT data also using non-
circular planar trajectories. The reasons therefore are manifold:
Often the patient and table configuration setup do not allow
for circular paths because of collision issues. Another reason
might be a limited rotation range due to mechanical system
properties. It was shown in [2] that the combination of
rotational and translational scan segments can lead to the same
volume coverage like a standard short scan (180◦ + fan angle,
[3]). In these cases the field of measurement (FOM) which
is defined by completely sampled voxels (>180◦) can differ
strongly from the circular shape in the case of a circular scan.

All trajectories require a geometric calibration which is typ-
ically performed offline using a dedicated calibration phantom
[4]. The calibration information can be stored in form of
perspective 3×4 matrices or source and detector coordinates.
These geometric information will serve as input for image
reconstruction. To guarantee that the volume which is typically
a cube and the FOM are matching an additional registration

procedure must be performed. This can be included into the
calibration step before storing the geometry data or in the
reconstruction pipeline before backprojection. To avoid an ad-
ditional backprojection step it is desirable that this registration
can be performed only using the geometric data of the scan
trajectory.

For a perfectly circular scan, a circular fit can be applied
where the center of the circle is the so-called isocenter.

A practical approach for fitting a circle to a scan trajectory
has been described by Navab et al. [5]. First the axes of
rotations between consecutive frames are determined. From
this set of axes a mean axis of rotation is computed. Then a
cylinder is fitted parallel to the mean axis of rotation to all X-
ray source positions. Additionally a plane is fitted orthogonal
to the axis of rotation to all X-ray source positions. The
intersection of the plane with the cylinder is defined as the
effective isocenter. An alternative approach for fitting a circle
to the scan trajectory has been described by Jia et al. [6].

However, for non-circular and even non-symmetric trajecto-
ries an approach based on a circular fit will fail. In this paper
we describe a method that can handle the isocenter computa-
tion of any arbitrary planar trajectory. Intended detector offsets
or shifts will also be considered.

II. MATERIAL AND METHODS

A. Isocenter Determination

The complete scan consists of Nv views. For each view
the corresponding focus position ai = (a1,i, a2,i, a3,i)

T (i =
1, . . . , Na) and central ray unit vector ni = (n1,i, n2,i, n3,i)

T

are known. These two parameters can be determined from
the corresponding 3×4 projection matrices. We define the
isocenter p = (p1, p2, p3)

T as the point that minimizes the
sum of squared distances to all central rays. It is given by the
expression [7], [8]⎡⎣∑i(1− n2

1,i) −
∑

i n1,in2,i −
∑

i n1,in3,i∑
i−n1,in2,i

∑
i(1− n2

2,i) −
∑

i n2,in3,i∑
i−n1,in3,i −

∑
i n2,in3,i

∑
i(1− n2

3,i)

⎤⎦⎡⎣p1p2
p3

⎤⎦ =

⎡⎣ ∑i(1− n2
1,i)a1,i − n1,in2,ia2,i − n1,in3,ia3,i∑

i−n1,in2,ia1,i + (1− n2
2,i)a2,i − n2,in3,ia3,i∑

i−n1,in3,ia1,i − n2,in3,ia2,i + (1− n2
3,i)a3,i

⎤⎦ .
(1)

This expression can be written as a linear system of equations

Ap = b (2)
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(a) scan around table (b) standing patient scan

Figure 1. Twin robotic X-ray system (Multitom Rax, Siemens Healthcare)

(a) scan around table (b) scan besides table (e.g. of hand) (c) standing patient scan

Figure 2. Examples of tube and detector scanning trajectories for Multitom Rax and their respective end positions.

which can be uniquely solved for p if not all central rays
are parallel or anti-parallel. In (1) all central rays contribute
equally to determine p. However, there can be conditions when
certain central rays should not be considered when determining
the isocenter. E.g., a linear scan segment where detector and
tube are moved on parallel paths can be added to a rectangular
scan to increase coverage of the Radon space (Fig. 3). In this
case the central rays of the linear segment intentionally do not
pass near a common isocenter.

To account for central rays not passing through an isocenter
a weighting factor wj

i (j = 1, 2, . . .) is included in all sums
in (1) such that∑

i

(. . .) ⇒
∑
i

wj
i (. . .) . (3)

Here wj
i defines the weight of the ith central ray in the jth

iteration step. The iterative approach can be written in pseudo
code as:
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initialize w1
i = 0 ∀i

repeat

S1: compute pj by (1) and (3)
S2: compute distance dji of each central ray to pj

S3: set wj+1
i depending on dji

until wj+1
i is equal to wj

i

In the step S1 the isocenter pj is computed based on (1) and
(3). In step S2 the Euclidean distance dji of each central rays
to pj is computed as

dji = ||(fi − pj)((fi − pj)Tni)ni||2 (4)

In step S3 the weights wj+1
i are computed as

wj+1
i = f(dmax − dji ) (5)

where the function f can be a step function, a sigmoidal
function or another type of (non-linear) function which has
output values in the range [0, 1]. dmax indicates the maximal
acceptable distance from the isocenter such that the projection
view is still considered for determination of the isocenter. If
it is a step function then the weights are set to zero if the
distance exceeds dmax.

B. Evaluation Approach

The evaluation is divided into two parts. In the first part
of the evaluation we investigated the accuracy of the method.
We computed the isocenter from the set of projection matri-
ces of different types of trajectories (planar circular, planar
ellipsoidal, planar rectangular; see Fig. 2). For each trajectory
we performed an image reconstruction with the reconstruction
center placed in this isocenter. We then determined the center
of a bounding box around all voxels from the reconstruction
which are seen in all projection views. This is considered to be
the reference reconstruction center. We computed the distance
of the isocenter to the center of the bounding box.

In the second part of the evaluation we investigated the
robustness of the method. We created a scan trajectory consist-
ing of a planar rectangular scan and an additional linear scan
with central rays intentionally not passing through a common
isocenter to increase coverage of Radon space (Fig. 3). We
compared the isocenter computed from the extended trajectory
and the non-extended trajectory. Our method is considered
robust if the additional linear scan does not significantly affect
the computation of the isocenter.

III. RESULTS

The distances of the computed isocenter (using our novel
method) and the measured isocenter (using the bounding box
around the voxels in the reconstructed volume) are: 2.99 mm
(planar circular), 1.44 mm (planar ellipsoidal), and 5.35 mm
(planar rectangular).

Fig. 4 shows the position of the computed isocenter after the
first and last iteration step (8th step) when a rectangular scan
with additional linear segment is used. The distance to the
isocenter computed from the same trajectory without linear
scan was 30.59 mm (first iteration step) and 0.17 mm (last
iteration step).

IV. DISCUSSION AND CONCLUSION

For all trajectories investigated the distance of the computed
isocenter to the reference point was small (<5.4 mm). Thus,
it has been shown that the method can determine a practical
isocenter to define the center of the reconstruction volume.
Only a very small influence on the computed isocenter (0.17
mm distance) has been observed when an additional linear
scan was added. It shows that the method is robust and works
if (intentionally) certain central rays do not pass near an
isocenter.

The approach has been evaluated for planar trajectories but
may be extended to non-planar trajectories as well such as
trajectories that cover a larger volume along the patient axis
[9], [10].

To conclude, we have presented a novel and generic method
to determine the isocenter from arbitrary planar CBCT scan
trajetories. This method can support clinical application of
more complex scan trajectories using robotic X-ray systems.
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Figure 3. Plot of rectangular scan trajectory (a) with and (b) without additional linear scan. Source-to-image distance is encoded by colors. Every 5th central
ray is plotted.
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Figure 4. Position of computed isocenter (green point) after first and last iteration step.
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Material reconstruction for spectral computed
tomography with detector response function

Jiulong Liu, and Hao Gao

Abstract—Different from the conventional computed tomog-
raphy (CT), spectral CT based on energy-resolved photon-
counting detectors is able to provide the unprecedented material
compositions. However, an important missing piece for accurate
spectral CT is to incorporate the detector response function
(DRF), which is distorted by factors such as pulse pileup and
charge-sharing. In this work, we propose material reconstruction
methods for spectral CT with DRF. The simulation results suggest
that the proposed methods provided more accurate material
compositions than the standard method without DRF. Moreover,
the proposed method with linear data fidelity had improved
reconstruction quality from the proposed method with nonlinear
data fidelity.

Index Terms—image reconstruction, spectral CT, detector
response function.

I. INTRODUCTION

THe X-ray photon transport is essentially polyenergetic
rather than monoenergetic. That is both X-ray photons

and attenuation coefficients have the spectral dependence.
Thus the ideal forward model should be also polyenergetic.
However, since the conventional CT detectors are charge-
integrating with no spectral resolution, the CT inverse prob-
lem is often based on the monoenergetic forward model
and equivalently reconstructs a spectrally-averaged attenuation
image. As a result, the imaging quality can be significantly
deteriorated, the so-called beam hardening artifact, when the
imaging subject contains the material for which the modeling
error using monoenergetic forward model is significant, such
as the metal implant or the bony structure of a patient [1].
This can be addressed by the recent development in energy-
resolved photon-counting detectors. Equipped with photon-
counting detectors, spectral CT provides the unprecedented
possibility to simultaneously reconstruct a series of spectral
images [2]–[9].

Spectral CT allows the use of polyenergetic forward model
and therefore its image reconstruction should be more accurate
than the conventional CT. More importantly, it potentially
meets the clinical and industrial needs of energy-resolved
CT images or particularly material compositions, such as
spectral breast CT [17]–[19] and K-edge imaging [12], [20].
In terms of reconstruction algorithm for spectral CT, the
material compositions can be reconstructed with two different
methodologies: a two-step procedure with first the reconstruc-
tion of spectral images and then material decomposition from
these spectral images to material compositions [6], [10], [19],

J. Liu and H. Gao are with Department of Mathematics and School of
Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240,
CHINA (e-mail: hao.gao.2012@gmail.com).

[21]–[26] or alternatively first material-specific sinogram de-
composition and then material reconstruction [12], [27]–[29];
a one-step procedure that directly reconstructs the material
compositions by incorporating the material-image model into
the reconstruction [6], [30]. Ideally the latter is preferred
for two reasons: first the direct material reconstruction can
fully utilize the structural similarity among materials; second
it avoids to reconstruct an overdetermined system of images
for material decomposition since the number of energy bins,
correspondingly the number of spectral images, is often more
than the number of materials to be reconstructed. Various
sparsity-based reconstruction methods have been developed
with the energy-by-energy reconstruction such as dictionary
learning [10], tight frame [19], [23] and bilateral filtration [24],
and the joint reconstruction to utilize the structural similarity
in the spectral dimension such as total variation (TV) [26],
nonlocal TV [11], patch-based low-rank model [25], rank-and-
sparsity decomposition model [6] and tensor rank-and-sparsity
decomposition model [22].

However, an important missing piece for accurate spectral
CT is to incorporate the detector response function (DRF) into
the reconstruction, which has not been considered so far to
the best of our knowledge. The DRF refers to the recorded
spectral distribution for a monoenergetic incident beam at
the detector [12]. Ideally the DRF should be a Gaussian
distribution centered at the incident energy with a small
standard deviation. Practically the DRF is distorted by factors
such as pulse pileup and charge-sharing, and thus needs to be
experimentally calibrated [12]–[14]. Without considering DRF,
the reconstruction quality of spectral CT can be significantly
reduced, particularly for the photon-counting detectors with
high count rate and high spatial resolution [15], [16]. In this
work, we consider the inverse problem for spectral CT based
on the forward model with DRF.

II. METHOD

A. Detector Response Function

For the purpose of accurate spectral CT, we consider the
DRF to account for the detector response distortion due to
factors such as pulse pileup and charge-sharing. In particular,
we adopt the following DRF calibrated using X-ray fluores-
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cence [14]

D(E′, E) =⎧⎪⎪⎨⎪⎪⎩
c1(E), for E/2 < E′ < E − 3σ;

c2(E)√
2πσ(E)

exp(− (E′−E)2

2σ(E)2 )

+ 2c3(E)√
2πσ(E)

∫∞
E′ exp(− (E′−E)2

2σ(E)2 )dE′, for E′ > E − 3σ.

(1)
In (1), E denotes the incident photon energy at the detector,
while E′ is the received photon energy by the detector.
Here the DRF is determined by four parameters that are
experimentally calibrated for a particular detector: the standard
deviation of the primary Gaussian peak σ(E); three fitting
parameters c1(E), c2(E) and c3(E) that are related to the
fitted charge-sharing fractions [14].

B. Forward Model

In this section, we give the polyenergetic X-ray forward
model with DRF. For the discretization purpose, let us consider
an incident spectrum s(E) that consists of Ne intervals, i.e.,
{ΔEn, n = 1, · · · , Ne} with ΔEn as the length of the
nth energy interval, and a set of polyenergetic measurement
{Yim, i = 1, · · · , Nd,m = 1, · · · ,Me}, where Me is the
number of energies at the detector, Nv the number of pro-
jection views, Nd0 the number of detectors per view, and
Nd = Nd0 · Nv . Let M = Nd · Me be the total number
of spectral data available for image reconstruction, ΔE′

m the
length of the mth energy response interval at the detector,
and Li the path of line integral for Yim. Here we assume the
spectral measurement Yim follows Poisson statistics with the
expectation Y ∗

im. With the above DRF (1) taken into account,
the expectation Y ∗

im obeys the following forward model

Y ∗
im

=
∫
ΔE′

m
dE′∑

n

∫
ΔEn

D(E′, E)S(E)e
− ∫

Li
u(x,E)dx

dE.
(2)

Clearly many energy intervals (i.e., {ΔEn, n = 1, · · · , Ne})
are in need for accurate discretization of the forward model (2),
which implies the necessity of reconstructing a fair amount of
u(x,E), i.e., Ne spectral images. However, the goal of spectral
CT is to reconstruct the material compositions. To avoid such
a redundant step of reconstructing an overdetermined system
of u(x,E), we utilize the linear dependence of u(x,E) on
material compositions Z to directly reconstruct Z, i.e.,

u(x,E) =

Nz∑
k=1

Zk(x)Bk(E). (3)

Here Nz is the number of basis materials, Zk(x) is the
material composition of the kth basis material at the spatial
location x, and Bk(E) is the attenuation coefficient of the kth
basis material at the energy E. Note that Zk(x) is spectrally
independent, while Bk(E) is spatially independent.

Then let us consider the spatial discretization of (2) on a
piecewise-constant spatial grid {xj , j = 1, · · · , Nx}. Let A
be the system matrix for discretized X-ray transform with the
matrix element Aij , e.g., the length of the ray Li overlapping

with the grid xj . Then our forward model with DRF for the
direct reconstruction of material compositions is

Y ∗
im =∫
ΔE′

m
dE′∑

n

∫
ΔEn

D(E′, E)S(E)e−
∑

j Aij(
∑

k ZjkBk(E))dE,
(4)

where Zjk is the kth material composition at the grid xj .
Next we introduce the effective attenuation coefficient Bkn

of the kth basis material for the energy interval ΔEn with
respect to the incident spectrum, i.e.,

Y ∗
im =

∑
n

e
−∑

j
Aij(

∑
k

ZjkBkn)

Rnm, (5)

with

Rnm =

∫
ΔE′

m

dE′
∫
ΔEn

D(E′, E)S(E)dE. (6)

Here (5) is justified by the mean value theorem for definite
integrals, thanks to the continuity of B(E) with respect to E.

In the matrix notation, (5) is

Y ∗ = e−AZBR. (7)

In (7), A ∈ RNd×Nx is the system matrix, Z ∈ RNx×Nz the
material composition, B ∈ RNz×Ne the material-attenuation
matrix, R ∈ RNe×Me the energy response matrix, and Y ∗ ∈
RNd×Me the spectral measurement. Note that we unfold Y
and Z to column vectors as needed in the following.

Finally, our polyenergetic X-ray forward model with DRF
for given spectral CT data Y obeying the Poisson distribution
is based on the following maximum likelihood function

p(Y |Z) =
∏
i,m

(Y ∗
im)Yim

Yim!
e−Y ∗

im , (8)

and particularly its logarithmic version

L(Z) = −ln(p(Y |Z))
= −

∑
i,m

(Yimln([e−AZBR]im)− [e−AZBR]im),

(9)
where [·]im denotes the matrix element and ln(Yim!) is
ignored since it does not affect the optimization.

C. Material Reconstruction with Nonlinear Data Fidelity

We first consider the material reconstruction with nonlinear
data fidelity (9), i.e.,

Z = argmin
Z

L(Z) + λ|∇Z|1, (10)

where we use the isotropic TV term [31] for image regulariza-
tion with a nonnegative regularization parameter λ, e.g., 2D
isotropic TV term

|∇Z|1 =
√

(∂xZ)2 + (∂yZ)2. (11)

Note that the minimization problem is convex since both
|∇Z|1 and nonlinear data fidelity term are convex.
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D. Material Reconstruction with Linear Data Fidelity

Despite the convexity of nonlinear data fidelity based mate-
rial reconstruction (10), its reconstruction quality may suffer
from the nonlinearity. Alternatively we consider the following
linear data fidelity based material reconstruction. Here the
essential idea is to collaboratively resample incident energy
intervals and detected energy intervals so that R ∈ RNe×Me

is invertible with optimized condition number. Thus Ne = Me.
A heuristically robust method is to first group the incident

energy intervals ΔEn using S(E) to achieve the equal weight-
ing, i.e., ∫

ΔEn

s(E)dE =
1

Me

∑
n

∫
ΔEn

s(E)dE. (12)

and then group the detected energy intervals ΔE′
m using

D(E′, E)S(E) to also achieve the equal weighting, i.e.,∫
ΔE′

m
dE′∑

n

∫
ΔEn

D(E′, E)s(E)dE

= 1
Me

∑
m

∫
ΔE′

m
dE′∑

n

∫
ΔEn

D(E′, E)s(E)dE.
(13)

In this work, we adopt the heuristic method (12) and (13)
and it works well with the aforementioned DRF (1).

Then we reformulate the following linear data fidelity based
material reconstruction from (7)

Z∗ = argmin
Z
‖AZB − P‖2F + λ|∇Z|1, (14)

where P = −ln(Y R−1) ∈ RNd×Me and ‖ · ‖F is matrix
Frobenius norm.

The solution algorithm for sparsity-based reconstruction
problems (10) and (14) can be based on alternating direction
method of multipliers [32] or split Bregman method [33].

E. Material-Attenuation Matrix

Here we consider how to determine the material-attenuation
matrix Bkn in (5).

Assuming Z is known for the calibration purpose, we can
compute B by solving the following overdetermined nonlinear
system (15)

e−AZBR = Y. (15)

Moreover, when using the linearized data fidelity model (14),
we can simply solve the following overdetermined linear
system (16)

AZB = P. (16)

Alternatively, without assuming Z is known, we rewrite (5)
as∫

ΔE′
m
dE′∑

n

∫
ΔEn

D(E′, E)S(E)e−
∑

j Aij(
∑

k ZjkBk(E))dE

=
∑
n
e
−∑

j
Aij(

∑
k

ZjkBkn) ∫
ΔE′

m
dE′ ∫

ΔEn
D(E′, E)S(E)dE.

(17)
Now considering a unit circular/spherical domain of the kth
material only, (17) is reduced to the following overdetermined
nonlinear system∫

ΔE′
m
dE′∑

n

∫
ΔEn

D(E′, E)S(E)e−Bk(E)dE

=
∑
n
e−Bkn

∫
ΔE′

m
dE′ ∫

ΔEn
D(E′, E)S(E)dE. (18)

Similarly, when using the linearized data fidelity model (14),
we can simply solve the following full-rank linear system (16)

Bkn = −[ln(Y kR−1)]n. (19)

where Y k ∈ RMe with [Y k]m =∫
ΔE′

m
dE′∑

n

∫
ΔEn

D(E′, E)S(E)e−Bk(E)dE.
In this work, given the material-attenuation function B(E) ,

the material-attenuation matrix B is computed by (18) or (19).

III. RESULTS

Simulations were performed at tube voltage of 65 kVp. The
mean glandular dose was estimated to be approximately 2
mGy for a 10 cm breast with 40% density. A 10 cm PMMA
phantom (Fig. 1) which contains both iodine and calcium of
various concentrations (TABLE I) was used.

Fig. 1. The simulation phantom.

TABLE I
THE CONCENTRATION AND SIZE OF PHANTOM OBJECTS

Object Material Radius Concentration
1 adipose 48mm
2 iodine 8mm 16mg/ml
3,10 iodine 8mm 8mg/ml
4 iodine 8mm 4mg/ml
5,11 iodine 8mm 2mg/ml
6 calcium 8mm 400mg/ml
7,10 calcium 8mm 200mg/ml
8 calcium 8mm 100mg/ml
9,11 calcium 8mm 50mg/ml
12 calcium 4mm 400mg/ml
13 calcium 2mm 400mg/ml
14 calcium 0.6mm 400mg/ml

To mimic the generation of projection data in practice, we
obtained 66 measurements linearly with respect to the energy
with 1keV gap, i.e.,

Y ∗
m′ =

65∑
n=1

e−AZBnR(n,m′), for m′ = 1, · · · , 65, (20)

where AZB was computed by the parallel computation of X-
ray transform [34] with 600 views and 768 detectors per view
and with total exposure of 1200mR for each energy scan.

Then, we divided the energy 1 ≤ Ẽ ≤ 65 into fifteen energy
groups, and added the Poisson noise to the measurements.
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TABLE II
ENERGY BINS(ΔEm = (Em−1, Em),ΔE′m = (E′m−1, E

′
m))

m 0 1 2 3 4 5 6 7
Em 1 22 25 27 29 31 33 35
E′m 1 20 23 25 27 29 31 33
m 8 9 10 11 12 13 14 15
Em 37 39 42 45 47 51 55 65
E′m 35 37 39 42 44 39 48 52

To compare with the proposed material reconstruction meth-
ods with DRF (10) and (14), we considered standard material
reconstruction method without DRF [11].

Fig. 2. Simulation results. (a) standard material reconstruction method
without DRF; (b) the proposed method with DRF and nonlinear data fidelity;
(c) the proposed method with DRF and linear data fidelity. (1) adipose; (2)
iodine; (3) calcium.

The reconstructed material composition images with sim-
ulated data are shown in Fig. 2. Our proposed material
reconstruction methods with DRF (10) and (14) were able to
accurately reconstruct the phantom material compositions into
adipose, iodine and calcium basis while the standard method
failed to do so. Moreover, the reconstruction quality with
nonlinear data fidelity (10) is better than that with linear data
fidelity (14).

Fig. 3. Left: material concentration of iodine (object 2-5); right: material
concentration of calcium (object 6-9).

The mean material concentration is plotted in Fig. 3, which
again shows that the proposed methods with DRF provided
accurate material compositions.

IV. CONCLUSION

We have proposed material reconstruction methods for
spectral CT with DRF, which provided more accurate ma-
terial compositions than the standard methods without DRF.
Moreover, the proposed method with linear data fidelity had
improved reconstruction quality from the proposed method
with nonlinear data fidelity.
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Fast scanning imaging of micro-CT
for small animals

Shouping Zhu, Yu Fan, Lei Xiong, Zhipeng Guo, Gaoqi Lv, Xu Cao, and Jimin Liang

Abstract—A fast scanning method was introduced to reduce
the dose of micro-CT imaging for longitudinal studies of in vivo
small animals. The feasibility of the method was analyzed briefly,
and the design of the whole collection process was described in
detail. The scanning time was reduce to 33 seconds for the fast
scanning, which was nearly 1/10 to 1/20 of a classical traditional
scanning. Phantom and mouse experiments were carried out to
verify the performance of the fast scanning method. The results
showed that there was less difference between the fast scanning
mode and the traditional scanning mode, except for a larger noise
in the fast scanning mode due to the shorter integral time of
projection. In order to solve this issue, we utilized the non local
means (NLM) filter to reduce the noise. There are three data
domain for the NLM filtering: the projection domain, sinogram
domain and the reconstructed volume domain. We compared
the filtering results of the NLM method in these three domain
by mouse imaging, and the results showed that filtering in the
reconstructed volume domain performed better than in the other
two domains.

Index Terms—micro-CT imaging, fast scanning, non-local
means (NLM)

I. INTRODUCTION

M ICRO-CT system has played a critical role in the
field of non-invasive small animal imaging, as it can

obtain high resolution anatomic information with relatively
low cost and convenient operation [1]. One of the most issue
of in vivo micro-CT imaging is the radiation dose received
by the subject. The typical radiation dose for a 3D micro-CT
scan ranges from a 0.017 Gy to 0.78 Gy [2]. The LD50/30
for mice (the dose at which would kill 50% of the exposed
animals within 30 days) is roughly between 5 - 7.6 Gy, which
means a single micro-CT scan can represent as much as 10%
of the LD50/30 [1][2]. For the longitudinal study, the animals
will be scanned for several time over a period of days. In this
case, the cumulative dose will become extremely high.

Roughly speaking, there are two categories applications of
the micro-CT system: the first requires very high resolution
(∼10-20 microns), such as bone of the mouse, the second
one requires relatively low resolution (∼100 microns), such as
quantification of adiposity, cardiac imaging, respiratory imag-
ing, and imaging fusion with other modalities. For the latter,
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the lower resolution means lower dose, which invoke us to
study new scanning mode. Most of the micro-CT systems work
in a rotation-and-stop mode. Compared with the clinical CT,
the scanning time for the micro-CT is relatively long, typically
5-10 minutes. Obviously, shorten the scanning time will reduce
the X-ray dose effectively. One of the main limitations of the
scanning time is the low frame rate of X-ray detector. With the
development of the integrated circuit technique, X-ray detector
with a fast frame rate (30-40 frames/s) is available, which
makes the fast scanning of the micro-CT possible.

In this manuscript, we will introduce a fast scanning mode
for micro-CT. During the fast scanning, the noise of the
reconstructed image inevitably becomes larger due to the
shorter integral time of projection. There are several strategies
for CT denoising[3][4][5]. In recent years, lots of researchers
pay attention to the non-local means method for denoising for
its outstanding performance[6][7]. In this manuscript, we will
utilize the non local means (NLM) method to reduce the noise
in the fast scanning mode. There are three data domain for
the NLM filtering: the projection domain, sinogram domain
and the reconstructed volume domain. We will compare the
denoising performance in these three domain.

The rest of the manuscript is organized as follows. The next
section presents our fast scanning mode and the NLM based
denoising method. In Section III, the experiments and results
are shown to demonstrate the feasibility of the fast scanning
mode, and the effect of the non local means filtering. Finally,
we conclude the paper in Section IV.

II. METHODS

A. Fast scanning Mode

In order to avoid the artifacts caused by the subject rotation
during the scanning, the traditional micro-CT usually works in
the ”rotation-and-stop” mode, as is shown in Fig. 1. To begin
with, one must first set up the tube voltage and current of the
X-ray source, then turn on the X-ray source. As most of the X-
ray tubes in the micro-CT system work in the continue mode,
the X-ray source will emit X-rays continuously until the total
acquiring process is finished. When the X-ray output is stable
and the motor is in the stop mode, the X-ray detector begins
to acquire an image and send it to the control computer. After
that, the motor will rotate a certain angle, and then stop to wait
for the detector acquiring a new projection. This process will
be repeated until the scanning is finished. The whole process
will last for 5-10 minutes typically.

To reduce the time and the dose during the image acquiring,
we introduce to use a fast scanning mode as shown in Fig. 2.
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Fig. 1. Sequence diagram of the traditional rotation-and-stop mode.

Fig. 2. Sequence diagram of the fast scanning mode.

At the beginning, the X-ray source is turned on as above. Then
we start the motor to rotate continuously at a stable speed.
When the X-ray output and the rotation speed of the motor
are stable, we trigger the X-ray detector to acquire the images
with a fixed period until the whole scanning is finished.

It is obvious that the subject is rotating during acquiring
the projection. As a rule of thumb, the rotation amount
should be less than or approximate equal to the voxel size
to avoid obvious artifacts caused by the rotation. Let the
angular velocity be �, the integration time be ΔT , the distance
between the outer edge and the rotation center be R, then the
maximum rotation amount during the integration time is

Δ = �RΔT. (1)

The value Δ should be as small as possible. However,
there are some limitations and conflicts for this purpose. R
represents the size of the subject. Assume that the subject
is a mouse, the value of R is roughly 20 mm. In order to
implement fast scanning, � should be large, which is lead to
a large rotation amount Δ. In this case, we have to reduce the
value of the ΔT . The minimum ΔT is limited by the detector
frame rate, and a smaller ΔT will cause a larger noise of
the image. Therefore, there should be some balance for the
parameters setting.

In the scanning mode, large amount of data will transfer to
the control computer from the detector in a very short time. As
the write speed of the hard disk is relatively low, we storage
the projection data to the memory of the computer temporarily
during the scanning. After the whole scanning is finished, all
of the data are written to the hard disk for long-term storage.

B. Non local means filtering for denoising

The noise of the reconstructed image is very large due to
the low dose in the fast scanning. In order to solve this issue,
we utilize the non local means (NLM) method to reduce the
noise. There are three data domain for the NLM filtering: the
projection domain, the sinogram domain and the reconstructed
volume domain. In the first two domain, we implement the

NLM method in 2D data, while in the third domain, we
perform the NLM algorithm in 3D. The basic idea of the
algorithm in 2D and 3D are similar. In the follow we will
introduce it briefly in the case of 3D.

In the non-local means method, the restored values can be
calculated as the weighted average of the values in the search
volume Vs as follows[6]

fNL(i) =
∑
j∈Vs

w(i, j)f(j), (2)

where fNL(i) is the restored value at voxel i. The f(j) is
the value of data to be denoising at voxel j. The weights
w(i, j) represents the similarity between the neighborhoods
of the voxel i and j.

w(i, j) =
1

Z(i)
exp{−‖f(Ni)− f(Nj)‖2a

h2
}. (3)

where Z(i) =
∑

j w(i, j) , and h is the smoothing parameter
of the weights. f(Ni) is the vector of neighborhood voxels
of i, f(Ni) := {f(j)}, j ∈ Ni, , where Ni expresses the
neighborhood of i.

The smoothing parameter h depends on the standard devia-
tion of the noise σ̂, and it also needs to take into account Ni.
According to [7], The equation was defined as

w(i, j) =
1

Z(i)
exp{−‖f(Ni)− f(Nj)‖22

2βσ̂2‖Ni‖
}. (4)

where the Gaussian-weighted Euclidean distance is replace by
the the classical Euclidean distance to simplify the complexity
of the problem, and to reduce the computational time. The
standard deviation of the noise σ̂ can be estimated via pseudo-
residuals[7]. The parameter β needs to be tuned manually.

III. EXPERIMENTS AND RESULTS

A. Phantom experiment for fast scanning test

To test the performance of the fast scanning method, we
carried out the following phantom experiment. The phantom
was made of a foamed plastic with 13 pencil cores put on it
at an interval of 5mm, and the diameter of the pencil core is
about 0.5mm, as is shown in Fig. 3.

The phantom was scanning by normal rotation-and-stop
mode and fast scanning mode respectively by our prototype
micro-CT system, which consisted of a flat detector (Dex-
ela1512, Dexela, UK) and a micro-focus X-ray tube (L9181-
02, Hamamatsu, Japan). During the normal scanning mode,
the tube voltage was set to 50kVp, and the tube was set to
300μA. 360 views were acquired around the subject with the
detector integration time 500ms. It took about 5 min for the
whole scanning. In the fast scanning mode, the tube voltage
was set to 70kVp, and the tube was set to 300μA. The system
rotated at the speed of 33 seconds per rotation and 360 views
were acquired during the scanning with the detector integration
time 30ms.

The 3D reconstruction was performed by FDK method[8].
The size of reconstructed volume data is 512 × 512 × 512
with the voxel size 150μm3. The reconstructed phantom cross
section of the two scanning mode were shown in Fig. 4(a) and
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Fig. 3. Photograph of the phantom for fast scanning test.

(b) respectively. Fig. 5 showed the profile of the first point and
the seventh point in the Fig. 4. The results showed that there
was less difference between the normal scanning and the fast
scanning, which verified feasibility of the fast scanning mode.

B. Mouse experiments for fast scanning and Non-local means
filtering

In order to further verify the fast scanning mode and test
the performance non-local means filtering in different data
domain, we carried out the mouse experiments by our pro-
totype micro-CT system. The normal rotation-and-stop mode
scanning and the fast scanning were performed in the same
the mouse, with the same scanning parameters as the above
phantom experiments.

For the fast scanning data, the non-local means filtering
were performed in the projection data (2D), the sinogram data
(2D), and the reconstructed volume data (3D), respectively.
For the 2D filtering, the size of the local neighborhood Ni

was set to |Ni| = 3 × 3, and the searching range was set
to |Vi| = 5 × 5. In the 3D filtering, |Ni| = 3 × 3 × 3 and
|Vi| = 5×5×5. The value of the parameter β was set manually
for the best performance. The results were shown in Fig. 6.
The first and the second row were the different slice of the
reconstructed results. The third row was the corresponding
enlarged region marked by the red rectangle in the second row.
The first column was the reconstructed results of the normal
scanning mode. The second column was the results of the fast
scanning mode without any filtering. From the third to the fifth
column were the filtering results of the fast scanning data in
the projection domain, in the sinogram domain, and in the
reconstructed volume domain. The results demonstrates that
there is no other obvious difference between the fast scanning
mode and the normal scanning mode, except for the large
image noise. The noise was decreased by the non-local means
filtering in these three domain. The volume domain filter gave
a better performance in denoising. However, there are some
detail missing after filtering, which needs to research further.

IV. CONCLUSION AND DISCUSSION

The rotation-and-stop scanning mode was adopted in most
of the micro-CT systems, which would need a long scan-

Fig. 4. Phantom results. (a) is corresponding to the normal rotation-and-stop
mode, and (b) is corresponding to the fast scanning mode.

ning time and the X-ray dose was relatively large. In this
manuscript, we performed the fast scanning mode for micro-
CT imaging, and the non-local means method was utilized to
reduce the noise. The scanning time of the fast scanning mode
was reduce to 33 seconds, which was nearly 1/10 to 1/20
of a normal rotation-and-stop scanning mode. We compared
the filtering results of the NLM method in three domain by
mouse imaging, and the results showed that filtering in the
reconstructed volume domain performed better than in the
other two domains.
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Fig. 6. Mouse experiments results. The first and the second row were the different slice of the reconstructed results. The third row was the corresponding
enlarged region marked by the red rectangle in the second row. The first column was the reconstructed results of the normal scanning mode. The second
column was the results of the fast scanning mode without any filtering. From the third to the fifth column were correspond to the filtering results of the fast
scanning data in the projection domain, in the sinogram domain, and in the reconstructed volume domain. Display window [0 0.05].
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Use of Synthetic CT to reduce simulation
time of complex phantoms and systems

Sarah E. Divel, W. Paul Segars, Soren Christensen, Max Wintermark, Maarten G. Lansberg, and Norbert J. Pelc

Abstract—Simulation-based approaches to validate CT scan-
ning methods, in which the exact anatomy and physiology of the
phantom and the physical attributes of the system are known,
provides a ground truth for quantitatively evaluating differ-
ent techniques. However, long simulation times of complicated
phantoms, especially when modeling many physical aspects (e.g.,
spectrum, finite detector and source size), hinder the ability
to realistically and efficiently evaluate and optimize protocol
performance. This work investigated the feasibility of reducing
the simulation time of these complex cases by employing the
principles of Synthetic CT. Noiseless simulations are performed at
two monoenergetic energies and the projections are decomposed
into basis materials. These can be used to quickly generate
projections at any spectrum and dose level. After determining
the optimum energy levels for the initial noiseless monoenergetic
scans, the performance of the synthetic simulations was evaluated
by comparing the reconstructed Hounsfield Unit (HU) values, re-
constructed noise standard deviation, and time required to those
of traditional simulations. The HU values of synthetic simulations
matched traditional simulations within 2.9 HU (5.4%) in the
brain tissue, within 27.6 HU (3.1%) in the iodine-enhanced blood
vessels, and within 20.2 HU (1.5%) in the skull. The standard
deviation of the synthetic simulation was within 2 to l0 HU. The
synthetic processing reduced the execution time by 97.93% for
each additional protocol run on the same anatomy.

I. INTRODUCTION

Simulation of CT data provides tremendous insight by
providing settings in which the ground truth is known to
which techniques can be evaluated. These benefits include
the validation and optimization of CT protocols, evaluation
of new imaging techniques and reconstruction methods, and
assessment and correction of artifacts. Simulation of CT
perfusion (CTP) used for stroke assessment proves especially
attractive because scanning exposes patients to radiation and
iodinated contrast and the pathophysiology cannot be easily
measured with alternative techniques.

Recent efforts have led to the development of a realistic,
dynamic digital brain phantom for the validation and optimiza-
tion of CTP protocols for stroke assessment [1]. However, due
to the complex and realistic nature of both the phantom (hav-
ing hundreds of geometric primitives) and simulation software
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Fig. 1. Flow chart of simulation methods

that models the scanning geometry with many subsamples
for each ray, simulation of a single 0.625 mm slice requires
an execution time of several minutes with the acquisition an
entire perfusion data set of the brain taking 1-2 days. The
result of such long simulation times makes the goal of testing
hundreds of scan protocols with many independent noise
realizations unfeasible, and it is therefore desirable to reduce
the simulation time. We investigated whether the principles of
Synthetic CT can be applied to simulate arbitrary protocols
from a single noiseless dual energy protocol [2].

II. METHODS

Figure 1 displays a flow chart of the simulation method.
We rely on basis material decomposition. Figure 1 is for
the case when two basis materials suffice, but it can be
generalized for cases when materials have K-edges within the
spectrum of interest. Since the objects are defined by their
true chemical composition, we use simulated transmission
with monochromatic X-rays to yield data from which basis
decomposition is computed. Because calculating the line inte-
grals through a complex phantom results in a long simulation
time, the synthetic simulation is far more efficient when the
goal is to repeat various protocols for a particular anatomy
because the many line integrals are probed by only a few
(in our case two) monoenergetic beams. The conversion of
these into polychromatic projections with arbitrary spectra
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and the addition of noise is incredibly fast once the initial
monoenergetic line integrals have been acquired. The main
potential issue is the accuracy of the synthetic CT process due
to (1) basis material decomposition and (2) the combination
of monoenergetic rather than polyenergetic line integrals to
simulate the beam aperture.

The phantoms used to develop and assess the performance
of the synthetic simulation included a simple water cylinder
object with iodine and bone inserts defined using primitive
3D shapes and the complex, realistic modified 4D extended
cardiac-torso (XCAT) phantom defined using 3D nonuniform
rational B-spline (NURBS) surfaces in which users can add
time-varying contrast enhancement to the vessels, grey matter,
and white matter by specifying time attenuation curves for
each region [1], [3].

Two noiseless, monoenergetic simulations, one at a low
energy and one at a high energy, were generated using CatSim,
a physically realistic CT simulation software [4]. We tested 40,
50, and 60 keV for the low energy scan and used 100 keV for
the high energy scan. Rather than collecting The two monoen-
ergetic data sets individually, a polyenergetic simulation was
performed using a spectrum consisting of two delta functions
at the desired low and high energies. The two sinograms were
subsequently separated and used to decompose the projections
into two basis materials by solving the simple system of linear
equations for the path lengths of the two materials represented
by ηA and ηB

S
(
Elow

)
= ηAμA

(
Elow

)
+ ηBμB

(
Elow

)
S
(
Ehigh

)
= ηAμA

(
Ehigh

)
+ ηBμB

(
Ehigh

) (1)

where S
(
Elow

)
and S

(
Ehigh

)
are the m bin by n view

sinograms acquired at the low and high energies, respectively.
This decomposition along with the user defined protocol (kVp,
mAs) were then input into a modified version of CatSim,
making use of the existing subroutines while bypassing the
line integral calculations.

The decomposition allows for the calculation of the energy
dependent line integrals for each view for any spectrum and
noise model without needing to compute the line integrals
through the phantom anew using⎡⎢⎢⎢⎣

μA(E1)
μA(E2)

...
μA(Ep)

⎤⎥⎥⎥⎦ [ηA(j, 1) ηA(j, 2) · · · ηA(j, n)
]
+

⎡⎢⎢⎢⎣
μB(E1)
μB(E2)

...
μB(Ep)

⎤⎥⎥⎥⎦ [ηB(j, 1) ηB(j, 2) · · · ηB(j, n)
]

(2)

where μA(E) and μB(E) are the attenuation coefficients of
the two basis materials at each energy level (specified by a
user selected spectrum file generated using XSPECT [5]) and
ηA(i, j) and ηB(i, j) are the path lengths of each material for
a particular position of the sinogram with view number, j, and
detector index, i. This data was then run through the remaining

CatSim subroutines, including scatter addition, detection, log
conversion, beam hardening correction, and reconstruction
routines.

III. RESULTS

Table I compares the mean error in Hounsefield Units
(HU) within the three materials of the cylinder at various
polychromatic kVp when either 40, 50, or 60 keV is used
for the lower energy of the monoenergetic simulations, with
100 keV as the high energy. The lowest error for each case is
highlighted in bold. Because using 50 keV as the lower energy
for the initial monoenergetic simulations has the lowest error
in all but three of the cases, the 50, 100 keV combination for
the initial monoenergetic scans was determined to produce the
best results. In the cases when this combination did not result
in the lowest error (80 kVp water, 80 kVp iodine, 100 kVp
iodine), the error was less than 0.03 HU different than the
lowest error.

TABLE I
COMPARISON OF THE MEAN ERROR IN HU WITHIN THE THREE

MATERIALS OF THE SYNTHETIC SIMULATED CYLINDER AT 80, 100, 120,
AND 140 KVP

Lower

keV
Water Iodine Bone

40 0.1576 0.1763 66.836
50 0.1641 0.2024 17.901

60 0.2661 0.3050 67.619

(a) 80 kVp

Lower

keV
Water Iodine Bone

40 0.1413 0.1551 67.488
50 0.1350 0.1811 7.866

60 0.1959 0.2437 27.174

(b) 100 kVp

Lower

keV
Water Iodine Bone

40 0.1379 0.1460 53.739
50 0.1203 0.1456 11.138

60 0.1474 0.1951 13.949

(c) 120 kVp

Lower

keV
Water Iodine Bone

40 0.1377 0.1461 39.492
50 0.1202 0.1280 8.506

60 0.1223 0.1608 9.779

(d) 140 kVp

Figure 2 shows (a) a noiseless traditional simulation of the
test cylinder at 80 kVp, (b) a noiseless synthetic simulation of
the test cylinder at 80 kVp using the 50, 100 keV combination
for the initial monoenergetic scans, and (c) the absolute value
of the difference between the two. Due to the choice of iodine
and water as the basis materials, the error in the bone insert
is the largest, as seen in the difference image.

Figure 3 compares the reconstructed images of the complex
brain phantom at 80 kVp and 150 mAs when iodine contrast
has been added to the vessels. The synthetic image was
generated using the 50, 100 keV combination for the initial
monoenergetic scans. The two images appear nearly identical
to the naked eye and present similar noise characteristics.

Figure 4 compares the mean and standard deviation of the
HU values in four regions of interest (ROIs) within these
images. Figure 3c shows the locations of the ROIs. ROI 1
and ROI 2 were placed in the brain tissue, ROI 3 was placed
in the skull, and ROI 4 was placed in the superior sagittal
sinus. The mean matched within 2.9 HU (5.4%) in the brain
tissue, within 27.6 HU (3.1%) in the iodine-enhanced blood
vessels, and within 20.2 HU (1.5%) in the skull. The standard
deviation matched within 2 to 10 HU.
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(a) Traditional simulated 80 kVp image (b) Synthetic 80 kVp image using monoen-
ergetic data at 50 and 100 keV
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Fig. 2. A comparison of reconstructed images of the water cylinder at 80 kVp using traditional simulation (2a) and synthetic simulation (2b). The center insert
contains iodine with a density of .02465 g/cm3.The bottom insert contains bone with a density of 1.92 g/cm3. The display windows are [−1000, 2500]
HU for (2a) and (2b) and [0, 40] for (2c).

(a) Traditional simulated 80 kVp, 150 mAs image (b) Synthetic 80 kVp, 150 mAs image generated
using monoenergetic data at 50 and 100 keV
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Fig. 3. A comparison of reconstructed images of the brain phantom at 80 kVp, 150 mAs using traditional simulation (3a) and synthetic simulation (3b). The
display windows are [−1150, 1600] HU.
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Fig. 4. A comparison of reconstructed values (HU) in regions of interest
within the brain from a traditional simulation and a synthetic simulation gen-
erated using 50, 100 keV for the initial monoenergetic data. The reconstructed
0.625 mm slice is an effective 80 kVp, 150 mAs scan. The error bars represent
one standard deviation.

Table II provides a summary of the time required for
the traditional and synthetic simulations. Running the first

TABLE II
SUMMARY OF AVERAGE SIMULATION TIMING

0.625 mm Slice 5 mm Slice

Traditional Simulation
(including reconstruction time) 6.409 minutes 48.516 minutes

First Synthetic Simulation
Protocol (projection time +

processing time +
reconstruction time)

6.712 minutes 44.297 minutes

Additional Synthetic Simulation
Protocol (Projection time +

processing time +
reconstruction time)

7.960 seconds 52.322 seconds

arbitrary protocol to generate a 0.625 mm synthetic slice takes
6.712 minutes on average. Each additional protocol of the
same anatomy takes only 7.960 seconds on average, reducing
the timing by 97.93% for each additional protocol run on the
same anatomy. A similar timing improvement is seen for 5
mm slices.
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IV. DISCUSSION AND CONCLUSION

The goal of this work was to develop a faster way to conduct
repeated simulations and to quantify the agreement between
the reconstructed images using the full simulation protocol
versus those using the synthetic protocol. The results show
excellent agreement. They demonstrate that using the 50, 100
keV combination for the initial monoenergetic scans produces
the best results, with the synthetic reconstructed HU values
in the brain matching the traditional simulation values within
2.9 HU (5.4%) in the brain tissue, within 27.6 HU (3.1%) in
the iodine-enhanced blood vessels, and within 20.2 HU (1.5%)
in the skull. Additional simulations of CTP cases will clarify
if the accuracy obtained is sufficient. By selecting water and
iodine as the basis materials, most of the error occurs in the
bone. However, because the skull is not a primary structure of
interest for CTP studies, we only require that bone has realistic
HU values. In fact, most, if not all, perfusion post-processing
software segment out the bone. This further reduces the impact
of bone error in our results.

Because one of the primary goals in simulating perfusion
scans of the brain phantom is to optimize protocols, many
simulations of one pathology are required. The synthetic simu-
lation framework makes this optimization simple and efficient,
reducing the simulation from approximately six minutes per
0.625 mm slice to under 10 seconds when testing additional
protocols on the same pathology.

Additionally, it is feasible to separate the line integrals of
structures being perfused (gray matter, white matter, arteries,
and veins) from the remaining structures in the brain. We
can then modify each one to insert temporal dynamics and
recombine in the projection domain. This could even further
reduce the simulation of a full perfusion scan.
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Abstract—Application of soft radiation (Cu and Co X-ray 

tubes) in computed tomography experiments on a laboratory X-
ray diffractometer is presented. Using low energy (7-8 keV) X-
ray sources provides the possibility to investigate objects made of 
light (organic) materials in more detail compared to the high 
energy case. A thorough qualitative as well as quantitative 
analysis of porous materials and samples with oriented 
components is demonstrated.  
 

Index Terms—computed tomography, soft radiation, x-ray 
diffraction. 
 

I. INTRODUCTION 
OMPUTED tomography (CT) has been a well-established 
technology in medical diagnostics for decades. In the past 

few years, industrial CT has become a very powerful 
nondestructive analytical method. It can provide detailed 
information about the object of interest, e.g. its structure, 
materials it is made of, defect/pore sizes and their distribution. 
In this contribution we present CT measurements performed 
on the Empyrean platform - the only powder X-ray diffraction 
(XRD) instrument that allows combination of conventional 
XRD applications (Powder XRD, Stress & Texture, μ-XRD 
etc.) with a CT experiment on one multipurpose platform. Due 
to PANalytical’s high-performance area detectors, the CT 
capability can be extended from metal or heavy element 
containing objects (typical for industrial CT) to light materials 
(pharmaceutical products, polymer composites etc.). Such 
challenging samples normally exhibit very little absorption 
and as consequence a low contrast towards the X-ray beam. A 
better contrast can be achieved by exchanging the high energy 
X-ray tubes (W, Ag, Mo) to the softer radiations like Cu [1] 
and Co X-ray sources.  

II. EXPERIMENTAL 
CT experiments were performed on a PANalytical 

multipurpose Empyrean diffractometer equipped with Cu 
(8.05 keV) and Co (6.93 keV) X-ray tubes. The size of the 
analyzed samples varied depending on the dimensions of the 

 
Natalia Dadivanyan, Detlev J. Götz and Detlef Beckers are with the 

PANalytical B.V., Lelyweg 1, 7602 EA, Almelo, The Netherlands (e-mail: 
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used area detector: PIXcel3D, 14x14 mm or 28x28 mm, silicon 
chip technology. The measurement time varied between 7.5 
and 15 minutes per sample. 3D reconstruction as well as the 
analysis of the reconstructed objects was performed using 
VGStudio MAX 2.2.6 software [2]. 

III. RESULTS AND DISCUSSION 
To demonstrate the capabilities of CT experiments with soft 

radiation few objects consisting of organic materials were 
chosen. Each measurement resulted in nine hundred 2D 
images, which were used to create a 3D reconstruction of the 
measured sample. This reconstructed object was used to 
perform various types of analysis. In the following examples 
we describe in more detail what kind of analysis can be done 
and which information can be obtained. 

A. Multicomponent Samples 
When dealing with multicomponent samples it is relevant to 
investigate their homogeneity. In Fig. 1 a pharmaceutical 
sample is presented. It consists of granules and a capsule 
around them. Wall thickness analysis was performed on this 
sample. The results are visualized both in 2D cross-sections 
(Fig. 1, on the left and top right) and in the 3D view (Fig. 1, 

bottom right). From the cross-sections one can observe, that 
the capsule consists of two pieces with slightly varying 
thickness and high number of spherical granules. The 
thickness of the capsule is changing from 0.1 mm to 0.3 mm 
when moving along the object (color gradient).  

Applying Soft Radiation in Computed 
Tomography Experiments on a Multipurpose 

Diffractometer 
Natalia Dadivanyan, Detlev J. Götz and Detlef Beckers 

C 

Fig. 1.  Pharmaceutical object, measured with Cu radiation. 3D 
reconstruction as well as the wall thickness calculation and visualization 
were performed in VGStudio MAX 2.2 software. 
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B. Composite Materials 
A composite material is usually made of two or more 

materials with significantly different physical and/or chemical 
properties. The individual components remain separate and 
distinct within the finished structure. A composite material, 
consisting of a polymer matrix and oriented glass fibers was 
measured with Cu radiation.  

In Fig. 2 the orientation determination of the glass fibers 
inside the polymer matrix is presented using the x-axis as 
reference. Fibers parallel to the x-axis of the object are shown 

in blue color, whereas fibers oriented perpendicular to the x-
axis of the object are shown in red. The colors between blue 
and red represent the fibers, which have a tilt in their 
orientation (tilt angle α, where 0 ° < α < 90 °). It is clearly 
seen in the Fig. 2 (left top side) that the fiber distribution is of 
basketwork type. From the orientation distribution calculation 
the partial fraction of the individual fiber direction can be 
extracted. 

C. Porous Materials 
A very important characteristic of many manufactured 

materials is their porosity. Knowledge of this parameter can 
help predicting the performance, endurance, etc. of the 

objects. A highly porous aerogel (see Fig. 3) has been 
measured using Co radiation. The volume fractions of the 
material itself and the containing air were determined. The 
ratio between the two resulted in the porosity value of 42 %. 
The direct visualization of the pore distribution within the 
object by using a color scheme is demonstrated in Fig. 3 (on 
the right). 

IV. CONCLUSION 
CT experiments of good quality can be performed on 

organic samples of various types when soft radiation, like Cu 
and Co, is applied. Once the 3D reconstruction is done, 
different parameters relevant for the samples can be extracted, 
such as porosity, orientation of certain components, 
distribution of the materials, size of inclusions, wall thickness 
or other features of the measured objects. The sensitivity of a 
CT experiment in case of samples made of light materials can 
be tremendously improved in this way.  
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Fig. 2.  3D reconstruction (on the right) and 2D cross-sections (on the left) of 
a composite material (measured with Cu radiation) with the orientation 
distribution of the fiber component, presented in colors. 

 
Fig. 3.  A highly porous foam material, measured with Co radiation: 3D 
reconstruction and pore visualization (in purple). 
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Fully iterative reconstruction for cardiac CT
Qiulin Tang, Satoru Nakanishi, Zhou Yu, Wenli Wang 

Abstract– Fully iterative reconstruction has 
been developed and widely used in institute and 
industry because of its merits compared with 
classical filter backprojection (FBP) 
reconstruction, such as noise control and 
flexibility of adapting physical models. One of 
the major applications of fully iterative 
reconstruction in clinic is cardiac CT. To obtain 
an image with less motion artifacts, ECG gating 
and half reconstruction or even segment 
reconstruction are often desired. These increase 
the complexity of reconstruction. In the work, a 
fully iterative reconstruction scheme is proposed 
for cardiac volumetric CT, and evaluation is 
performed to verify its feasibility of achieving 
the same temporal resolution as classical FBP 
method, but still hold the general merits of IR.

I. INTRODUCTION
   Volumetric CT imaging is the major non-invasive 
modality for diagnosis of cardiac disease because it 
has both high spatial resolution and high temporal 
resolution. Currently, Electrocardiogram (ECG)-
gating is routinely applied in cardiac CT imaging to 
choose reconstruction at quiet cardiac phase [1-3]. 
The temporal resolution can be further improved by 
segment reconstruction, especially in high heart rate 
case [4-6]. In segment reconstruction, data 
acquisition time is a couple of heart beats. From 
each heart beats, a part of data, which is no more 
than half scan range, were selected to gather 
together to build a minimum data range which are 
sufficient for a reconstruction.
     The major concern of cardiac CT is the dose. 
Because of gating, many acquired data were not 
used in reconstruction. Segment reconstruction 
gives even higher radiation dose to patient [5], since 
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X-ray is on for more than one single heart beat, 
which is sufficient for a half scan reconstruction. 
Dose reduction is then one of the major goals for 
cardiac CT imaging. Radiation dose can be reduced 
directly by lowering the X-ray tube current, but it 
leads to nosier image. Many researchers have 
contributed to suppressing image noise [5, 7]. 
Another type of approaches optimize the 
redundancy weighting scheme to reduce the image 
noise [5, 7].

 Recently, fully iterative reconstruction 
algorithms (IR) have been used in CT 
reconstruction [8-11], and it shows that IR has 
better noise reduction and flexibility of modelling 
physics than analytical reconstruction. Moreover, 
cone beam artifacts in circular scan can be mitigated 
by IR [12, 13]. Also, IR can suppress low frequency 
cone-beam artifacts, which appears in analytical 
circular half reconstruction due to the non-
uniformity of data redundancy [14].   

In this work, a fully IR scheme is proposed for 
cardiac CT, which can handle the cardiac half and 
segment weights to achieve the same temporal 
resolution as analytical reconstruction, and in the 
meantime it also achieves the common benefits of 
IR.

II. ALGORITHMS 

The major IR framework was reported in [13]. 
For the convenience of the reader, this approach 
was described briefly again. This approach is a 
penalized weighted least square (PWLS) approach 
[15] and its cost function  has a data fidelity 
term and regularization term. 

   (1) 
In Eqn. (1),

: the forward projection operator; 
: the image to be reconstructed; 
: the measured projection data;  
: typically a diagonal weighting matrix;  

:  the penalty function (regularizer);
: the regularization smoothing parameter. 
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Image  can be optimized by minimizing the cost 
function, .

                                   (2) 
 Many approached have been developed to solve 

Eqn. (2), here, we use gradient descent algorithm 
for optimization, and use following basic 
framework to reconstruct image. 

     Step 1: Give an initial guess of image ;
     Step 2: Update the guess of image as  
             for iter = 1 , …, 

;
     Step 3: Stop iteration when reaching 

convergence criteria. 
In the gradient descent algorithm, the quantity 

 in Step 2 is some function of the negative 
gradient of the cost function in Eqn. (1).

In this work, half and segment scans weights 
were applied to this framework to achieve same 
temporal resolution as analytical cardiac 
reconstructions do. That is, 

,                                                   (3) 
Where,  is cardiac half and segment weight, 

and the data range selection for segment 
reconstruction is shown in figure 1. Red patches are 
the data used for reconstruction.

The weights  is selected as what our group 
developed for analytical cardiac reconstruction [6, 
7, 16], and it was proved to have good performance, 
in term of suppression of artifacts and noise.

Fig. 1. Data range for segment reconstruction selected by 
ECG signal. Red patches are been selected. 

III. EXPERIMENT AND RESULTS

 In this study, motion simulation was performed, 
and it simulates the beating heart wall, high 
attenuation bone, non-attenuation air, water type of 
tissue and water. This simulation is noise-free, it 
then isolates motion artifacts (temporal resolution 
issue) from noise and noise related artifacts, such as 
streak artifacts.  

 Three clinical data were acquired by a single 
source, 320-row CT scanner (Aquilion ONETM,
Toshiba, Otawara, Japan) with gantry rotation 

speeds of 275 ms/rot. And heart rates are about 60 
beats per minute (bpm). The performance of the 
proposed IR was evaluated in three aspects: 
temporal resolution noise, streak artifacts. For 
comparison, classical FBP reconstruction was 
performed.   

Figure 2 shows the comparison between FBP 
images and IR images with simulated motion 
phantom, where the center slice is shown. The heart 
rate is 90 bpm and image of systole phase was 
reconstructed. Top row are from classical FBP 
reconstruction and bottom row are from the 
proposed IR.  From left to right columns from full 
scan reconstruction, half scan reconstruction and 
segment reconstruction with 3 heart beats data, 
respectively. Window width and level are 600 and 
50 HU, respectively. It shows that half scan 
reconstruction has better temporal resolution than 
full scan reconstruction and segment reconstruction 
has better temporal resolution than half scan 
reconstruction. Also it is obvious that the proposed 
IR achieves the same temporal resolution as its 
corresponding analytical one. 

Figure 3 shows the axial images of middle 
diastole from center slice of patient 1 with heart rate 
of 68.2 bpm. It is shown that half scan 
reconstruction has better temporal resolution and 
the proposed IR achieves the same temporal 
resolution as the analytical one. And the proposed 

ECG signalECG signal

Fig. 2. Axial images: top row is from classical FBP 
reconstruction and bottom is from the proposed IR. From 
left to right columns are full scan reconstruction, half scan 
reconstruction and segment reconstruction, respectively. 
Window width and level are 600 and 50 HU, respectively. 
Arrow indicates the motion region.  
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IR suppresses the noise and streak artifacts, which 
are the common merits of IR.  

Figure 4 shows the coronary view images of 
middle diastole from center slice of patient 1. It also 
shows similar conclusion as in axial view image in 
figure 3.
    For patient 2 and 3 we just show results of half 
reconstruction. These two patients are with heart 
rate of 62 and 67 bpm, respectively.  
   Figure 5 shows the result of patient 2. It shows 
similar conclusion as from results of patient 1. That 
is, same temporal resolution, but better noise and 
streak artifacts suppression can be achieved by the 
proposed IR.   

Fig. 3. Axial image of patient 1 with heart rate of 68.2 bpm. 
Top row are from classical FBP reconstruction; bottom row 
are from the proposed IR. Left column is from full scan 
reconstruction, and right column is from half scan 
reconstruction. Window width and level are 600 and 50 HU, 
respectively.

Fig. 4. Coronary image of patient 1. The four panels are the 
same as in fig. 3. 

 Figure 6 shows the result of patient 3. Same 
observations were obtained as results of patient 1 
and 2. Moreover, it also shows that the proposed IR 
has better contrast detection (see the regions shown 
by arrows).

Fig. 5. Half scan reconstruction of patient 2 at middle diastole. 
Top row are from axial view; bottom row are coronary view. 
Left column is classical FBP reconstruction, and right column 
is the proposed IR. Window width and level are 600 and 50 
HU, respectively. 

Fig. 6. Half scan reconstruction of patient 2 at middle diastole. 
The four panels are the same as in fig. 5.

IV. CONCLUSIONS

Our newly developed IR adapted the data 
redundancy weight for cardiac half and segment 
reconstruction. Simulation and clinical study were 
performed. It verified that the proposed IR can 
achieve the same temporal resolution as classical 
FBP method, as well as keep the common merits of 
fully IR, such as the flexibility of noise control, 
suppression of streak artifacts. Moreover, better 

streaks  Motion

Motion
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contrast detection was observed for the proposed 
IR.
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Noise Weighting with an Exponent for Transmission CT 

Gengsheng L. Zeng and Wenli Wang 

Abstract–It is widely believed that the correct weighting function 
is the reciprocal of the noise variance of the associated 
measurement. Many researchers are making great efforts to find 
the accurate variance for the measurements for imaging systems 
so that they can hopefully achieve an optimal reconstruction. 
This paper makes some interesting observations: There is no 
such thing as a correct noise weighting. There is no universal 
optimal weighting function. The noise weighting function can 
introduce artifacts. The optimal noise weighting varies with the 
object to be reconstructed and targeted image contrast in an 
iterative image reconstruction algorithm and in a filtered 
backprojection (FBP) algorithm that incorporates the projection 
noise. It is suggested that an exponent be used in the weighting 
function so that the artifacts caused by the weighting function 
can be reduced. 

I. INTRODUCTION 

 NE of the advantages of using iterative algorithms to 
reconstruct a tomographic image is the ability to model 

and suppress the measurement noise [1-4]. Recently we have 
shown that the filtered backprojection (FBP) can be extended 
to model and suppress the measurement noise too [5,6]. In all 
these algorithms, the noise-control weighting function is 
normally set up as the reciprocal of the noise variance 
associated with the measurement [7]. This weighting function 
assignment is supported by the general maximum likelihood 
theory. 

This paper will study the iterative algorithm that stops 
before convergence, and investigate how the weighting 
function influences the early solutions. The result of this paper 
will apply to the extend FBP algorithm that models and 
suppresses the noise.  

II. METHODS 
2.1 The gradient descent iterative algorithm 

The gradient descent iterative algorithm considered in this 
paper has the following form [8]  

n
jnj

j
ji

j
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njnj

j
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where  is the ith image pixel at the kth iteration,  is the 

jth line-integral (ray-sum) measurement value,  is the 

contribution of the ith image pixel to the jth measurement,  
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is the weighting factor for the jth measurement, and   is a 
constant to prevent the algorithm from divergence. The 
purpose of the denominator n jnjj ji AwA is to normalize 

the step size so that the step size is independent from the 
system matrix A and the weighting function wj. Thus the value 
of  is always 1 in [8]. However, this scaled step size does not 
always work and the algorithm may diverge for many 
situations. We set  to 0.1 in this paper. The summation over 
the index n is the projector and the summation over the index j 
is the backprojector. 
2.2 The noise-weighted FBP algorithm 

A noise-weighted FBP algorithm was recently developed 
to model and suppress noise [5,6]. This algorithm emulates the 
gradient descent algorithm and contains a control index k, 
which is similar to the iteration number in an iterative 
algorithm. This noise-weighted FBP algorithm is almost the 
same as the conventional FBP algorithm, except for the ramp 
filter. In a conventional FBP algorithm, the ramp filter is | |, 
where  is the frequency. In the noise-weighted FBP 
algorithm, the ramp filter is modified by a window function 
and is expressed as 

||])kj

|
, with 0 , and 0)0(1([1)(

|
w

H H ,  (2) 

where  is a positive constant to prevent the algorithm from 
divergence.  In this paper,  is set to 0.5. 

The implementation of (2) is in the Fourier domain of 
the sinogram. The weighting factors wj in (2) for all projection 
bins are quantized into 11 discrete values, and each of these 
11 quantized weighting factors produces a filtered sinogram. 
A combined sinogram from these filtered sinograms is formed 
point-by-point according to the variance of the original 
sinogram. The details of the implementation can be found in 
[5].  
2.3 Data generation and noise model 

The computer simulations in this paper are based on a 
scaled-down x-ray CT fan-beam imaging geometry with a 
curved detector. The image array was 256 x 256, the pixel size 
was 1.52 mm x 1.52 mm, the number of views was 400 over 
360°, the number of detection channels was 400, and the focal 
length was 240 mm. The x-ray source flux had I0 = 104 counts, 
which corresponds to a low-dose imaging setup. The phantom 
is 355 mm x 187 mm ellipse with water background 
( =0.02/mm), 3 high contrast regions ( =0.032/mm) with 
diameter 48 mm, 2 low-contrast regions ( =0.0194mm) with 
diameter 36 mm, surrounded by outer layers of fat 
( =0.019/mm) and skin ( =0.021/mm) , in which ROI 1 (high 
contrast object) and ROI 2 (water background) are used to 
evaluate the image quality. The projection data were generated 
in the pre-log format with the Poisson noise model and 

O 
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Gaussian electronic noise.  No beam-hardening effects are 
simulated. The pre-log data were then converted into the post-
log data for image reconstruction. If a pre-log data is less than 
one, it is changed to one before taking logarithm to avoid 
negative post-log sinogram values. The iterative algorithm 
was implemented according to (1), and the iterative algorithm 
stops when a pre-specified image contrast is reached. This 
value is set up as: (where the 
true contrast is 0.6). The reconstructed images are compared 
with the normalized standard deviation value in ROI 2. The 
normalized standard deviation value is the standard deviation 
value divided by the mean value.  

53.02/)21( ROIROIROI

A popular approach to assigning the weighting factor is to 
let wj be the reciprocal of the noise variance of the ray-sum 
measurement. This approach is justified by using the 
likelihood function as the objective function for an 
optimization problem [9]. The philosophy is that we should 
trust the less noisy measurements more than noisier 
measurements.  

In x-ray CT imaging, the noise in measured transmission 
data can be approximately described by a Poisson distribution, 
i.e., var(I)  I, where I denotes an x-ray intensity transmission 
measurement [10]. If the additive electronic noise 2 is also 
considered for the detection system, the total variance of the 
pre-log transmission measurement is then var(I)  I + 2. Here 

was chosen in our simulated low-count x-ray CT 
data generation. 

22 3.6

 After log conversion the noise variance is described by 
var(I)/I2   (I + 2)/ I2. If the x-ray source flux I0 is stable and 
consistent, measurement intensity I can be written as 

 according to Beer's law, where p is the ray-
sum or the total attenuation along the ray. The variance of 
post-log measurement p can thus be expressed as  

)exp(0 pII

)2exp(

)exp(
)var(

2
0

2
0

2

2

pI
pI

I
Ip .      (4) 

Our experiments indicated that modeling the electronic noise 
in an iterative algorithm does not reduce the image noise. 
Even though 22 3.6  in data generation, we assume 

22 3.6  during image reconstruction. The conventional 
weighing factor is inversely proportional to the noise variance. 
Thus, the conventional weighing factor can be assigned as 

)exp( pw .        (5) 
This paper introduces a new parameter  to the weighting 

function: 
)exp( pw .        (6) 

In our implementation of the weighting function (6) the post-
log data p is first smoothed by a 5-point running average low-
pass filter in the detector channel direction, in order to reduce 
the noise propagation from the weighting function to the 
reconstruction. However, the post-log projections used in (1) 
are not pre-filtered. The image quality is evaluated by the 
normalized standard deviation in ROI 2. The normalized 
standard deviation is defined as the ratio of the standard 
deviation and the mean value. 

III. RESULTS 

3.1 Iterative reconstructions 
The effects of the exponent  are illustrated with the 

following variations. 
(A) The default phantom as shown in Fig. 1 is used, and I0 = 

104. The target contrast is 0.53. 
(B) The phantom is changed to an obese version. 
(C) The phantom is changed to a slightly thinner version. 
(D) The phantom is changed to a very thin version. 
(E) Same as (A), but the target contrast is changed to 0.57. 
(F) Same as (A), but I0 is increased to 1.5 × 104.  

The computer simulation results are summarized in Figs. 
1-4. In all these figures, one can make the following 
observations. When  is small, there are severe noise induced 
streaking artifacts. As the value of  increases, the streaking 
artifacts are gradually suppressed. After passing the optimal 
value of , a larger value of  causes more severe low-
frequency shadowing artifacts. Sometimes these low-
frequency shadowing artifacts may be mistaken as the beam-
hardening artifacts. The cause of the shadowing artifacts is the 
extremely small values of the weighting factors wj, due to the 
large p values. The shadowing artifacts are caused by the 
improper weighting factors, and is not causes by discarding 
negative sinogram values. The shadowing artifacts can appear 
with ideally generated, i.e., noise-less (i.e., )0I , line-
integral sinogram when improper weighting factors are used 
during image reconstruction. When the weighting factors wj 
are too small, some important tomographic information is 
neglected, resulting in limited data artifacts (similar to metal 
artifacts).  

The optimal parameter  depends on the object shape and 
image contrast (maybe less on dose I0). The main idea of 
using a new exponent parameter  is to reduce those large p 
values to some extend so that the over-suppressed 
tomographic information can be available for image 
reconstruction. 
3.2 FBP reconstructions 

Image reconstruction results using the noise-weighted 
FBP algorithm with a modified ramp filter (2) are listed in 
Fig.7. The FBP results have the same trend as that in the 
iterative reconstruction results. For a small parameter , we 
see streaking artifacts. The streaking artifacts are suppressed 
with a larger . However, when the parameter  is too large, 
the low-frequency shadowing artifacts appear. An optimal 
parameter should be used. Thus only 3 representative images 
are shown. Similar to the iterative algorithm's iteration 
number, the parameter k is selected when the pre-specified 
image contrast is reached. We must point out that the 
parameter k in the FBP algorithm and the number of iteration 
k in the iterative algorithm, in general, are not the same; they 
are closely related. Similarly, the  values in both algorithms 
are not the same, but have the same trend. 

All images are displayed with the same linear gray scale. 
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IV. CONCLUSION 
This paper uses an exact known noise model to 

investigate the effects of the weighting function. This paper 
suggests that a weighting function that is a power function of 
the reciprocal of the noise variance, , should 
be used. When  = 0, the weighting function is a constant 
without any variation. A larger  gives a larger variation of the 
weighting function. When  = 1, the weighting function is the 
so-called "correct" weighting which is widely used among 
researchers. 

variance/1w

Both an iterative gradient descent algorithm and an 
analytic noise-weighted FBP algorithm are used for the 
investigation. In order for the weighting function to be 
effective, the iteration number k in the iterative algorithm or 
the noise control parameter k in the FBP algorithm must be 
small enough so that the algorithm is not converged yet. Our 
computer simulations show that the optimal weighting scheme 
depends on the object and the pre-specified image contrast. 
Therefore, there is no universal optimal weighting function. 
The so-called "correct" weighting function is sub-optimal.  

For a given object, the optimal weighting function is 
image contrast dependent, which in turn will be determined by 
the noise. The power function weighting function suggested in 
this paper is only one of many options that can help to achieve 
a desired image quality. 
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Fig. 1. Iterative reconstructions with various parameter  and the normalized standard deviation in ROI 2 for Case (A): The 
default phantom as shown in Fig. 1 is used, and I0 = 104. The target contrast is 0.53. 
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Fig. 2. Iterative reconstructions with various parameter  and the normalized standard deviation in ROI 2 for Case (B): The 
phantom is changed to an obese version, and I0 = 104. The target contrast is 0.53. 
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Fig. 3. Iterative reconstructions with various parameter  and the normalized standard deviation in ROI 2 for Case (C): The 
hantom is changed to a slightly thinner version, and I0 = 104. The target contrast is 0.53. p

 

        
=0.0, std= 

0.0313644 
=0.1, std= 

0.0252168 
=0.2, std= 

0.0193243 
=0.3, std= 

0.0147980 
=0.4, std= 

0.0120056 
=0.5, std= 

0.0107988 
=0.6, std= 

0.0104692
=0.7, std= 

0.0105383 

        
=0.8, std= 

0.0107545 0.0110068 0.0111396 0.0112445 0.0112088 0.0112017 0.0111886 0.0112251 
=0.9, std= =1.0, std= =1.1, std= =1.2, std= =1.3, std= =1.4, std= =1.5, std= 

Fig. 4. Iterative reconstructions with various parameter  and the normalized standard deviation in ROI 2 for Case (D): The 
hantom is changed to a very thin version, and I  = 104. The target contrast is 0.53. p 0
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Abstract—In the context of the installation of a robotic
platform, we are interested in a tomographic reconstruction
on a reverse helical trajectory limited to 150◦. Two types of
algorithms will be used to accomplish reconstruction on the
defined trajectory: iterative and analytic. While the first one
is directly adapted to such non-standard trajectory, we should
handle data redundancy for the second one. As a primary step
to test this platform, we are going to validate our algorithms
using realistic data simulated by CIVA software. For performance
evaluation, we illustrate a numerical comparison of these two
reconstruction algorithms using both noiseless and noisy data.
We also show reconstructions from a few number of projections.

I. INTRODUCTION

An advanced robotic X-ray non-destructive testing platform
is being developed at CEA LIST. This inspection platform
(see Fig. 1) consists of two robotic arms carrying the X-ray
source and the detector and which allows a large variety of
acquisitions on non-standard trajectories. However, important
constraints control the mechanical motion of the platform
where the scan range around an object is limited to 150◦. We
are planning to perform tomographic reconstruction with this
robotic platform from both analytic and iterative algorithms.

Fig. 1: Robotic X-ray inspection platform developed at CEA.

Analytic reconstruction is based on an idealized mathe-
matical model and an inverse transform is employed. It is
very efficient in case of complete and noiseless data with
a sufficient data sampling. However, in practical situations,

the projections are affected by noise, the X-ray source is
poly-chromatic and not point-like as assumed by the model.
Moreover, in many cases the object is not accessible for full
measurements because of some geometrical constraints. Here,
analytic reconstruction fails because it treats all X-rays equally
and it is severely affected by incomplete or sparse data [1]. In
this situation, iterative reconstruction methods perform much
better. Within this type of reconstruction, it is possible to
model some physical phenomena such as scatter and to deal
with incomplete or sparse data. In addition, iterative algorithms
can handle much more noisy data and allow more flexibility
in the scanning geometry. The only drawbacks of iterative
algorithms are their model complexity and high computational
cost. However, this latter is becoming more acceptable with
the high technological development in computer performance
and the introduction of parallel implementation using graphics
processing unit (GPU).

As reconstruction algorithms, we have chosen the Simul-
taneous Algebraic Reconstruction Technique (SART) [2] for
the iterative case and a Feldkamp-Davis-Kress (FDK) [3],
[4] type algorithm for the analytic case. In this paper, we
start by describing the scanning geometry, then we show the
structure of the two reconstruction algorithms and finally we
demonstrate our numerical comparison and evaluation.

II. SCANNING GEOMETRY AND NOTATIONS

In this section, we show the reverse helical trajectory in
super-short-scan mode and we introduce the different nota-
tions used throughout the reconstruction inversion formulas.
Consider a 3D object of attenuation function f(−→r ) where −→r
is the position vector of a point M located in the object. The
coordinates of M in the fixed coordinate system of the object
(−→e x,

−→e y,
−→e z) are given by (x, y, z). The actual support of

the object is confined within a cylinder of radius r and central
axis along the z-direction. Thus, we have

f(−→r ) = 0 for x2 + y2 > r2. (1)

As illustrated in Fig. 2, the X-ray source S moves on a reverse
helical trajectory of radius R and angular range 150◦ (rotation
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reversal every 150◦). The coordinates of S in the system
(−→e x,

−→e y,
−→e z) are denoted by

−→y (λ) = (R cosλ,R sinλ, hλ), (2)

where 2πh is the helical pitch (axial translation distance of
the source per 360◦).

S
O Od

r

R M

(Ud,Vd)

D

Fig. 2: Reverse helical cone-beam scanning geometry and
associated notations.

A flat-panel detector is placed at a fixed distance D from
the source with its axes defined by the unit vectors −→e u and
−→e v . Od is the origin of the detector and corresponds to the
orthogonal projection of S onto the detector. The unit vector
joining Od and S is given by −→e w. The expressions of the three
unit vectors −→eu(λ), −→ev(λ) and −→ew(λ) in the coordinate system
(−→ex,−→ey ,−→ez) are defined by:⎧⎨⎩

−→eu(λ) = (− sinλ)−→ex + (cosλ)−→ey−→ev(λ) = −→ez−→ew(λ) = (cosλ)−→ex + (sinλ)−→ey .
(3)

Each 3D point M(x, y, z) is projected onto the detector on
the pixel of coordinates (ud, vd) expressed as:⎧⎨⎩ ud = D

(
x sinλ−y cosλ

x cosλ+y sinλ−R

)
vd = −D

(
z−hλ

x cosλ+y sinλ−R

)
.

(4)

The measured cone-beam (CB) projection data are given by

g(ud, vd, λ) =

∫ +∞

l=0

f(−→y (λ) +
−→
θ (ud, vd, λ)l)dl, (5)

where
−→
θ (ud, vd, λ) is the unit vector of the X-ray emitted

from the source point S of rotation angle λ and crossing the
detector at the point of coordinates (ud, vd).

III. RECONSTRUCTION ALGORITHMS

We explain in this section the steps performed in the FDK-
type algorithm for reconstruction on a reverse helical trajectory
in super-short-scan mode. Then, the steps performed in SART
are illustrated also.

A. FDK-type algorithm

Most commercial CT scanners use the FDK algorithm [3],
[4] due to its simplicity and high efficiency. Recently, three
FDK-type reconstruction algorithms adapted to the reverse
helical trajectory were proposed by Yu et al. [5]. In 2003,
Kudo et al. [6] developed fan-beam and CB reconstruction
algorithms for super-short scan on a circular trajectory. In this
paper, we have extended one of the algorithms proposed by
Kudo et al. [6] for reconstruction on a reverse helical trajectory
using the same idea proposed in [5]. The structure of this
algorithm consists of the following steps:
(a) Cosine weighting :

g′(ud, vd, λ) =
D√

D2 + u2
d + v2d

g(ud, vd, λ).

(b) Hilbert-row-wise filtering:

gH(ud, vd, λ) = Hg′(ud, vd, λ).

(c) Weighting for data redundancy:

gW (ud, vd, λ) = W (ud, vd, λ)gH(ud, vd, λ).

(d) Differentiation along the horizontal direction:

gF (ud, vd, λ) =
∂

∂ud
gW (ud, vd, λ).

(e) Back-projection:

f+(−→r ) = 1

π

∫ λm

0

RD

|R−−→r · −→ew(λ)|2
gF (ud, vd, λ) dλ,

f−(−→r ) = 1

π

∫ 0

−λm

RD

|R−−→r · −→ew(λ)|2
gF (ud, vd, λ) dλ.

(f) Fusion:

f(−→r ) = f+(−→r )F+(z) + f−(−→r )F−(z).

In these equations, H refers to the Hilbert operator along
ud and W (ud, vd, λ) is a weighting function used to handle
redundant data (see [6]). To explain the fusion process, we

Fig. 3: Illustration of the fusion process in the FDK-type
algorithm. Figure reproduced from [5].

take two helical turns defined by the endpoints −λm and λm

as illustrated in Fig. 3. Using data from these lower and upper
helices, respectively, we can reconstruct two functions f−(−→r )
and f+(−→r ) and merge them to obtain f(−→r ). The two fusion
weighting functions F−(z) and F+(z) are defined by:

F−(z) =

⎧⎪⎨⎪⎩
1 −H ≤ z ≤ −0.5LF

cos2
(

π(z+0.5LF )
2LF

)
−0.5LF < z ≤ 0.5LF

0 otherwise,
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F+(z) =

⎧⎪⎨⎪⎩
1 0.5LF ≤ z ≤ H

sin2
(

π(z+0.5LF )
2LF

)
−0.5LF ≤ z < 0.5LF

0 otherwise,

where LF is the length of the zone within which fusion is
performed. Further explanations for the case of more than two
helical turns can be found in [7].

B. SART algorithm

Unlike analytic methods which perform reconstruction
within a single step using a specific inversion formula, iterative
methods perform reconstruction within multiple iterations.
Each iteration consists of the following three main steps:
(a) Forward projection of the current image.
(b) Estimation of the difference between the computed pro-

jections and the experimentally acquired projections.
(c) Back-projection of the weighted difference to update the

3D volume.
The iteration process is ended when a fixed number of itera-
tions is reached or when there is a good agreement between
the projections computed during the current iteration and the
projections measured during acquisition. The global iterative
process is illustrated in Fig. 4.

Initial 
Reconstruction 

Volume 

Forward 
projection 

Weighted 
difference 

Back-projection 

Update Volume 

Convergence or 
max iteration ? 

no 

Reconstructed 
Volume 

yes 

Input 

Acquired 
projections 

Output 

IR loop 

Fig. 4: Basic schema of iterative reconstruction process.

SART [2] is an algebraic method which represents the
reconstruction problem as a linear system of equations P =
A.f where P represents the projection data, A refers to the
projection system model and f defines the voxel values in the
object. It is a pure iterative algorithm without any modeling
and which was introduced as an improvement of ART [8], the
first algorithm to be used in CT. The reconstruction process
of this algorithm is defined by:

f
(k+1)
j = fk

j + λ ·
∑

pi∈Pθ

pi−
∑N

n=1 ainf
k
n∑N

n=1 ain
· aij∑

pi∈Pθ
aij

. (6)

Here, aij represents an element in the matrix A with i is the
index of a pixel in the projection matrix P and j is the index

of a voxel in the image function f. For each iteration number
k, the update of the voxel values in f are based on a whole
2D projection matrix computed at a specific angle of view θ.
λ is a relaxation parameter between 0 and 2. In this work,
a regularization technique [9] based on total variation (TV)
minimization is applied to account for unrealistic variations
between neighboring. Non-negativity constraint is considered
as well. In this implementation, a gradient descent method is
used to minimize ‖f‖TV which is the l1−norm of the image
gradient magnitude. In addition, we incorporate a fast iterative
shrinkage-thresholding (FIST) algorithm [10] to accelerate
the convergence speed of the SART-TV algorithm. In what
follows, we refer the algorithm to as SART-FIST.

IV. NUMERICAL RESULTS AND EVALUATION

We present in this section a numerical comparison of the
two described algorithms from data generated by CIVA [11].
Our simulated object is a computer-aided-design (CAD) model
phantom which is similar to the Defrise multi-disk phantom
with additional rectangular and circular holes of different sizes.
The height of this phantom is 18.5 mm and consists of five
circular disks with thickness 2.5 mm stacked along the z-
direction and separated by 1.5 mm. In fact, Noo et al. [12]

TABLE I: Numerical simulation parameters.

Object radius (r) 7.5 mm

Helix radius (R) 20 mm

Source-detector distance (D) 40 mm

Total number of turns 12

Number of projections per turn 30

Scanning range for each turn 150◦

Detector pixel size 0.14× 0.14 mm2

Detector sampling 256× 256 pixels

Reconstruction matrix 256× 256× 256 voxels

Fig. 5: ROI in a horizontal slice of the phantom.

mentioned that for an exact ROI reconstruction from fan-beam
projections on less than a short scan, each line passing through
the ROI must intersect the source trajectory. Knowing that the
FDK-type algorithm was based on a fan-beam reconstruction
algorithm for super-short-scan, we show in Fig. 5 a horizontal
slice of the phantom and we illustrate the ROI (region below
the dashed-line) that we can reconstruct with this FDK-type
algorithm. The FDK-type algorithm was implemented on a
single-core CPU whereas the projection (pixel-driven) and
backprojection (ray-driven) steps of SART-FIST were imple-
mented on a Graphics Processing Unit (GPU) using C-CUDA
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(a) FDK-type (b) SART-FIST (c) 1D profile

Fig. 6: Reconstruction from noiseless data.

(a) horizontal (b) vertical (c) 1D profile

Fig. 7: FDK reconstruction with a large number of projections.

on nVidia TITAN card. Fig. 6 shows the reconstruction results
from noiseless data with the data acquisition configuration
specified in table I. We show a horizontal and a vertical slice
in the reconstructed images with a 1D numerical comparison
along the red lines. We can see that streak artifacts severely
affect the image quality of the FDK reconstruction due to the
small number of projections. The reconstruction time is 32
seconds for the FDK-type algorithm and 39 minutes for SART-
FIST with a total number of iterations equal to 5. However, if

(a) FDK-type (b) SART-FIST (c) 1D profile

Fig. 8: Reconstruction from noisy data with a large number
of projections for FDK.

we increase the number of projections to 150 projections per
helical turn, the image quality of the FDK reconstruction is
improved as illustrated in Fig. 7. Finally, we aim to compare
the performance of these two algorithms in case of noisy data.
We show in Fig. 8 reconstruction from noisy data. Gaussian
noise with a standard deviation of 0.5% of the maximum

value in the noise-free data was added prior to reconstruction.
These results demonstrate that SART-FIST is more robust
to noisy data than the described FDK-type algorithm where
the integrated TV regularization step can suppress noise with
affecting the spatial resolution.

V. CONCLUSION

The primary purpose of the performed simulations was to
demonstrate numerically the pros and cons of each algorithm.
As a conclusion, SART-FIST is more time consuming, but
it is more robust to noisy data and it performs better than
the FDK-type algorithm in case of reconstruction from few
view projections. We can say that the FDK-type algorithm
is computationally more efficient whereas SART-FIST can
improve the image quality. Now, we are working on the
calibration of the CT system and on integrating a correction
method to deal with the position errors during the robotic
experimental acquisitions. In the near future, we will show
reconstruction results using this robotic inspection platform
with the described algorithms.
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Investigating Multi-threaded SIMD
for Helical CT Reconstruction on a CPU

Richard Sampson, Madison G. McGaffin, Thomas F. Wenisch, Jeffrey A. Fessler
Department of EECS, University of Michigan

Abstract—Iterative reconstruction for X-ray CT is compu-
tationally expensive, so it is desirable to examine acceleration
methods such as algorithm design, software implementation,
and computing hardware. This paper explores using single-
instruction, multiple data (SIMD) operations on modern CPUs
to accelerate projection and back-projection using the separable
footprint (SF) method. Slightly modifying the axial footprint
calculation facilitates SIMD implementation, providing up to
5× acceleration using 8-wide SIMD with Intel AVX2 instructions
over multi-threading (MT) alone. Due to memory bandwidth
constraints, overall speedup saturates at ≈55× faster than a
single-thread, non-SIMD version (still 2× faster over MT with 72
threads). Despite the bandwidth limits, the MT+SIMD runtimes
are competitive with corresponding GPU versions.

I. INTRODUCTION

Model-based iterative reconstruction (MBIR) for X-ray CT
has improved image quality and reduced X-ray dose com-
pared to filtered back-projection [1]. However, MBIR’s high
computational requirements have led researchers to explore
acceleration techniques to make it more practical for routine
clinical use. Efforts to reduce computational requirements and
speed convergence have shown great progress; nevertheless,
the computation requirement still remains undesirably high.

One method for mitigating the high complexity is exploiting
parallel computation. Previous work has achieved significant
acceleration by using parallelism both in distributed systems
in the cloud [2, 3] as well as locally on GPUs [4, 5]. However,
these techniques are tuned to specific hardware platforms and
can be difficult to adapt to new platforms. There has been
less study of the enhanced capabilities of modern CPUs that
support both higher thread counts and SIMD programming,
allowing for even more parallelism on a single chip [6, 7].
SIMD instruction set extensions (e.g., Intel’s AVX2) allow a
single instruction to perform element-wise operations (e.g., 8
single-precision floating-point values) concurrently. The main
challenge in exploiting SIMD lies in orchestrating memory
layout, as the instructions are efficient only when accessing
contiguous memory locations.

This work investigates using modern CPUs in MBIR for X-
ray CT, focusing on the increased parallel performance enabled
by the latest SIMD extensions. We describe reconstruction
algorithm modifications that facilitate SIMD programming
and examine the bandwidth limitations of combining SIMD
with multi-threading. We also explore the performance of

Supported in part by NIH grant U01 EB018753 and Intel equipment
donations. {rsamp | mcgaffin | fessler | twenisch} @umich.edu

high parallelism on modern CPUs with and without SIMD
in comparison to GPU-based reconstruction.

II. METHODS

Consider the following MBIR problem for X-ray CT [1]:

x̂ = argmin
x≥0

Ψ(x), Ψ(x) =
1
2
||Ax−y||2W +R(x) , (1)

with X-ray CT system matrix A ∈RM×N , noisy data y, diago-
nal matrix of statistical weights W and convex edge-preserving
regularizer R. The large dimension of x, the often nonquadratic
regularizer, the nonnegativity constraint, and the space-varying
nature of the Hessian of Ψ make (1) challenging.

This paper accelerates primal gradient-based methods,
e.g. [8, 9]. These methods perform an update of the form:

x(n+1) =

[
x(n)−

[
D(n)
]−1

g(n)
]
+

; (2)

where D(n) is a diagonal majorizer [8]; g(n) approximates
the gradient of Ψ in (1) at the current iterate, x(n); and [·]+
enforces the nonnegativity constraint. Iterative algorithms like
(2) that update all the voxels of x simultaneously can exploit
the increasing parallelism in modern computing hardware.

The gradient-approximating term g(n) is often computed
with an ordered-subsets (OS) approximation:

g(n) = ∇R
(

x(n)
)
+

Nview

|Sn| ∑
v∈Sn

Aᵀ
v Wv

(
Avx(n)−yv

)
≈ ∇R

(
x(n)
)
+AᵀW

(
Ax(n)−y

)
= ∇Ψ(xn), (3)

where Sn is a subset of the views in the CT system matrix [8].
The most time-consuming step in the image update (2) is

computing the data-fit part of the approximate gradient g(n) (3).
For example, for an 8-turn helical scan with 7,872 views and
12 subsets, each g(n) requires 656 single-view projections and
back-projections. These computations dominate the relatively
inexpensive regularizer gradient computation. Thus, we focus
on accelerating the projection and back-projection in (3).

A. Separable footprints CT system model

We consider the separable footprints (SF) CT system
model [10]. The SF model is a “splatting” approach that
implements the product Ax by superimposing the “footprints”
of each voxel: Ax = ∑N

j=1 a jx j. Each 2D footprint is (ap-
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x y

z

(a) Multi-threaded

x y

z

(b) SIMD

Fig. 1: Data Structure Layout: Data varies fastest along vertical (z)
axis. Yellow blocks are data accessed in a single memory operation,
and red blocks are future accesses in the entire iteration of forward
or back projection loop. (a) Data layout and access of original multi-
threaded code. (b) SIMD layout and access. Data needed per access
spans across multiple columns, which would require expensive gather
operations. We eliminated strided accesses by adjusting the mapping
of image coordinates to memory addresses to densely pack each
cluster of values together in memory, resulting in sequential accesses.

proximated by) a separable product of two functions, and the
elements of a j use 2D integrals of this function:

ai j = riv j

(∫
s∈Si

gi j (s) ds
)(∫

t∈Ti

hi j (t) dt
)
, (4)

where ri and v j are ray and voxel weights, respectively. We use
a trapezoidal function gi j in the channel (transaxial) direction
and a rectangular function hi j in the row (axial) direction; this
corresponds to the “SF-TR” approximation detailed in [10].

Our implementation of the SF system model for projecting
into a single view v is represented mathematically as:

Av = RvSvTvVv, (5)

where Rv and Vv are diagonal matrices that apply weights
to each ray and voxel, respectively. The most computation-
ally expensive operations are the multiplications with the
separable matrices Sv and Tv that implement the s and t
integrals of (4), respectively. Conceptually, Tv ∈ RNt NxNy×N

and Sv ∈ RNsNt×Nt NxNy , although our implementation does not
store the intermediate NtNxNy-element vector. Our single-view
back-projection implementation follows the transpose of (5):
A
ᵀ
v = VvT

ᵀ
v S

ᵀ
v Rv.

The ray and voxel scaling operations Rv and Vv are trivial
to parallelize with SIMD, so we focus on the more difficult
channel and row operators. The next few sections describe
accelerating the projector; the back-projector is similar.

B. Existing implementation

We modify an existing projector that implements Avx as:

Avx = Rv ∑
xy

Sv,xyTv,xyVv,xyxxy. (6)

This is, the algorithm loops over each axial xy-column and
applies the volume weights for that column (Vv,xy), applies
the footprints along the axial t/z direction (Tv,xy), applies the
footprints along the transaxial s direction (Sv,xy), accumulating
into a buffer where it applies the ray weights Rv. Fig. 1(a)
illustrates this behavior: the algorithm serially processes each

Fig. 2: Central slices of the reconstructed XCAT phantom with the
conventional separable footprints system model. Images displayed on
a [800,1200] modified Hounsfeld unit scale where air is 0 HU.

Fig. 3: Difference along central slices between the two reconstructed
images, displayed on a [-20, 20] modified Hounsfeld unit window.

red-colored xy-column of x. We obtain parallelism across CPU
cores by processing different views on each core.

C. Modifying SF to suit SIMD

SIMD instructions require that an identical sequence of
element-wise operations be performed on the vector operands
of each instruction. A naive SIMD approach might process
multiple elements of xxy simultaneously. However, the axial
footprint operation Tv,xy is heterogeneous within each xy-
column, because the axial footprint of each successive voxel
intersects a varying number of detector cells in a cone-beam
CT geometry. Hence, a small loop with a trip count varying
in z is needed to calculate the contribution of each voxel to
each cell, thwarting SIMD efficiency.

To improve SIMD efficiency, we perform SIMD operations
over a rectangular region of eight adjacent columns (as in
Fig. 1(b)), projecting an xy-patch of 8 voxels with identical z.
Our intuition is that the axial footprints of neighboring voxels
in a small xy patch are all very similar, enabling an efficient
SIMD loop. Whereas the original SF method approximates the
axial footprint using the centers of the top and bottom faces
of each voxel, for our SIMD investigation we approximate
the axial footprint using the centers of the top and bottom
faces of each patch. Section III reports the impact of this
approximation.
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Although this SIMD approach eliminates control flow di-
vergence, it creates a new challenge. The conventional image
volume memory layout for SF has z varying fastest, for which
each SIMD instruction would require voxel values that are
scattered in memory. Although supported by many SIMD
instruction sets, gather-type memory operations that can load
non-sequentially located data are highly inefficient. Instead,
we transform the memory layout to interleave the eight voxels
in each patch (shown in yellow in Fig. 1(b)) consecutively in
memory before advancing to the next z coordinate, allowing
a regular SIMD load operation to retrieve all eight values.

By applying our SIMD optimization to both forward and
back-projection, we change the coordinate-to-memory address
mapping throughout the CT code (i.e., there is no need
to reorganize image layout during execution). Regularization
requires gathers from disparate memory locations regardless
of the data layout; we simply adjust the memory address
calculations for the modified layout.

III. RESULTS

A. Effect of footprint approximation

We performed an XCAT [11] simulation to validate that the
axial footprint approximation that we introduced to facilitate
SIMD-friendly control flow does not cause the reconstructed
images to deviate significantly from those reconstructed using
the original SF system model (which itself is also based on
an approximation). Recall that for SIMD we approximate the
axial footprint of neighboring voxels in a 2-by-4 patch with the
axial footprint corresponding to the patch center. We compared
results from the SIMD reconstruction to reconstruction using
the original SF algorithm.

We reconstructed a 5123 simulated scan of an XCAT
phantom [11] using a detector with 888 channels, 64 rows
and 8 helix turns of 984 views each. The edge-preserving
regularizer R penalized the differences between each pixel and
its 26 3D neighbors using the Fair potential function,

ψ (d) = δ 2
(∣∣∣∣ dδ

∣∣∣∣− log
(

1+
∣∣∣∣ dδ
∣∣∣∣)) , (7)

with δ = 10 HU. Fig. 2 shows orthogonal slices from a
converged solution to the MBIR problem (1).

Fig. 3 shows the difference maps between the two recon-
struction methods. The reconstructed images differ slightly
with 1.5 HU root mean squared difference. We believe this dif-
ference is comparable to other approximation errors incurred
by the SF system model and does not significantly degrade
the quality of the reconstruction.

B. SIMD acceleration

We evaluated the acceleration provided by both multi-
threading (MT) and by SIMD over a single-thread, non-SIMD
implementation on a dual-socket Xeon 2699 system with
a total of 72 logical CPU cores (36 physical). Our results
compare average runtimes of computing forward and back
projections for 572 views with a 528×496×768-voxel volume
with the same detector geometry. We averaged 25 runs each,
varying the CPU thread count from 1 to 72. For SIMD we
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Speedup of data-fit gradient computation for our multi-threaded
SIMD (MT+SIMD) version, an auto-vectorized multi-threaded
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Times averaged over 25 runs.
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Fig. 5: Average Memory Bandwidth Consumption: Calculated
bandwidth consumption for the T

ᵀ
v operation in back-projection with

multithreaded SIMD for 1-72 threads, each averaged over 25 runs,
compared with measured peak bandwidth of the system. “Full”
denotes 32-bit single-precision data, and “Half” is emulated 16-
bit precision by reading/writing half of the data. Peak bandwidth
measured using STREAM triad benchmark[12] with 72 threads.

used 8-element AVX2 floating point operations as described
in Section II.

Fig. 4 shows that our SIMD implementation (MT+SIMD)
provides significant additional speedup over the multi-threaded
baseline (MT), achieving over 5× speedup for lower thread
counts. We also include the speedup achieved by automatic
SIMD vectorization of the MT baseline using Intel’s icc
compiler (MT+AUTO), which provides minimal gains as it
cannot perform the proposed algorithmic modifications and
layout transformations. However, the results also show that
the MT+SIMD performance saturates at roughly 25 threads,
limiting any further speedup beyond 50-55x over the non-
parallelized reconstruction. Nevertheless, MT+SIMD provides
at least 2x speedup over the MT baseline for all thread counts.

C. Memory Bandwidth

The MT+SIMD performance saturates around 25 threads
because it exhausts the available memory bandwidth in the
Xeon 2699. Various phases of the CT reconstruction algorithm
are memory intensive, and the concurrent accesses from many
threads overwhelm the capability of the memory subsystem.
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Fig. 6: Subset Gradient Runtime Comparison: Comparison of
forward and back-projection runtimes (572 views) on various GPU
generations and on the dual-socket Xeon 2699. Xeon MT and
MT+SIMD reconstructions use all 72 logical cores. SIMD imple-
mentation uses 8-wide floating-point AVX2 instructions.

In particular, we found that the T
ᵀ
v step of the back-projection,

which performs an N-voxel read-modify-write operation, sat-
urates available memory bandwidth with roughly 20 threads.

Fig. 5 illustrates average memory bandwidth consumption
versus thread count. We estimated average memory bandwidth
by precisely measuring the runtime of the T

ᵀ
v step in each

thread individually across 25 runs, then averaging across
threads and runs. We then divide the total data read and
written in each phase by the average runtime. The black
line (Measured Peak) indicates the hardware’s peak sustain-
able memory bandwidth, measured with the STREAM triad
benchmark [12]. The average bandwidth consumption of our
approach (MT+SIMD Full) matches the measured peak around
20 threads, and more threads do not improve performance.

Our bandwidth measurements imply that our multi-threaded
SIMD aglorithm allows compute performance to greatly out-
strip memory system performance on the Xeon 2699. Higher
speedups could be obtained by using hardware with more
memory bandwidth (e.g., more DD4 memory channels or
higher-bandwidth GDDR5 memory), or the same performance
could be achieved at lower cost with a Xeon server with fewer
cores. Alternatively, memory bandwidth can be reduced by
storing the image more compactly in a half-precision format,
still yielding acceptable reconstruction quality [13]. Fig. 5
(MT+SIMD Half) illustrates memory bandwidth scaling when
we emulate half-precision format. Bandwidth of the T

ᵀ
v step

again saturates at the measured bandwidth peak, but with 40
threads instead of 20.

D. CPU vs GPU Comparison

Finally, we compare our MT+SIMD performance to prior
SF results achieved with GPUs [5, 14]. Fig. 6 contrasts SF
forward and back-projection on three GPU generations and
our 72-thread MT and MT+SIMD performance on the Xeon
2699. The Xeon’s high thread count allows the MT and
MT+SIMD implementations to be faster than even the high-
end K5200 GPU. The comparison also reveals the disparity
in forward and back-projection runtimes for MT+SIMD that
arise because back-projection incurs more memory traffic
and saturates available bandwidth at a lower thread count.

Future research should focus on memory bandwidth reduction
(e.g., via half-precision formats) to fully realize the remaining
untapped speedup potential of SIMD.

IV. SUMMARY AND CONCLUSIONS

While iterative X-ray CT reconstruction provides excellent
image quality, it still remains computationally expensive. Most
prior work has focused on GPU and distributed computing to
overcome this cost. This work examined the high thread count
and SIMD support of modern CPUs. Our results show that
with slight changes to the data mapping and a small approx-
imation of the axial footprint, multi-threaded SIMD provides
up to 55× speedup over a non-parallel implementation. We
also showed that SIMD can provide up to 5× improvement
over multi-threading alone, especially for lower thread counts;
however, this improvement becomes limited by the memory
bandwidth due to such high parallelism. Despite the bandwidth
restrictions, multi-threaded SIMD performance was as good
or better than a high-end GPU solution, so future work on
overcoming the bandwidth limitations could provide even
further improvement.
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Effect of sparsity and exposure on total variation
regularized X-ray tomography from few projections

Jakob S. Jørgensen∗, Sophia B. Coban†, William R.B. Lionheart† and Philip J. Withers†

Abstract—We address effects of exposure and image gradient
sparsity for total variation-regularized reconstruction: is it better
to collect many low-quality or few high-quality projections,
and can gradient sparsity predict how many projections are
necessary? Preliminary results suggest collecting many low-
quality projections is favorable, and that a link may exist between
gradient sparsity level and successful reconstruction.

I. INTRODUCTION

Sparsity regularization for X-ray computed tomography
(CT) image reconstruction, for example total variation (TV)
regularization [1] for gradient-sparse images, has been seen
to allow drastically reduced numbers of projections compared
to conventional analytical methods, see, e.g. [2]. In medical
imaging and non-destructive testing this may allow reduced
X-ray exposure or data acquisition time. In today’s litera-
ture, there is little quantitative guidance on how much TV-
regularization allows us to reduce the number of projections.
In order for TV and other forms of sparsity regularization
to become appropriately used this lack of knowledge must be
filled. Our recent work [3] has indicated in simulations inspired
by compressed sensing [4] that sparsity of the image gradient
can predict how few projections will suffice for accurate TV-
regularized reconstruction. A main goal of the present work
is to investigate, for the first time, if the same argument holds
using real X-ray CT data.

In the present study we consider exposure as the measure-
ment cost, and – given a fixed total exposure – look at the trade
off between more information obtained at lower quality (more
projections at low exposure) and less information at higher
quality (fewer projections at high exposure). The sparsity-
regularization literature often takes number of projections as
the primary variable, however the total exposure of a CT scan
depends both on the number of projections and the exposure-
per-projection. [2], [4]. So one could also reduce the total
exposure by keeping the usual high number of projections but
decreasing the exposure time of each. It is not immediately
clear in which scenario TV-regularized reconstruction will
perform better. Addressing this issue is the other main goal
of this work.

In the present work we systematically study TV-regularized
reconstruction quality at reduced numbers of projections as a
function of both exposure time and gradient sparsity using real
CT data. Specifically we address:

∗Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
†The University of Manchester, Manchester, M13 9PL, United Kingdom.
Corresponding author contact: jakj@dtu.dk.

Q1: Does TV-regularized reconstruction compensate better
for reduced information from few high-exposure or
many low-exposure projections?

Q2: Is there a connection between gradient sparsity and how
few projections provide enough information that TV-
regularized reconstruction succeeds?

While Q1 considers a fixed total exposure with exposure-
per-projection inversely proportional to the number of projec-
tions, Q2 considers a constant exposure-per-projection and a
total exposure proportional to the number of projections.

We will use the recently published SophiaBeads data set,
which has been designed specifically for systematic studies
of advanced reconstruction algorithms. In addition to using
this data set to address the stated questions, we apply the
present work to examine how appropriately the SophiaBeads
data set can serve the purpose of testing sparsity-regularized
reconstruction methods.

An important note needs to be made here about our defini-
tion of an ‘adequate reconstruction’. In our earlier work [3],
we used a relative 2-norm measure to assess if reconstructions
perfectly recovered the ground truth. This was appropriate for
the idealized scenario and to stay consistent, we also report
2-norm errors in this work. However with real data, we wish
to assess how well important features can be quantified; in this
case known to be disk-shaped and we employ an aspect-ratio
quality measure as explained in §IV-B.

Fig. 1. Ground truths for SophiaBeads data sets S1 (top row) and S2 (bottom
row) obtained by 30 CGLS iterations from pooled projections, followed by
median filtering. Full 1564×1564 images (left), 350×350 region of interest
around the centre (centre), and sparse thresholded gradient magnitude region
of interests (right).
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II. TEST DATA

A. The SophiaBeads test data set

The SophiaBeads Dataset Project [5] is a collection of cone-
beam X-ray CT data sets where the number of projections
are varied while the total photon count (or the total exposure
time) is kept constant, i.e. the exposure-per-projection is
inversely proportional to the number of projections, as in
Q1. This enables a wide range of algorithm comparisons and
information content optimizations to be examined. For more
detailed information on this experimental framework and the
examples of such scenarios, we refer the reader to [6].

The SophiaBeads data set were collected using the 320/225
kV Nikon XTEK Bay at the Manchester X-ray Imaging Facility
(MXIF), the University of Manchester. The apparatus consists
of a cone-beam microfocus X-ray source that projects poly-
chromatic X-rays onto a 2000× 2000 pixel-length and width,
16-bit flat detector panel. The optimal window size for the
SophiaBeads reconstructions is 1564× 1564, see [7].

There are two samples (henceforth referred to as S1 and
S2) that were scanned using the framework described in [6],
and both samples comprised a plastic tube with a diameter
of 25mm, filled with uniform Soda-Lime Glass (SiO2-Na2O)
beads of diameters 2.5mm (S1) and 1.0mm (S2). S1 is publicly
available; S2 on request. Here, we use S1 and S2 to represent
different sparsity levels: the smaller beads of S2 have relatively
more boundary pixels, which equates to more non-zero pixels
in the gradient, and hence is less sparse than S1.

The present study uses a single central row of the 3D cone-
beam data, and a 2D fan-beam geometry. For the constant-
exposure series, the available data sets labelled 64-, 128-, 256-,
512- and 1024-projection are used. For the reduced-exposure
series the 1024-projection data set is downsampled by repeat-
edly halving the number of projections while keeping every
other one, thereby preserving the equiangular distribution.

B. Determining a ground truth image and its sparsity

The SophiaBeads data set is designed with fixed total expo-
sure ranging from few high-exposure projections to many low-
exposure projections. No high-quality data set (many high-
exposure projections) is provided for the construction of a
ground truth. However, each data set is recorded at slightly
offset angular positions and we obtain a ground truth by
pooling all projections for each of S1 and S2 and reconstruct
using 30 iterations of the Conjugate Gradient Least Squares
(CGLS) algorithm, followed by median filtering with a 5× 5
filter to reduce noise. The resulting S1 and S2 ground truths
are shown in full and close-up in Fig. 1.

To determine gradient sparsity of the ground truth images
we count only nonzero gradient magnitude values greater than
a threshold chosen empirically to preserve only bead edges and
not noise. Thresholded gradient magnitude images are shown
in Fig. 1. The S1 ground truth has 54543 nonzero values in
its gradient, corresponding to a sparsity level (relative to the
total number of pixels) of 54543/15642 = 2.2%. The same
numbers for S2 are 123870 and 5.1%. This quantifies the

Fig. 2. TV-regularized reconstructions using regularization parameters 10−3,
10−2 and 10−1 (left to right). Full 1564 × 1564 images (top row) and
350× 350 region of interest around the center (bottom row).

intuition that S1 is more gradient-sparse than S2, though exact
numbers may vary depending on thresholds chosen.

III. RECONSTRUCTION PROBLEM AND ALGORITHM

A. Total variation optimization problem

We denote the log-transformed projection data by b, the
2D fan-beam system matrix by A, an image such as a
reconstruction by u, in particular a TV-regularized solution by
uTV, and the number of projections by Nθ. To determine a TV-
regularized reconstruction (which can be seen as the maximum
a posteriori estimate in a Bayesian formulation) of the discrete
imaging model Au = b we solve the optimization problem

uTV = argmin
u

1

2Nθ
‖Au− b‖22 + αTτ (u), u ≥ 0, (1)

where we employ a standard Huber-smoothed TV defined as

Tτ (u) =
∑
j

Φτ (‖Dju‖2), where (2)

Φτ (z) =

{
|z| − 1

2τ if |z| ≥ τ,
1
2τ z

2 else. (3)

Here, α is the TV regularization parameter, Dj is a finite
difference approximation to the gradient at pixel j and ‖ · ‖2
denotes the vector 2-norm (or Euclidian norm).

Smoothing is used to make the problem solvable by smooth
optimization techniques which are generally faster than their
non-smooth counterparts. Depending on the choice of smooth-
ing parameter, τ , this might modify the reconstruction; how-
ever here we use a sufficiently small value of τ = 10−5 relative
to the image values that smoothing effects are negligible.

Non-negativity is enforced as the object’s attenuation co-
efficients are known to be non-negative and in general non-
negativity can lead to substantial reconstruction improvement.

The normalization by Nθ helps to compare reconstructions
obtained at different Nθ by compensating the magnitude of the
first term which is otherwise proportional to Nθ. As a result, a
fixed α value yields the same balance between the two terms
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Fig. 3. TV-regularized reconstructions of 64-, 128-, 256-, 512-, 1024-projection data sets and pooled-data ground truths (left to right), showing a 350×350-pixel
region of interest. S1 data set of fixed total exposure (top row), S1 and S2 data sets with fixed per-projection exposure (middle and bottom rows).

at different Nθ. This reduces the search for the optimal α to
a single initial sweep, the resulting α of which can be reused.
In practice we verified this through α sweeps at different Nθ

but for brevity have not included results here.

B. High-accuracy optimization algorithm

To solve (1) we used the toolbox TVReg [8], which offers
implementations (written in C with MATLAB interface) of
accelerated gradient projection methods; specifically we used
the provided GPBB (Gradient Projection Barzilai-Borwein)
method which among other techniques employ acceleration
in form of the Barzilai-Borwein step-size selection. To fur-
ther accelerate the reconstruction, we employed the ASTRA
Tomography Toolbox [9] for GPU-acceleration of the compu-
tationally expensive forward and back-projection operators.

We emphasize that our goal here is not necessarily to use
the fastest algorithm but one that can reliably solve (1) to
high accuracy in reasonable time in order that we indeed
assess the quality of the TV-regularized reconstruction and not
of an arbitrary early-termination result. TVReg is capable of
this through a non-heuristic termination criterion based on the
gradient norm magnitude, in contrast to, for example, running
a pre-set fixed number of iterations or terminating when a
small difference between iterates is encountered.

IV. RESULTS

A. Choosing the regularization parameter

Fig. 2 shows reconstructions for α = 10−3, 10−2 and 10−1

showing the well-known transition from an under-regularized
noisy/patchy TV-regularized reconstruction, through to an

over-regularized solution where separated beads appear con-
nected due to excessive smoothing. Among a range of values
we found α = 10−2 to provide the best trade-off and this fixed
value was reused in the remaining reconstructions.

B. Assessment of reconstruction image quality

We assess the reconstructions qualitatively through visual
inspection. For quantitative assessment we use two error
measures with respect to the constructed ground truth uGT:
First, the standard relative 2-norm of pixelwise differences:
E1(uTV) = ‖uTV − uGT‖2/‖uGT‖2, where ‖ · ‖2 denotes the
(Euclidian) 2-norm. The relative 2-norm provides a standard-
ized comparison but is not necessarily the most informative
about whether important features have been reliably recon-
structed. For the second error measure E2(uTV), we evaluate
the aspect ratio (width:height) of 25 reconstructed beads and
report the mean relative error with respect to determined aspect
ratios of the ground truth beads. This measure describes how
well bead reconstructions reproduce the known bead shapes.

C. Q1: Is it better to collect few high-exposure or many low-
exposure projections?

We first address Q1 by determining the TV-regularized
reconstruction of the fixed total exposure S1 data set for 64,
128, 256, 512 and 1024 projections. We visually compare a
350×350-pixel region of interest of all reconstructions with the
constructed ground truth in the top row of Fig. 3. Visual quality
clearly improves with increasing number of projections.

The error measures E1 and E2 are plotted in Fig. 4 using a
full line. Both error measures agree with visual assessment that
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Fig. 4. Relative 2-norm error (left) and mean aspect ratio error (right) for
data sets S1 and S2 with fixed total or per-projection exposure, Q1 and Q2.

the 64-projection reconstruction is substantially worse than the
others and that error decays with more projections.

D. Q2: What is the dependence on sparsity?

To address Q2 the middle and bottom rows of Fig. 3 show
reconstructions for the case of fixed exposure-per-projection
for data sets S1 and S2. Corresponding error measures are
plotted in Fig. 4 using dashed lines. First, again a clear
trend of improved TV-regularized reconstruction quality with
increasing number of projections is observed. This is less
surprising than in the previous case, since more projections
correspond to a higher X-ray exposure. However, for S2 the
mean aspect ratio error for 256 and 512 projections is larger
than the general trend. We also note that E1 for S1 in this
case almost coincides with the fixed total exposure case.

In case the gradient sparsity does in fact affect the number
of projections sufficient for accurate reconstruction, we would
expect to see clear differences between S1 and the more
gradient-sparse S2 data set. However, visually the S1 and S2
reconstructions show no clear difference in their dependence
on the number of projections. The error plots also do not reveal
clearly different behavior of S1 and S2 as function of numbers
of projections, apart from the previously mentioned E2 values
for S2 at 256 and 512 projections.

V. DISCUSSION AND CONCLUSIONS

In all considered cases the 64-projection reconstructions
stand out from the rest as substantially poorer. It seems
that artifacts caused by having only 64 projections cannot
be effectively removed by TV-regularized reconstruction, no
matter whether high- or low-exposure projections are used.
This is particularly interesting considering the highly gradient-
sparse and round, piece-wise flat regions, for which TV-
regularized reconstruction could be expected to excel.

For Q1, we conclude that given a fixed total exposure it
appears beneficial to distribute across the highest possible
number of projections. Even though each projection is of low
quality it appears intuitively sensible to aim for obtaining
in a loose sense more independent information about the
scanned sample through more projection angles, rather than
few high-quality ones. This is however in contrast to the
typical message from the sparsity-regularization literature,
namely that reconstruction from few projections is possible.

Regarding a possible connection to sparsity in Q2, present
results are inconclusive since no clear difference is observed
between S1 and S2. However for both S1 and S2 results, there
is a large error reduction between 64 and 128 projections.
This may hint that there is a number of projections, possibly
different for each of S1 and S2, below which TV-regularized
reconstruction will not be successful. The SophiaBeads data
set only allows subsampling by factors of 2 to preserve
equiangular projections. Relevant future work includes the
acquisition and analysis of data sets with finer increments of
numbers of projections, as well as more sparsity levels.

It should be mentioned that the presented preliminary con-
clusions may depend on several aspects of the study. For
example it is unclear if the pooling approach produces a
reliable enough ground truth, and in potential future work,
extra care should be taken to acquire ground truth data. Also
it is not certain that the error measures used here are the most
informative and other options could be considered.

Lastly, regarding how SophiaBeads data sets serve as
sparsity-regularization test data, we found TV-regularized re-
construction to work well on the piecewise constant bead
images. In that sense, SophiaBeads is quite useful. However
for assessing the influence of gradient sparsity we faced short-
comings which we have offered suggestions to address in
future work.
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Spatial-frequency-domain study of anticorrelated
noise reduction in spectral CT

Mats Persson and Fredrik Grönberg

Abstract—In spectral CT, basis material decomposition is
commonly used to generate a set of basis images showing the
material composition at each point in the field of view. The
noise in these images typically contains anticorrelations between
the different basis images. Recent studies have demonstrated
that reconstruction methods which take the anticorrelations into
account give reduced noise in the reconstructed image. In this
study we study a denoising problem as a mathematically tractable
model for such a reconstruction method, and derive an analytic
formula for the resulting image in the spatial frequency-domain.
We demonstrate that the method preserves anticorrelations at
low and high spatial frequencies but replaces them with positive
correlations at intermediate spatial frequencies. This results in
less noise and less correlations in the denoised basis images but
may also cause artifacts due to cross-talk between basis images.
The framework developed here will be useful for analyzing and
designing reconstruction algorithms for spectral CT.

I. INTRODUCTION

In spectral computed tomography (CT), a common postpro-
cessing procedure is basis material decomposition, where the
registered spectral x-ray transmission data in each measure-
ment is used to estimate the traversed amounts of three differ-
ent materials. [1] Mathematically, this builds on expressing the
linear attenuation coefficient as a linear combination of basis
functions f1, . . . , fM : μ(E) = a1f1(E) + . . . + aMfM (E).
The basis material decomposition procedure yields the line
integrals Ai of the basis coefficients ai. Subsequently, ai
are obtained from Ai though image reconstruction, either by
filtered backprojection (FBP) or an iterative method [2].

The noise in the decomposed projection lines Ai is typically
anticorrelated, since the total traversed thickness can be esti-
mated from noisy data more accurately than the proportion of
different basis materials along the way, i.e. if one component
Ai is estimated to be large, the other ones are likely estimated
to be small.

Recent studies have investigated iterative reconstruction
algorithms which reconstruct images from projected basis co-
efficients Ai and demonstrated that the quality of the resulting
images can be improved by representing the anticorrelated
noise structure in the noise model [3], [4]. However, it is
not intuitively easy to see how this improvement varies with
properties of the input data or different parameters of the
algorithm. The purpose of this work is to elucidate how
these algorithms work by studying a mathematically tractable
model problem containing the essential features of such a

M. Persson and F. Grönberg are with the Department of Physics, KTH
Royal Institute of Technology, SE-106 91, Stockholm, Sweden, e-mail:
mats.persson@mi.physics.kth.se

reconstruction algorithm. More specifically, we will address
the following questions:

• Can an analytically solvabe model problem model the
benefit of such an algorithm?

• Are the resulting basis images less anticorrelated than the
original ones?

• Does the decreased noise level come at the cost of bias
being introduced in the resulting basis images?

II. THEORY

For simplicity, we will study a denoising problem instead of
a reconstruction problem. In other words, we start with a set
of reconstructed basis images with noise that is anticorrelated
between the different images. We will then seek the optimal
de-noised image using the maximum a posteriori (MAP)
method. Let a be a vector containing the basis coefficients
of the true, noise-free N × N -pixel basis images in the set:
a = [aT

00, aT
01, . . . , aT

N−1,N−1]
T where an1n2 is the column

vector of basis coefficients at pixel (n1, n2), indexed from 0
to N − 1 along each dimension. Thus, a is a column vector
with 2N2 elements.

In the MAP method, the noise-free image is modelled as
an outcome of a random variable. Assume a gaussian prior
distribution for a with covariance matrix K:

p(a) =
1

(2π)N2 |K|1/2
exp

(
−1

2
aT K−1a

)
(1)

and assume a gaussian noise model with covariance matrix C
for the measured images am

p(am|a) = 1

(2π)N2 |C|1/2
exp

(
−1

2
(am − a)T C−1(am − a)

)
(2)

The denoised image â is obtained by minimizing the nega-
tive log-likelihood with respect to a

l(a) =
1

2
aT K−1a +

1

2
(am − a)T C−1(am − a) (3)

By applying the discrete Fourier transform separately to
each basis image,

ãjk1k2 = (Fa)jk1k2
=

1

N

N−1∑
n1=0

N−1∑
n2=0

ajn1n2e
−2πi

k1n1+k2n2
N

(4)
Eq. 3 can be written as (omitting an additive constant)

l(ã) =
1

2
ã†
(

K̃−1
+ C̃−1

)
ã− ãm†C̃−1ã (5)
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where ã = Fa, ãm = Fam, C̃ = FCF−1 and K̃ = FKF−1.
We now assume that the both the noise and the prior are wide-
sense stationary, so that K̃jk1k2j′k′

1k
′
2
= 0 if k1 �= k′1 or k2 �=

k′2 and similar for C̃. This means that K̃ and C̃ are block-
diagonal:

K̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

K̃11 0
K̃12

K̃13

. . .

0 K̃NN

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(6)

and similar for C̃. Here, K̃k1k2 is the M × M covariance
matrix between the different basis coefficients for one Fourier
component. This block-diagonal structure means that (5) can
be written as:

l(ã) =
∑
k1k2

lk1k2(ãk1k2) =

=
∑
k1k2

1

2
ã†k1k2

(
K̃−1

k1k2
+ C̃−1

k1k2

)
ãk1k2 − ãm†

k1k2
C̃−1

k1k2
ãk1k2

(7)
where ãk1k2 is the column vector of basis coefficients
at Fourier component (k1, k2). The conjugate-symmetry
Ãjk1k2 = Ã∗

j(−k1)(−k2)
(indices are defined mod N ) means

that the (−k1,−k2) and (k1, k2) terms must be minimized
together:
ˆ̃ak1k2 = argmin

ãk1k2

l(−k1)(−k2)(ã(−k1)(−k2)) + lk1k2(ãk1k2) =

= 2Re

[
1

2
ã†
k1k2

(
K̃−1

k1k2
+ C̃

−1

k1k2

)
ãk1k2−

−ãm†
k1k2

C̃−1

k1k2
ãk1k2

]
(8)

with the solution

ˆ̃ak1k2 =
(

K̃−1

k1k2
+ C̃

−1

k1k2

)−1

C̃
−1

k1k2
ãmk1k2

(9)

The denoising method can therefore be applied by Fourier
transforming the basis images, applying Eq. 9 to each Fourier
component and inverse Fourier transforming.

In this study we will use a prior probability distribution
given by

(
K−1

)
jn1n2j′n′

1n
′
2
= kjδjj′ ·

⎧⎨⎩
1 if |n1 − n′

1| = 1, n2 = n′
2

1 if |n2 − n′
2| = 1, n1 = n′

1

0 otherwise
(10)

where kj is a constant determining the penalty strength for
each basis image and δjj′ is the Kronecker delta. This means
that variations between horizontally and vertically neighboring
pixels are penalized with the square of the difference. The
penalty terms for the different basis images are independent.
Eq. 10 gives(

K̃−1
)
jk1k2j′k′

1k
′
2

=

= 8kjδjj′δk1k′
1
δk2k′

2

(
2− cos

2πk1
N

− cos
2πk2
N

) (11)

Fig. 1. (a-b) Original noisy basis images: (c)-(d) basis images denoised with
the uncorrelated noise model. (e)-(f) basis images denoised with the correlated
noise model. (g)-(h) noiseless versions of the images in (c)-(d), i.e. images
resulting from the application of the denoising algorithm to noiseless images.
(i)-(j) noiseless versions of the images in (e)-(f) The images in the left column
are soft tissue images and the images in the right column are iodine images.
The insert in the upper left corner of each image shows a magnified view of
a region of interest where there is a sharp transition in the other basis image.
As seen in (i)-(j) artifacts appear at these locations due to cross-talk between
the basis images, and are absent in the noiseless images processed with the
uncorrelated noise model (g)-(h).
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Fig. 2. Scatter plots of a in denoised images with uncorrelated (a) and
correlated (b) noise model. Different regions in the image have different
colors. Blue: air. Green: soft tissue. Red: iodine insert

III. METHODS

To demonstrate the denoising method derived in Sec. I we
study a simple phantom consisting of a cylinder of soft tissue,
250 mm in diameter, with an insert, 50 mm in diameter,
of 5 mg/ml iodinated contrast agent in its center. Two basis
functions are used: the attenuation coefficients of soft tissue
and 5 mg/ml iodine, such that (a1, a2) = (1, 0) in the
phantom outside the insert and (a1, a2) = (1, 1) in the
insert. Anticorrelated noise was added to these images, with
a covariance matrix given by C̃k1k2 = C ·

(
0.011 −0.059
−0.059 0.41

)
·

(1 + cos(2πkr/N))
2 kr

N sinc4 kr

N where kr =
√
k21 + k22 and

the constant C is chosen such that the pixel-wise covariance
in the image is

(
0.011 −0.059
−0.059 0.41

)
. This gives the image a noise-

power spectrum (NPS) resembling a CT image reconstructed
with a Hann window function using linear interpolation [5].
The noise covariance matrix used here was chosen as similar
to the noise covariance matrix in the central parts of the
decomposed basis images resulting from a simulation of
spectral imaging of the studied phantom with an ideal 8-
energy bin photon counting detector and 180 projection angles,
with 1.0 · 106 photons incident on the object for each detector
element and projection angle.

The images were denoised by applying Eq. 9 to their Fourier
transforms, with K̃ given by (10) and k1 = k2 = 1. In
addition to using the correct noise covariance matrix C̃k1k2

we also made a denoising using an uncorrelated noise model
for comparison, where the off-diagonal entries of C̃k1k2 were
set to 0 for each (k1, k2). In addition, both the correlated and
the uncorrelated denoising methods were applied to the noise-
free original images, as a way of calculating the expectation
value of the resulting image.

IV. RESULTS

The original noisy images and the denoised images are
shown in Fig. 1. Scatter plots of the denoised image pixel
values are shown in Fig. 2. The noise standard deviations
in the original images are σa1 = 0.11, σa2 = 0.64 and the

corresponding values in the denoised images are σa1 = 0.091,
σa2 = 0.14 for the uncorrelated noise model and σa1 = 0.054,
σa2 = 0.14 for the correlated noise model. The NPS along
the positive k1 axis of each basis image is plotted in Fig.
3. The real and imaginary parts of the correlation coefficient
Re
(
Cov(a1, a2)/

√
(V(a1)V(a2))

)
(measuring the in-phase

and out-of-phase signal correlations, respectively) are plotted
as functions of spatial frequency along the positive k1 axis in
Fig. 4.

V. DISCUSSION

As can be seen in Fig. 1, the image noise is reduced by the
denoising, at the expense of spatial resolution. The standard
deviation is reduced by 14% for the soft tissue image and 78%
for the iodine image with the uncorrelated model and by 49%
the soft tissue image and 78% for the iodine image with the
correlated model. The correlated model gives 40% and 1%
lower noise than the uncorrelated model, for soft tissue and
iodine, respectively. For the soft tissue image, this corresponds
to dose reduction of 66% with preserved image noise level.
The scatter plots in Fig. 2 show that the point clouds for
the respective materials are centered at the nominal (a1, a2)
values for each tissue and that the correlated noise model
gives less anticorrelations in the resulting image compared
to the uncorrelated noise model. Introducing correlations in
the noise model evidently causes the resulting point clouds to
become more parallel to the coordinate axes, which reduces
the variance along the basis where they are most narrow, i.e.
the soft tissue basis.

Fig. 3 shows that the noise power spectra of the original
basis images are peaked at intermediate spatial frequencies.
The denoising algorithm suppresses those frequencies while
preserving the low spatial frequencies. The noise in the iodine
basis image is suppressed more than the noise in the soft tissue
basis image, since the original noise level is higher in the
iodine basis image while the strength of the prior probability
distribution, controlled by kj , is equal in both bases. As seen
in Fig. 4, the original image and the image denoised with the
uncorrelated model both exhibit strong negative correlations
between the two basis coefficients at all spatial frequencies.
The image denoised with the correlated model exhibit a strong
negative correlation at low and high frequencies and near
zero correlation at intermediate frequencies. Evidently, the
denoising algorithm has suppressed the noise and removed the
anticorrelations at the intermediate spatial frequencies where
the original NPS is concentrated.

Careful inspection of noise-free basis images denoised using
the correlated noise model (Fig. 1(i-j)) shows that there are
weak artifacts in the soft tissue image at the border of the
insert and in the iodine image at the border of the phantom.
These are due to cross-talk between the different basis images
and are absent in the images denoised using the uncorrelated
model (Fig. 1(g-h)). This shows that the using the correlated
noise model when denoising is associated with a drawback,
namely that the resulting basis images may contain artifacts
where there is a border in the other basis image. In this case,
however, the artifacts are only faintly visible above the noise
in Fig. 1(e) and not visible at all in 1(f).
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Fig. 3. (Noise power spectrum (NPS) of the original and denoised basis
images for soft tissue (left panel) and iodine (right panel). (Right) Real part
of the correlation coefficient between ã1 and ã2, as a function of spatial
frequency, plotted along the positive k1 axis. In the right panel, the NPS for
the original image coincides with the one for the image denoised with the
uncorrelated model.

This suggests an interpretation of the effect of including the
noise anticorrelations in the model: it causes the algorithm to
remove the anticorrelations at intermediate spatial frequencies
in order to lower noise while preserving them at low spatial
frequencies. In this way, cross-talk between the basis images,
which can cause artifacts, is confined to intermediate spatial
frequencies and therefore does not give bias in measurements
over large areas in the image. High spatial frequencies are
preserved by the algorithm, since the original image NPS used
in this study tends to zero at the Nyquist frequency and no
denoising is needed.

One limitation of our study is that we assumed that the
noise is wide-sense stationary, which is not true in real CT
images. However, the noise can still be assumed to be locally
wide-sense stationary in a region of the image without sharp
transitions. A second limitation is that our regularization term
is quadratic, whereas nonquadratic penalty terms such as
the Huber penalty [6] are commonly employed, in order to
preserve edges in the image. However, most penalty functions
are approximately quadratic for small deviations between
adjacent pixels. Therefore, the proposed method should be
able to approximate a more sophisticated denoising algorithm
in slowly-varying image regions, aiding analysis and design
of denoising or reconstruction schemes.

VI. CONCLUSION

We have studied an analytically solvable model for a denois-
ing algorithm for anticorrelated noise in CT and demonstrated
that including the anticorrelations in the noise level leads to
a reduced noise level and less anticorrelations in the resulting
image. This is accomplished by leaving low spatial frequencies
unchanged while removing anticorrelations at intermediate
spatial frequencies. This introduces bias in the basis images,
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Fig. 4. (Real (left) and imaginary (right) parts of the complex correlation
coefficient between ã1 and ã2, as a function of spatial frequency, plotted
along the positive k1 axis. In the left panel the curve for the uncorrelated
curve coincides with the curve for the original model. In the right panel, all
three curves coincide.

but since this bias is confined to intermediate spatial fre-
quences, it gives rise to artifacts only at sharp transitions in
the image. These insights will be important for guiding the
future development of reconstruction algorithms for spectral
CT.
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Investigating Pixel Size and Resolution in
Optimization-Based CT Image Reconstruction

Sean D. Rose, Emil Y. Sidky, Adrian A. Sanchez, and Xiaochuan Pan
Abstract—In this work we propose a simple method for

investigating the behavior of reconstructions as a function of
pixel size and regularization parameter in optimization-based
image reconstruction. The method utilizes numerically converged
reconstructions from noiseless data generated by sampling the X-
ray transform of a functionally defined phantom or by forward
projecting a high-resolution sampling of a simulation phantom. We
use this method to investigate the resolution properties of a family
of optimization problems whose solutions can be expressed as
linear transforms of the data. As pixel size is decreased, system ma-
trix conditioning deteriorates leading to distorted reconstructions.
Our results indicate that by choosing a large enough pixel size to
avoid this issue, one may be sacrificing resolution unnecessarily.
Simple regularization techniques can allow for reconstruction at
smaller pixel sizes, decreasing sensitivity of the reconstruction to
pixel size and enabling resolution of finer structures.

I. INTRODUCTION

In optimization-based image reconstruction, a continuous
object is discretized via expression as a linear combination of
elements from some finite-sized expansion set. Most commonly,
a set of non-overlapping square pixels is used for this purpose,
though other expansion sets, such as Kaiser-Bessel functions,
Gaussian blobs, and natural pixels have also been investigated
[1]. No matter the choice of expansion set, the process of
discretization introduces an inconsistency between projections
generated from the discrete representation of the continuous
object and the measured projection data. This can potentially
lead to artifacts in optimization-based reconstructions.

Confining our attention to the pixel expansion set, the condi-
tioning of the system matrix modeling the X-ray transmission
process is dependent on the number of pixels used to represent
the measured object. As more pixels are used, the object
can be better represented within the expansion set and the
inconsistency between projections of a discrete representation
of the object and the measured projections can be decreased.
Concurrently, the conditioning of the system matrix modeling
the X-ray transmission process deteriorates. This leads to a
tradeoff between conditioning and representation inherent to all
optimization-based image reconstruction methods. The choice
of pixel size and regularization strength govern this tradeoff and
can have a significant impact on the quality of the reconstructed
image [2].

Here we present a simple simulation method for investi-
gating the impact of pixel size and regularization strength
in optimization-based reconstruction. The primary motivation
behind the method is to facilitate the investigation and develop-
ment of reconstruction algorithms, and it is therefore purposely

This work was supported in part by NIH R01 Grants Nos. CA158446,
CA182264, and EB018102. The contents of this article are solely the respon-
sibility of the authors and do not necessarily represent the official NIH views

S. Rose, E. Y. Sidky, A. A. Sanchez and X. Pan are with the University of
Chicago, Dept. of Radiology MC-2026, 5841 S. Maryland Avenue, Chicago
IL, 60637.

constructed to be simplistic and efficient. We apply the method
to a family of Tikhonov regularized least squares reconstruction
problems and focus on the task of resolving bar-patterns in a
simulated Catphan phantom.

II. METHODS

A. Proposed Method

The proposed method involves generating data using a func-
tionally defined simulation phantom. The Radon transform of
the simulation phantom is sampled to create sinogram data.
This data is then used to perform optimization-based image re-
construction onto image grids with various pixel sizes utilizing
optimization problems of varying regularization strength. The
reconstructions and the simulation phantom are then sampled
onto a high-resolution grid — a grid with pixel size much
smaller than the detector bin size — and compared via an image
quality metric. In this case we use the image root-mean square
error (RMSE), but we note that any number of metrics could be
employed. RMSE curves are plotted as a function of pixel size
at each considered regularization strength and used to determine
an optimal set of parameters. Reconstruction algorithms are
run to numerical convergence to eliminate the dependence of
the reconstructions on algorithm parameters (e.g. step size,
number of iterations, etc.). Note that since the data is generated
via sampling of the Radon transform and reconstruction is
performed with a discrete-to-discrete forward model, the inverse
crime is not committed in this methodology. Note also that if
an analytic expression of the Radon transform of the object
in question does not exist, a line-intersection based forward
projection of a high-resolution discretization of the phantom
can also be used to generate the data.

B. Problem and Algorithm

The family of Tikhonov regularized least squares optimiza-
tion problems we investigate have the form

argmin
x

1

2
‖Ax− b‖22 +

1

2
(λ‖A‖2‖x‖2)2

where x ∈ �n denotes an estimate of the object in the
pixel expansion set, b ∈ �m denotes the measured sinogram,
A ∈ �m×n denotes a discretized forward model of the X-ray
transmission measurement, λ ∈ � is a regularization parameter,
and ‖ · ‖2 denotes the �2 norm. When the argument of ‖ · ‖2 is
a matrix it returns the maximum singular value of the operator.

The optimization problem is solved to numerical precision
in our simulations using the conjugate-gradient least squares
(CGLS) algorithm [3]. Numerical convergence is verified by
ensuring that three criteria are satisfied. First, we require the
normalized �2 norm of the gradient of the objective function to
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be on the order of machine precision

‖AT (Ax− b) + (λ‖A‖2)2 x‖2
‖AT b‖2

∼ εm

Second, we require the objective function to have plateaued
as a function of iteration. Third, we require the image RMSE
— determined on a high-resolution grid as described above
— to have plateaued as a function of iteration. The second
and third requirements are assessed subjectively via plots of
the respective quantities as a function of iteration on a log-log
scale. All optimization-based reconstructions in this study were
run to numerical convergence as defined by these criteria or run
for 10, 000 iterations. The only reconstructions for which the
criteria were not satisfied were unregularized reconstructions
at relative pixel sizes of 1.00, 0.67, and 0.50, corresponding
to the worst conditioned optimization problems considered.
Even so, the second and third criteria were satisfied for these
reconstructions.

C. System Geometry and Phantom

We consider a 2D fan beam breast CT system configuration
employing a circular source trajectory of radius 100cm with 512
projections taken at equiangular spacing over an angular range
of 2π. The system uses a flat-panel detector of length 25cm
with 512 detector bins of equal size and a source to detector
distance of 150cm. A simulated slice of the Catphan phantom,
shown in Figure 1, was used to generate projection data via
sampling of the analytic expression for its Radon transform. The
background and bars were taken to have attenuation coefficients
of 0.244 and 1.26cm−1, respectively, representative of water
and aluminum. Two ROIs of the phantom are also shown
containing bar patterns spaced 0.33, 0.36, 0.38, and 0.42mm
apart. For reference, the detector bin width is 0.48mm, which
when divided by the system magnification factor of 1.5, yields
a projected bin width of 0.33mm. Note that the RMSE is
evaluated over the entire phantom, not just over one of the
displayed ROIs.

D. Data model and discrete forward projector

All reconstructions performed in this study employed a
ray-driven line-intersection forward projection implementation,
often referred to as Siddon’s method [4]. This method was
chosen because in the limit of small pixel size, it approaches
the Radon transform. It is therefore “matched” to the model by
which the data was generated. To investigate how the behavior
of optimization-based reconstructions would differ were this
not the case, data was also generated by sampling the phantom
on a 4096× 4096 grid and using a discrete-to-discrete forward
projection operation designed to model the finite widths of the
source and detector. This method generated data by averaging
the contribution, as determined by Siddon’s method, of 5
equally spaced rays across the source and detector. The source
was taken to have size 0.4mm.

Full Phantom

0.33mm

0.36mm

0.38mm

0.42mm

ROI 1

0.36mm

0.33mm

ROI 2

0.42mm

0.38mm

Fig. 1: Full (top) and two ROIs (bottom) of Catphan phantom
used for studies. Bar patterns in ROI 1 are separated by 0.33
(bottom pattern) and 0.36mm (top pattern). Patterns in ROI
2 are separated by 0.38 (bottom pattern) and 0.42mm (top
pattern). Display window: [0.1, 1.3]

III. RESULTS

RMSE curves were generated by plotting RMSE as a func-
tion of relative pixel size, defined as

Δxr = Δu
r

d

where Δu is the detector bin size, r is the radius of the source
trajectory, and d is the source to detector distance. In Figure
2, we show RMSE curves for reconstructions from the Radon
transform data at 5 different values of the Tikhonov parameter
λ, and in Figure 3, we show ROIs from the reconstructions
containing the 0.33 and 0.36mm bar patterns.

We observe that for small values of λ, deterioration of system
matrix conditioning causes an increase in RMSE around relative
pixel sizes of 1.00. A subsequent decrease is observed at smaller
pixel sizes followed by another slight increase. At relative pixel
sizes less than 1.00, the system matrix is not left-invertible, and
the unregularized least squares problem (λ = 0) does not have
a unique solution. We pick the minimum norm least squares
solution by initializing the CGLS algorithm with the zero image
[3]. The conditioning of the reconstruction is then controlled by
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Fig. 2: RMSE as a function of relative pixel size for Tikhonov
regularized reconstructions from Radon transform data. Legend
indicates value of the regularization parameter λ.

the effective condition number, defined as the ratio of the max-
imum singular value to the minimum nonzero singular value.
The effective conditioning of the projection matrix improves
at relative pixel sizes just below 1.00, explaining the observed
decrease in RMSE.

The unregularized curve has two local minima occurring
at relative pixel sizes of 2.00 and 0.66. The presence of a
minimum 2.00 suggests that to avoid issues related to poor
conditioning and lack of invertibility, one should use a relative
pixel size of 2.00 or larger, but as we can see from the RMSE
curves and ROI plots, reconstructions at smaller pixel sizes can
be obtained and are able to resolve structures which could not
possibly be resolved at such large pixel sizes. The minimum
at 0.66 suggests that relative pixel sizes below 1.00 may also
be used to avoid distortion due to poor conditioning. At these
pixel sizes, the system matrix is not left invertible — there
are more pixels than measurements — and we will see in
the next experiment that using pixel sizes in this regime can
lead to artifacts in scenarios in which the forward projection
used in reconstruction is not “matched” to the model by which
the data was generated. Employing an appropriate strength of
regularization — in this case λ = 10−1.5 — can eliminate the
distortion artifacts resulting from poor conditioning entirely.

We see from the RMSE curves that a minimum RMSE
of 0.00586 is achieved with the Tikhonov parameter set to
λ = 10−1.5 and a relative pixel size of 1.00. From the ROI plots
we observe that the two bar patterns are just barely resolvable
with these parameters. At smaller relative pixel sizes, the bars
are more clearly resolvable, but from the λ = 10−1.5 curve,
we see the RMSE increases. In the reconstructions, Moire
pattern artifacts are visible at relative pixel sizes below 1.00
and provide an explanation for this increase.

In figures 4 and 5 we show RMSE curves and ROIs con-
taining the 0.38 and 0.42mm bar patterns from reconstructions
using data generated with the forward projection method mod-
eling source and detector width. We observe that unlike the
previous case, the RMSE of the unregularized reconstructions
does not significantly decrease at relative pixel sizes less than

Δxr = 2.00

λ = 0.0

1.19 1.00 0.66

0.36mm

0.33mm

λ = 10−2.0

λ = 10−1.5

λ = 10−1.0

Fig. 3: ROIs containing 0.33 and 0.36mm bar patterns from
Tikhonov reconstructions of Radon transform data. Display
window: [0.1, 1.3].

1.00 — though not visible in the plot, it does still decrease,
but to a lesser extent than in the case of Radon transform data
— suggesting that the previously observed decrease cannot be
relied upon. In other words, using relative pixel sizes below
1.00 to avoid distortion artifacts due to poor conditioning and
improve resolution is not a viable method for unregularized
least squares reconstruction. By contrast, distortion artifacts are
again eliminated by using an appropriate strength of regulariza-
tion (λ = 10−1.5).

The minimum RMSE reconstruction is achieved with relative
pixel size 1.19 and Tikhonov parameter 10−1.5. In this recon-
struction the 0.42mm bar pattern is clearly resolvable while the
0.38mm pattern is just barely resolvable. Similar to the case
of the Radon transform data, if a relative pixel size of 2.00 or
higher were used to avoid conditioning issues, neither of these
bar patterns would be resolvable.
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Fig. 4: RMSE as a function of relative pixel size for Tikhonov
regularized reconstructions from projection data modeling finite
source and detector widths. Legend indicates value of the
regularization parameter λ.

Δxr = 2.00

λ = 0.0

0.42mm

0.38mm

1.19 1.00 0.66

λ = 10−2.0

λ = 10−1.5

λ = 10−1.0

Fig. 5: ROIs containing 0.38 and 0.42mm bar patterns from
Tikhonov reconstructions from projection data modeling finite
source and detector widths. Display window: [0.1, 1.3]

IV. CONCLUSIONS

We have proposed and implemented a simple simula-
tion method for investigating the choice of pixel size in
optimization-based image reconstruction. Our results indicate
that for the system geometry considered a relative pixel size
of 2.00 or above must be used to avoid issues related to
poor conditioning in unregularized least squares reconstruction.
Lower RMSE reconstructions can be achieved by using a simple
regularization scheme, in this case Tikhonov regularization, and
decreasing the pixel size further. Additionally, the resolution of

these lower RMSE reconstructions is better than that of the
reconstructions at larger relative pixel sizes, suggesting that
by using large enough pixel sizes to avoid conditioning issues
one is unnecessarily sacrificing resolution. We demonstrated
that this result is not limited to the case of data generated
by sampling the Radon transform by demonstrating the same
phenomena with data generated using a forward projection
scheme modeling finite source and detector widths.

At CT meeting, we will present the results of an inves-
tigation into the behavior of reconstructions using distance-
driven [5] and Joseph’s method [6] forward projection operators
in Tikhonov regularized least squares reconstruction schemes.
We are also in the process of extending the proposed method
to investigating pixel size in optimization-based reconstruction
problems with different data-fidelity and regularization terms,
such as maximum likelihood based data-fidelity and total varia-
tion regularization. Lastly, an investigation of the effect of noise
on these results is currently underway and will be presented at
the meeting.
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Abstract—Sequential same-patient CT images usually involve 

deformation-induced and non-deformation-induced voxel 
intensity variations. We developed a CT reconstruction technique 
to separate these two voxel intensity variations through an 
adaptive deformation recovery and intensity correction (ADRIC) 
algorithm. The ADRIC algorithm applied the 2D-3D deformation 
technique to a prior high-quality CT volume to recover the 
deformation field between the prior CT volume and the new, 
to-be-solved CT volume. Using the deformation-recovered new 
CT volume, the ADRIC algorithm further corrected the 
non-deformation voxel intensity variations using an updated 
algebraic reconstruction technique, which enforced a less 
stringent total variation smoothing scheme on image difference 
(ART-dTV). The deformation field and the non-deformation 
voxel intensity correction were optimized separately and 
alternately to generate the final CT volume.  

I. INTRODUCTION 
requent CT imaging may increase the risk of secondary 
cancers, especially for scenarios require repetitive imaging, 

for instance dynamic myocardial perfusion imaging [1].  
     To reconstruct high-quality CT images using limited-view 
projections to reduce the imaging dose, multiple iterative 
reconstruction techniques [2-7] have been proposed. These 
techniques, for instance the algebraic reconstruction technique 
(ART) [2], iteratively optimize the data fidelity through 
matching the acquired projections with the simulated 
projections from the reconstructed volumes. In addition, many 
techniques also use pre-assumed image features like piecewise 
constancy and intensity gradient sparsity [3-5] to pose 
additional constraints to further suppress the noise. Total 
variation (TV) [7], a metric originally proposed for data 
de-noising, has shown prominent benefits in CT reconstruction.  
However, the reconstructed CT often suffers from feature 
changes and detail loss due to over-smoothing, as the piecewise 
constancy and intensity gradient sparsity assumptions may not 
hold for complicated anatomical structures.  
     A new CT reconstruction approach has recently been 
vigorously investigated [8-10]. Instead of directly 
reconstructing the CT volume from acquired projections, the 
new approach estimates it by deforming a previously acquired 
high-quality CT volume.  The image reconstruction thus turns 
into the optimization of the deformation field to match the 
acquired projections with the simulated projections from the 
deformed CT volume [9], which is a 2D-3D deformation 
process. The successful incorporation of prior CT volume 
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enables accurate image reconstruction with limited-view 
projections. However, the 2D-3D deformation approach is 
inherently limited by the fact that the voxel variations between 
prior and new CT volumes are not necessarily caused by 
deformation alone. Anatomical and physiological variations 
between prior and new CT acquisitions, such as tissue 
calcification, fibrosis/necrosis, and transit of contrast agent in 
perfusion imaging, can all result in non-deformation-induced 
voxel intensity variations between the two images. These 
non-deformation variations cannot be corrected even with the 
true deformation fields. In contrast, they may adversely affect 
the deformation field optimization by introducing false signals. 
     This study developed a new CT reconstruction method to 
integrate the TV-constrained algebraic reconstruction 
technique with the 2D-3D deformation technique. The new 
reconstruction method, named adaptive deformation recovery 
and intensity correction (ADRIC), was able to recover both the 
deformation and the non-deformation-induced voxel intensity 
variations between prior and new CT volumes.  
     Without losing general applicability, we chose CT 
myocardial perfusion imaging to evaluate the efficacy of the 
proposed method. In myocardial perfusion imaging, the spatial 
misalignments and contrast-agent-induced voxel intensity 
mismatches between prior and new CT volumes provided a 
good scenario to examine the efficacy of the ADRIC 
framework.  

II. MATERIALS AND METHODS 
     The ADRIC technique is an integration of the 2D-3D 
deformation technique and the TV-constrained algebraic 
reconstruction technique (ART): 
 
II.A. 2D-3D deformation technique 
     For the 2D-3D deformation technique, the new CT volume 
was deformed from the prior image volume ( ) using the 
deformation vector field ( ). The  was solved through 
optimizing the objective function in Eq. 1: 
 
           (1) 
 

 denotes the projecting matrix that simulates projections from 
the deformed CT volume.  denotes the acquired on-board 
projections.  denotes the computation of the deformation 
energy, which is to regularize and smooth the deformation field 
[8, 9] for a stable solution.  denotes the weighting factor that 
balances the data fidelity constraint and the deformation energy 
constraint. The 2D-3D deformation generated an intermediate 
deformation recovered CT volume ( ) after each 
optimization.  
 
II.B. TV-constrained ART 
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      ART updated the intermediate deformation recovered CT 
volume  passed down from 2D-3D deformation by 
Eq. 2: 

            (2) 

 denotes the CT attenuation coefficient at voxel .  denotes 
the acquired projection line integral at pixel .  denotes the 
intersection length of projection line  with CT voxel  for the 
projection matrix .  denotes the relaxation factor. 
     To further improve the image quality, TV-based smoothing 
was applied. Traditionally, TV was calculated using the 
ART-updated CT (  in Eq. 2). However, in this study we 
took a different approach and calculated TV using the 
difference image (  between the  and the 
deformation recovered CT by the composite DVF 
( ): 
 
                                                   (3) 
 

 was generated by deforming   using the 
composite DVF (  accumulated from precedent 
iterations (Eq. 4):   
 

= 
        (4) 

 
 indicates the intermediate  solved for each 

precedent 2D-3D deformation, indexed by . The  parameter 
indicates the total number of precedent iterations.  
     The new TV definition avoided the strong assumption that 
the whole was sparse in intensity gradient. Instead, it 
only assumed the intensity gradient sparsity of . The  
volume, which was equivalent to the non-deformation-induced 
voxel intensity variations, was more likely to be sparse in 
gradient. Thus the new TV definition could potentially reduce 
the effects of over-smoothing for better reconstruction results. 
We termed the new approach ‘ART-dTV’ to differentiate it 
from the traditional ‘ART-TV’ approach that regularizes the 
TV of the whole  directly. 
      The ART-dTV generated an intermediate intensity 
corrected CT volume ( ) after each optimization.  
 
II.C. Framework of the ADRIC technique 

 
Fig. 1. The framework of the ADRIC technique. 

     The ADRIC technique can be separated into two stages: the 
ADRIC-initialization stage and the ADRIC-main stage.  
     The ADRIC-initialization stage provided an initial DVF 
( ) to feed into the first implementation of the 2D-3D 
deformation algorithm. The gave the 2D-3D 
deformation algorithm a good start and prevented it from being 
trapped at local optima during optimization. To generate 

, a coarse CT volume (   was first 
reconstructed from the limited-view projections using the 
ART-TV algorithm [3]. Then the was registered with 
the prior CT volume  using the Demons registration 
algorithm [11] to obtain the .  
      The implementation procedures of the following 
ADRIC-main stage were detailed below: 
 
      (1). Feed the , the  (used as  in Eq. 
1) and the limited-view projections simultaneously into the 
2D-3D deformation algorithm. The algorithm will generate the 
intermediate deformation recovered CT volume  
and the corresponding  according to Eq. 1; 
      (2). Accumulate the  with the sequential 
intermediate DVFs solved in precedent iterations (if any) to the 

, and deform  using the  to 
 according to Eq. 4; 

      (3). Feed the limited-view projections, the and 
the  simultaneously into the ART-dTV algorithm to 
generate the intermediate intensity corrected volume 

 according to Eq. 2 and Eq. 3; 
      (4). Evaluate the stopping criteria based on data fidelity. If 
satisfied, exit loop. If not, go to step (5); 
      (5). Feed the all-zero DVF, the  (used as  in 
Eq. 1) and the limited-view projections simultaneously into the 
2D-3D deformation algorithm. Similarly to step (1), the 
algorithm will generate the intermediate deformation recovered 
CT volume  and the corresponding  
according to Eq. 1. Then go back to step (2). 
 
     By ADRIC, the cumulatively-updated composite DVF and 
the cumulatively-corrected voxel intensity variations were 
optimized separately and alternately for the final CT volume. 
With this adaptive approach, the reconstructed new CT volume 
could be easily separated into two parts: the deformation 
recovered CT volume using the final composite DVF (ADRIC 
deformation recovered CT) and the additional, 
non-deformation intensity correction based on it (ADRIC 
intensity correction). 
 
II.D. Simulation using the XCAT phantom and experimental 
evaluation using the porcine data 
     We used the digital XCAT phantom [9] to simulate a patient 
under the CT myocardial perfusion study. Both prior and new 
CT volumes covering the heart and part of the lung region were 
simulated. Spatial misalignments were simulated between the 
prior CT and the new CT, including both respiratory-motion 
and cardiac-motion induced deformation. Non-deformation 
voxel intensity variations were also added to the new CT 
volume to simulate the transit of perfusion contrast agent in the 
new CT scan.  
     Limited-view on-board projections were simulated using the 
new CT volume and spread evenly across a 360° scan angle. 
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Different numbers of projections were simulated, ranging from 
10, 20, 40 to 60, representing different angular sampling 
sparseness.   
     In addition to the XCAT study, we used experimentally 
acquired porcine myocardial perfusion imaging data to further 
evaluate the efficacy of the ADRIC algorithm. The porcine data 
were acquired using a 64-slice GE Discovery CT750 HD 
scanner (GE Healthcare, Waukesha, Wisconsin). 
     A prior CT volume of the porcine was acquired on the 75% 
R-R phase of the cardiac cycle through electrocardiography 
gating. A new CT volume of the 75% R-R phase was later 
acquired at the same scanner with iodinated contrast agent 
injected. The difference of acquisition time and the 
administration of contrast agent introduced both spatial 
misalignments and non-deformation-induced voxel intensity 
variations between the prior and new CT volumes.  
     Similar to the XCAT study, limited-view projections of 
different angular sampling sparseness levels were simulated 
using the new CT volume for reconstruction.  
 
II.E. Evaluation  
     Visual and quantitative comparisons were performed 
between the reconstructed CT volumes and the ‘gold-standard’ 
new CT volumes. For the XCAT study, the ‘gold-standard’ 
volume was the simulated new CT volume. For the porcine 
study, the ‘gold-standard’ volume was the acquired new CT 
volume. The root-mean-square error (RMSE) metric was used 
for quantitative evaluation. 
     To better evaluate the potential advantage of the ADRIC 
technique, reconstructions were also performed using the 
standard 2D-3D deformation technique alone, and the 
ART-dTV technique alone for comparison.  

III. RESULTS 
III.A. Simulation using the XCAT phantom 

 
Fig. 2. XCAT study: RMSE values and slice cuts of the difference 
images between the ‘gold-standard’ new CT volume and the prior 
CT/reconstructed CT volumes (by 40 projections). The first column 
shows the results between the ‘gold-standard’ new CT volume and the 
prior CT volume. The other three columns show the results between 
the ‘gold-standard’ new CT volume and the CT volumes reconstructed 
by different techniques. The display window is [-0.015, 0.015]. 
 
     As shown in Fig. 2, the ART-dTV technique failed to correct 
multiple remaining intensity mismatches (shown by the arrows 
in the ART-dTV column). The 2D-3D deformation technique 
failed to correct non-deformation-induced voxel intensity 
variations in the cardiac region (shown by the arrows in the 
2D-3D deformation column).  

 
Fig. 3. XCAT study: slice cuts of the prior CT volume, the 
‘gold-standard’ new CT volume, the ADRIC reconstructed CT volume 
(by 40 projections), the ADRIC deformation recovered CT volume, 
and the ADRIC intensity correction besides deformation recovery. 
The display window for the first four columns is [0.03, 0.06]. The 
display window for the last column is [-0.015, 0.015].  
 
     In Fig. 3, the ADRIC reconstructed CT was separated into 
two components---the ADRIC deformation recovered CT 
volume (column 4) deformed from the final composite DVF, 
and the intensity correction (column 5) besides the deformation 
recovery. The ADRIC deformation recovered CT volume 
matched the ‘gold-standard’ CT volume in regions deformed 
by motion. The ADRIC intensity correction was majorly 
confined in the cardiac region to correct the 
non-deformation-induced voxel intensity variations. 
  
Table 1. XCAT study: RMSE values of different reconstruction 
techniques using different levels of angular sampling sparseness 
(varied by the number of projections).  

 No. of projections Prior ART-dTV 2D-3D Deformation ADRIC 

10 

39.75% 

25.45% 18.85% 17.32% 
20 19.21% 14.64% 11.90% 
40 13.38% 12.80% 9.06% 
60 11.04% 12.33% 7.92% 

 
III.B. Experimental evaluation using the porcine data 

 
Fig. 4. Porcine study: RMSE values and slice cuts of the difference 
images between the ‘gold-standard’ new CT volume and the prior 
CT/reconstructed CT volumes (by 20 projections).  
 
     In Fig. 4, similarly to the XCAT study, the ADRIC 
technique not only corrected the voxel variations induced from 
structure deformation (shown by the upper arrows in each 
subfigure), but corrected the voxel intensity variations induced 
from the iodinated perfusion contrast agent (shown by the 
lower arrows in each subfigure).  
 

 
 

Prior Gold-standard ADRIC
          ADRIC:
Deformation Recovery

          ADRIC:
 Intensity Correction

Prior Gold-standard ADRIC
          ADRIC:
Deformation Recovery

          ADRIC:
 Intensity Correction
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Fig. 5. Porcine study: slice cuts of the prior CT volume, the 
‘gold-standard’ new CT volume, the ADRIC reconstructed CT volume 
(by 20 projections), the ADRIC deformation recovered CT volume, 
and the ADRIC intensity correction besides deformation recovery.  
 
     Fig. 5 shows the ADRIC deformation recovered CT volume 
(column 4) and the ADRIC intensity correction (column 5) for 
the porcine study.  
 
Table 2. Porcine study: RMSE values of different reconstruction 
techniques with different levels of angular sampling sparseness.  

 No. of  
projections Prior ART-dTV 2D-3D  

Deformation ADRIC 

10 

15.66% 

10.70% 14.91% 8.98% 
20 8.78% 13.61% 6.80% 
40 7.97% 12.58% 5.82% 
60 6.91% 12.14% 5.29% 

IV. DISCUSSION 
     The ADRIC technique developed in this study outperformed 
both the ART-dTV and the 2D-3D deformation techniques, as 
evidenced by the XCAT simulation study (Fig. 2, Tables 1) and 
the experimental porcine study (Fig. 4, Table 2). It successfully 
recovered the deformation and corrected the 
non-deformation-induced voxel intensity variations (Fig. 3, 
Fig. 5). In comparison, the 2D-3D deformation technique could 
only recover the deformation. The residual 
non-deformation-induced intensity mismatches were not only 
un-corrected, but provided false signals that affected the 
accuracy of the solved DVFs (Fig. 2, Fig. 4).  In contrast, the 
ART-dTV technique viewed all voxel variations as intensity 
changes and did not explicitly consider the deformation 
occurred in between. Image features and fine structures were 
easily smoothed out through large-scale TV regularization. In 
this study, the ART-dTV technique used dTV instead of the 
traditional TV to only enforce the sparsity constraint of 
intensity gradient on the difference image between prior and 
new CT volumes, to better preserve the image features. 
However, deformation in between prior and new CT volumes 
led to complex anatomical variations to make the difference 
image less sparse in intensity gradient. Thus the ADRIC 
technique, which performed dTV-constrained intensity 
correction adapted to the deformation recovered CT volume, 
provided better reconstruction results than ART-dTV. 
     The developed ADRIC technique has achieved encouraging 
results. Nonetheless, future improvements are warranted to 
further fine-tune the ADRIC technique. Remaining problems 
with the current technique are the mismatched bony region and 
the boundary of structures (Fig. 2, Fig. 4). Inaccurate 
deformation, especially that around the bony region, has been 
widely observed in different 2D-3D deformation based image 
reconstruction studies [8, 9]. The discrepancy is potentially 
introduced by three factors:  
      1. Deformation energy-based smoothness regularization 
enforced on the DVFs does not usually apply to structure 
boundaries, where sliding motion [12] prevails. 2. The image 
deformation was performed by trilinear interpolation, which 
has limited accuracy. Interpolation inaccuracy in high gradient 
regions like bony areas and structure boundaries may result in 
significant voxel intensity mismatches. 3. The intensity-driven 

2D-3D deformation is potentially limited in accuracy, as it fails 
to consider the biomechanical properties of different tissues.   
      Improving the accuracy of the 2D-3D deformation 
algorithm may fundamentally solve the problem, which can be 
realized through applying patch-based smoothness 
regularization to better fit the sliding motion, applying a more 
accurate voxel interpolation model to avoid mismatches in high 
gradient boundaries, and applying biomechanical models like 
those based on finite element analysis to obtain a better, more 
realistic deformation field.  

V. CONCLUSIONS 
      An ADRIC technique was developed in this study. 
Myocardial perfusion imaging scenarios using XCAT 
simulated phantom data and experimentally acquired porcine 
data validated the efficacy of the ADRIC technique. Additional 
patient studies in different clinical scenarios are warranted to 
further evaluate the ADRIC technique in the future. 
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Shift-Invariant Projection and Backprojection for
Helical CT based on A Self-Consistent Coordinate

Minghao Guo and Hao Gao

Abstract—We develop an efficient method to compute projec-
tions and backprojections without repeated on-the-fly compu-
tations for helical CT. The method utilizes the shift-invariant
projections and backprojections based on a self-consistent coor-
dinate with rigorous justification, so that the size of projection
and backprojection matrices can be significantly reduced in
order to be practically stored on GPU. Numerical results using
GPU parallelization suggest that the proposed shift-invariant
method has much improved computational efficiency from the
conventional on-the-fly method, i.e.,by 3-6 fold acceleration for
the projection and 3-16 fold acceleration for the backprojection
using standard configuration of helical CT.

I. INTRODUCTION

HElical computed tomography (CT) is perhaps the most
popular diagnostic imaging modality. Inspired by com-

pressive sensing [1], [2], Model-Based Image Reconstruction
(MBIR) method has revived as an active research field in
CT [3], [4] to meet the task-based imaging needs, such as
low-dose, limited-angle, sparse-view, and four-dimensional CT
scans. Yet, a major drawback of MBIR is its long computa-
tional time, for which the projection and backprojection (i.e.,
the X-ray transform and its adjoint) are often computational
dominant.

The efficient computation of projection and backprojection
is essential for MBIR to be practically useful. Various algo-
rithms have been developed, such as the Siddon’s algorithm
[5], the ray-driven method, and the pixel-driven method [6],
[7], [8]. Note that the ray-driven method is rarely used for the
backprojection and the pixel-driven method is rarely used for
the projection since they may introduce artifacts [9], [10]. Re-
cent developments also include fast ray-tracing technique [11],
the distance-driven method [10], separable-footprint based
method [12], domain-decomposition based parallel algorithms
[13], and improved distance-driven method [14].

To accelerate the computation of projection and backpro-
jection, GPU-based parallel algorithms and implementations
have been developed, during which the projection and back-
projection are computed on-the-fly without saving the matrices
due to the storage limitation, particularly for helical CT.
As a result, the on-the-fly computation of projection and
backprojection requires that the projection and backprojection
matrices are repeatedly computed. However, it is possible
to alleviate the storage problem using the helical symmetry
[15], [16]. Fast backprojection method for analytical image
reconstruction was developed by storing numerical weights

M. Guo and H. Gao are with School of Biomedical Engineering and De-
partment of Mathematics, Shanghai Jiao Tong University, Shanghai 200240,
CHINA (e-mail: hao.gao.2012@gmail.com).

[15]. A MBIR method was proposed for helical CT using 27-
gigabyte stored system matrix from the pixel-driven method
[16]. Inspired by their use of rotating coordinates [15], [16],
this work aims to further reduce the matrix size that needs
to be stored, so that the projection and backprojection can be
computed on GPU without the need of repeated computation
of matrix elements. Moreover, separate matrices will be used
for ray-driven projection and pixel-driven backprojection to
avoid the artifacts.

II. METHODS

A. Self-consistent Coordinate

Let us consider a X-ray source trajectory equally distributed
on a helix

{sλ : sλ = (R coshλ,R sinhλ, lλ), λ ∈ S}, (1)

where R is the radius of the helical trajectory, and S is a
set of discrete real numbers specifying the source coordinate
per view on the helical trajectory with h and l representing
the angular increment and the axial increment per view.
without loss of generality, S is assumed to take integer values.
Corresponding to sλ, let the detector plane be Dλ, and Vλ be
the field-of-view (FOV) cone generated by sλ and Dλ. Let L
be the axial length of detector, and then the helical pitch can
be defined as l/h · 2π/L.

On the other hand, let X = {Xijk, i ≤ Nx, j ≤ Ny, k ≤
Nz} denote the discretized imaging object f with each grid

Xijk = {(x, y, z) : x ∈ [xi, xi+1), y ∈ [yj , yj+1), z ∈ [zk, zk+1)}
(2)

where xi = iΔx + x0, yj = jΔy + y0, and zk = kΔz + z0.
Moreover, we denote the kth axial slice of X as

Xk = {Xijk : i ≤ Nx, j ≤ Ny}.

The discrete image f to be reconstructed is denoted by a
column vector

f = [f1, · · · , fk, · · · , fNz
]T

where fk consists of image voxels on the kth axial slice, i.e.,

fk = [f1,1,k, · · · , fi,j,k, · · · , fNx,Ny,k]
T .

Next we define s = Δz/l as the ratio between the slice
thickness and the axial increment per view for the X-ray
source, which is a key parameter for the proposed method.
In order for the proposed method to work, s needs to take
integer values, which is feasible except very sparse-view
scans. Otherwise, we can always slightly tune Δz to have
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an integer value for s. Then efficient image reconstruction
can be performed by storing shift-invariant projection and
backprojection matrix via a self-consistent coordinate (Fig. 1).
This will be explained in the next subsection.

Let θ = sh. From bottom to top, each slice of X is rotated
from the consecutive slice by θ to be self-consistent with
the helical source trajectory, i.e., to form the self-consistent
coordinate (Fig. 1). That is, we have the following self-
consistent coordinate

r̂ = (x cos kθ + y sin kθ,−x sin kθ + y cos kθ, z), (3)

where z ∈ [zk, zk+1) and r=(x, y, z) ∈ R3. The grid in the
self-consistent coordinate is X̂ = {X̂ijk} with

X̂ijk = {(x̂, ŷ, z) : x̂ = x cos kθ + y sin kθ,

ŷ = −x sin kθ + y cos kθ, (x, y, z) ∈ Xijk}. (4)

On X̂ , the imaging object is denoted by f̂ , with the corre-
sponding rotation matrix R, i.e.,

f̂ = Rf and f = R−1f̂ (5)

(a) Cartesian coordinate (b) Self-consistent coordi-
nate

Fig. 1. Self-consistent coordinate. For efficient X-ray projection and back-
projection, each slice is rotated to be self-consistent with the helical source
trajectory, i.e., to form the self-consistent coordinate.

B. Shift-invariant Projection and Backprojection
Let A and AT denote the discretized X-ray projection and

backprojection matrix (namely X-ray transform and its adjoint)
respectively under the Cartesian coordinate, i.e.,

p = Af and f b = AT p (6)

where p and f b are the X-ray projection data and the back-
projection image respectively. Here p is a column vector with
Nv views and Na ·Nb detector pixels per view

p = [p1, · · · , pn, · · · , pNv
]T

where pk consists of detector pixels for the nth projection
view, i.e.,

pn = [p1,1,n, · · · , pl,m,n, · · · , pNa,Nb,n]
T .

For the convenience of discussions, we rewrite A and AT as
block matrices, i.e.,

A =

⎡⎢⎢⎢⎢⎣
A11 · · · A1k · · · A1Nz

· · · · · · · · · · · · · · ·
An1 · · · Ank · · · AnNz

· · · · · · · · · · · · · · ·
ANv1 · · · ANvk · · · ANvNz

⎤⎥⎥⎥⎥⎦ (7)

and

AT =

⎡⎢⎢⎢⎢⎣
AT

11 · · · AT
1n · · · AT

1Nv

· · · · · · · · · · · · · · ·
AT

k1 · · · AT
kn · · · AT

kNv

· · · · · · · · · · · · · · ·
AT

Nz1
· · · AT

Nzn
· · · AT

NzNv

⎤⎥⎥⎥⎥⎦ , (8)

where Ank is a Na · Nb by Nx · Ny matrix, and AT
kn is a

Nx ·Ny by Na ·Nb matrix.
Next we consider the discretized X-ray projection matrix

Â and backprojection ÂT under the self-consistent coordinate
(Fig. 1),i.e.,

p = Âf̂ and f̂ b = ÂT p (9)

In the following, we will show Â is a shift-invariant matrix
with

[p1+is, . . . , ps+is]
T = Âi[f̂L+i, . . . , f̂U+i]

T , (10)

where

Âi =

⎡⎣Â1+is,L+i . . . Â1+is,U+i

· · · . . . · · ·
Âs+is,L+i . . . Âs+is,U+i

⎤⎦ .
and

Âi = Âj = Â. (11)

That is we group every s views of projections together with
i indexing the projection group. L and U denote the bottom
and top axial image slices that overlap the FOV generated by
these s source-detector pairs in terms of ray-driven projection.
Then we can use the shift-invariant property (10) to efficiently
compute the X-ray projections based on a stored sparse matrix
Â of the size Na ·Nb · s and Nx ·Ny · (U − L+ 1).

Similarly, we will show ÂT is also a shift-invariant matrix
with

f̂k = ÂT
k [pL′+ks, . . . , pU ′+ks]

T , (12)

where
ÂT

k = [ÂT
k,L′+ks . . . Â

T
k,U ′+ks]

and
ÂT

k = ÂT
l = ÂT . (13)

That is we consider each axial image slice separately indexed
by k. Here L′ and U ′ denote the first and last source-detector
pairs that have the overlapping FOV with the jth image slice
in terms of pixel-driven backprojection. Then we can use the
shift-invariant property (12) to efficiently compute the X-ray
backprojections based on a stored sparse matrix ÂT of the size
Nx ·Ny by Na ·Nb · (U ′ − L′ + 1).

Now we consider an example (Fig 2) to illustrate the shift-
invariance of projection and backprojection under the self-
consistent coordinate (Fig. 1). Here we consider two consec-
utive s-groups of projections and two consecutive axial slices
for backprojection. Note that a key for shift-invariance is that
the angular difference between two consecutive projections
differed by s views, i.e., pn and pn+s, is exactly the same
as that between two consecutive axial image slices, i.e., f̂k
and f̂k+1, which is equal to θ = sh.

This can be rigorously justified as follows. However, due to
the page limitation, the proofs are skipped.
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Theorem 1: (Shift-invariant projection) Consider an arbi-
trary detector pixel indexed by (a, b). Let l1 be the length of
the line from sλ1 and detector (a, b) on Dλ1 , and l2 be the
length of the line from sλ2

and detector (a, b) on Dλ2
. If

λ2 = λ1 + s,

|l1 ∩ X̂ijk| = |l2 ∩ X̂i,j,k+1| (14)

where |.| denotes the length.
Theorem 2: (Shift-invariant backprojection) For r̂1, r̂2 in the

self-consistent coordinate with r̂2 = r̂1 + (0, 0,Δz), let l1
denote the line between sλ1 and r̂1, and l2 denote the line
between sλ2 and r̂2. If λ2 = λ1 + s, the intersection point
between l1 and Dλ1

is the same as that between l2 and Dλ2
.

(a) Shift-invariant Projection

(b) Shift-invariant Backprojection

Fig. 2. Shift-invariant projection and backprojection under the self-consistent
coordinate. (a) Shift-invariant projection: the projection matrix element l1 is
the intersection length at f̂k(x, y) for the projection data pn(a, b), and the
projection matrix element l2 is the intersection length at f̂k+1(x, y) for the
projection data pn+s(a, b); l1 = l2 since the angular difference between
pn and pn+s is exactly the same as that between f̂k and f̂k+1, i.e., θ. (b)
Shift-invariant backprojection: the backprojection matrix element l′1 is the
intersection length at the detector bixel pn(a, b) through the voxel center
f̂k(x, y), and the backprojection matrix element l′2 is the intersection length
at the detector bixel pn+s(a, b) through the voxel center f̂k+1(x, y); l′1 = l′2
since the angular difference between pn and pn+s is exactly the same as that
between f̂k and f̂k+1, i.e., θ.

TABLE I
PROJECTION MATRIX SIZES. ROW: VARIOUS PITCHES FROM 0.4 AND 1.2;
COLUMN: VARIOUS UNDERSAMPLING RATE FROM 1/16 TO 1; FILE SIZES

ARE SHOWN IN GIGABYTES.

0.4 0.6 0.8 1.0 1.2
1/16 0.24 0.16 0.12 0.10 0.08
1/8 0.50 0.32 0.24 0.20 0.16
1/4 0.98 0.66 0.50 0.40 0.32
1/2 1.98 1.32 0.99 0.78 0.66
1 3.96 2.63 1.98 1.58 1.33

TABLE II
BACK-PROJECTION MATRIX SIZES. ROW: VARIOUS PITCHES FROM 0.4 AND

1.2; COLUMN: VARIOUS UNDERSAMPLING RATE FROM 1/16 TO 1; FILE
SIZES ARE SHOWN IN GIGABYTES.

0.4 0.6 0.8 1.0 1.2
1/16 0.09 0.06 0.04 0.04 0.03
1/8 0.18 0.12 0.09 0.07 0.06
1/4 0.37 0.24 0.18 0.14 0.12
1/2 0.73 0.49 0.37 0.29 0.24
1 1.47 0.98 0.74 0.58 0.49

III. RESULTS

The proposed shift-invariant projection and backprojection
and related image reconstruction method were validated using
the 3D XCAT phantom. The image size was 512 × 512 ×
320. The full scan had 2304 projection views per rotation.
The GPU implementation with various pitch sizes from 0.4
to 1.2 and undersampling rate up to 1/16 were considered to
illustrate the improved speed of the proposed method (namely
”M2”) from the conventional method (namely ”M1”). Here
the conventional method M1 refers to ray-driven projection
method and pixel-driven backprojection method using texture
interpolation.

A. Matrix Size

The shift-invariant projection and back-projection, i.e., Â
and ÂT , were saved in the Compressed Sparse Row (CSR)
format. The projection matrix sizes are summarized in TABLE
I. And the maximal matrix size is no more than 4GB, which
can be completely stored by a single state-of-art GPU. The
backprojection matrix sizes are presented in TABLE II with
the maximal size smaller than 1.5GB.

B. Projection

To validate the proposed projection method M2, M2 was
performed in comparison with the conventional method M1
with pitch = 0.4 and 1/16 undersampling rate (i.e., 288
projection views per rotation). The projection results with ×10
difference image are displayed in Fig. 3, which suggest the
correctness of the proposed projection method. Here the total
relative difference is 0.63 %.

To illustrate the efficiency of M2, the computational costs
are displayed in Fig. 4 with various pitches and undersampling
rates, which clearly suggest that M2 is more efficient than
the conventional projection method M1. For example, a large
portion of computational time (60.24% to 82.27%) can be
saved by switching M1 to M2. Moreover, the acceleration
rate increases as the pitch increases.
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(a) M1 (b) M2 (c) Difference (×10)

Fig. 3. Projection results. The sinogram consisting of central axial slices from projections is presented to demonstrate the correctness of the proposed projection
method M2 in comparison with the conventional projection method M1. (a) M1; (a) M2; (c) difference image (×10) between M1 and M2.

Fig. 4. Computational time for projections. The conventional method M1
(dotted line) and the proposed method M2 (solid line) with various pitches
(from 0.4 to 1.2) and various underampling rate (from 6.25% to 100.00%).

C. Backprojection

To validate the proposed backprojection method M2, M2
was performed in comparison with the conventional method
M1 with pitch = 0.4 and 1/16 undersampling rate (i.e., 288
projection views per rotation). The backprojection results with
×10 difference image are displayed in Fig. 5, which suggest
the correctness of the proposed backprojection method. Here
the total relative difference is 0.20 %.

To illustrate the efficiency of M2, the computational costs
are displayed in Fig. 6 with various pitches and undersampling
rates, which clearly suggest that M2 is more efficient than
the conventional backprojection method M1. For example, a
large portion of computational time (69.46% to 96.01%) can
be saved by switching M1 to M2. Moreover, the acceleration
rate increases as the pitch increases or the undersampling rate
decreases.

(a) M1 (b) M2 (c) Difference (×10)

Fig. 5. Backprojection results. The central axial backprojection slice is
presented to demonstrate the correctness of the proposed method M2 in
comparison with the conventional method M1. (a) M1; (a) M2; (c)
difference image (×10) between M1 and M2.

Fig. 6. Computational time for backprojections. The conventional method
M1 (dotted line) and the proposed method M2 (solid line) with various
pitches (from 0.4 to 1.2) and various underampling rate (from 6.25% to
100.00%).

IV. CONCLUSION

We have proposed a shift-invariant projection and back-
projection method based on a self-consistent coordinate so
that the projection and backprojection matrices can be stored
instead of being repeatedly computed on-the-fly. Numerical
results demonstrate that the proposed method can speed up
the projection by 3 to 6 folds and the backprojection by 3 to
16 folds using standard configuration of helical CT.
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Abstract—X-ray inspection plays an important role in ma-
terials identification for airline security. Switched dual-energy
(SwDE) systems allow material identification by reconstructing
the Compton and photoelectric (PE) coefficients of scanned
objects, but dual-energy system performance can be strongly
impacted by metal or other highly attenuating materials. Here we
study the potential benefits of using multi-energy photon counting
detectors to reconstruct the Compton and PE coefficients. Using
simulations that employ a modified sinogram decomposition
algorithm and reconstructing images after sinogram decompo-
sition, we see that utilizing measurements from a small (< 10)
number of bins can noticeably improve performance compared
to two bins, in particular when metal is present. In order
to understand fundamental performance limits, we carried out
theoretical calculations of SNR upper bound based on Cramér
Rao lower bound (CRLB) variance estimates. In our parameter
study we consider several materials (aluminum and nylon) for
objects of varying lengths. The CRLB results show general
agreement with our algorithmic reconstructions, confirming that
multi-energy measurements appear to be beneficial. Overall, our
results suggest that further investigation of multi-energy detectors
for airline screening applications is warranted.

I. INTRODUCTION

As terrorism has increasingly threatened aviation security,
airport baggage scanning using X-rays or other technologies
has become increasingly important. The geometric information
provided by CT provides important cues for understanding the
bag contents. Materials identification using only the estimated
attenuation is possible, but dual- or multi-energy systems can
provide additional cues for material identification. Thus, Ying
et al. proposed a two-step dual-energy CT (DECT) process
in which sinogram decomposition is first used to estimate
Compton and photoelectric (PE) coefficient sinograms, after
which each sinogram is reconstructed [1].

While dual-energy methods can provide valuable new in-
formation, the results can be severely corrupted when metal
or other highly attenuating objects are present. We seek to
understand whether multi-energy CT (MECT) using photon
counting detectors can help this problem. As described below,
our simulation work shows that a multi-energy extension of
[1] shows that a multi-energy method can recover Compton
and PE coefficients even in a challenging case where metal
artifacts cause a dual-energy method to fail. We find that, even

though only two quantities (Compton and PE) are estimated,
benefits are seen by including up to 5-10 energy bins.

An important question is whether this improvement reflects
differences in the solution methods used, or a fundamental
difference in the information available with MECT vs. DECT.
Therefore, we calculate theoretical performance bounds using
the Cramér Rao lower bound (CRLB), varying the number of
energy bins as well as material properties of objects being
imaged. This result gives us a theoretical upper limit of
SNR that any algorithm can achieve. Therefore, this approach
provides a general way to predict the SNR trends. As shown
below, the CRLB analysis supports the idea that the multiple
energy bins help improve the reconstruction.

In a classic paper, Alvarez and Macovski [2] computed
the CRLB for dual-energy sinogram decomposition. They
considered the situation where only two individual energy
bins are used and the bins have perfect energy resolution.
Their work was extended to multi-energy bins by Roessl and
Herrmann [3] who modeled both photon-counting detector
systems and energy-integrating detector systems, and further-
more account for the imperfect energy resolution of photon-
counting systems (modeling overlap between energy bins).
We build on this work but assume that only photon counting
detectors are used for MECT.

The structure of this paper is as follows. In the next
section, we review the CRLB bounds calculation for multi-
energy sinogram decomposition. In the Results section, we
briefly describe our simulation results (which using a weighted
multi-energy decomposition method) and then compare trends
from simulations to trends computed using CRLB. Finally, we
conclude and suggest directions for future work.

II. PERFORMANCE BOUND CALCULATION

In this section, the CRLB is used to derive both variance and
SNR of Ac and Ap [4][5].Because here we only use photon
counting detectors to measure the number of photons falling
into each energy bin, no Gaussian noise will be added to our
model. Simplifying the results of Roessl and Herrmann [3]
to consider only photon counting detectors, the likelihood
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function given can be described as the product of Poisson
distributions for each bin (Eq.1).

P (I1, I2, . . . , IM |Ac, Ap) =
M∏
i=1

λIi
i

Ii!
e−λi (1)

where Ii is the photon counts detected at the ith bin and M is
the number of bins, Ac and Ap are the values of the Compton
and Photoelectric sinogram for a given ray path, and λi is the
expected number of counts in the ith energy bin. The number
of counts is a function of two given estimates Ac and Ap, and
is modeled as:

λi(Ac, Ap) =

∫
Si(E)e−AcfKN (E)−Apfp(E)dE (2)

where Si(E) is the spectrum for ith bin. We can simulate the
spectra for MECT using the model in [3], which models the
energy resolution caused by the photon counting detectors, ac-
cordingly for imperfect energy resolution (see [3] for details).
Then the log-likelihood can be written as

L = lnP (I1, I2, . . . , IM |Ac, Ap) =
M∑
i=1

[Iilnλi − λi − ln(Ii!)]

(3)
We assume the parameter vector is θ = [Ac,Ap]

T . The Fisher
information matrix with respect to Ac and Ap is

I(θ) =

[
Fcc Fcp

Fpc Fpp

]
(4)

Each element in the matrix is

Fαβ = Fβα = −E
[

∂2L

∂Aα∂Aβ

]
=

M∑
i=1

1

λi

( ∂λi

∂Aα

)( ∂λi

∂Aβ

)
(5)

where α and β are a notational shorthand and can represent
either c and p. Then inverting the Fisher information matrix
I(θ) yields

I−1(θ) =
1

det(I(θ))

[
Fpp −Fcp

−Fpc Fcc

]
(6)

We know that var(θ̂i) ≥
[
I−1(θ)

]
ii

[4], so CRLBs for Ac

and Ap are

var(Âc) = σ2
Ac
≥ 1

det(I(θ))
Fpp =

1

det(I(θ))

M∑
i=1

1

λi

( ∂λi

∂Ac

)2
var(Âp) = σ2

Ap
≥ 1

det(I(θ))
Fcc =

1

det(I(θ))

M∑
i=1

1

λi

( ∂λi

∂Ap

)2
(7)

The lower bound of variance is shown in Eq.7, so the upper
bound of SNR given Ac and Ap is

SNRAc ≤
Ac

σAc

SNRAp ≤
Ap

σAp

(8)

(a) (b)

(c) (d)

Fig. 1: Simulation for a phantom with high attenuation (alu-
minum center). First row: reconstructions using SwDE. Second
row: reconstruction using MECT with 7 bins. Compton images
are in the left column with PE in the right column.

Below we express SNR in decibels. For raypath k, Ac, Ap

are given by the line integral through any objects along that
raypath of either Compton coefficients or PE coefficients. We
can learn from Eq.5 that the SNR upper bound is a function
of Ac, Ap and M . In the following sections, we will explore
the relationship between these three variables and compare the
results to the realistic simulations of different attenuations.

III. RESULTS

To simulate the Compton and PE reconstructions, we con-
struct a phantom with aluminum in the middle, which has
a high attenuation (labels in Fig. 1c). We simulated data
for a switched dual-energy system (SwDE), in which the
object is scanned twice using different spectra (spectrum are
taken from [7] and integrating detectors are used (here we do
not model additive Gaussian noise for the SwDE detectors,
which would degrade SwDE performance). We also simulate
performance for the same phantom using a multi-energy (7
bin) approach, by extending the work of Ying et al. to the
multi-energy case and also weight the data for different bins
by the number of counts. The optimization problem solved is:

(θk) = argmin
θk

(K(θk)−mk)TΣ(K(θk)−mk) (9)

where θk=
[
Ak

c , A
k
p

]
are the estimated quantities for ray k,

K is the forward model, K(θk) is the estimated M di-
mensional column vector of log-normalized mean values,
and mk is the data, as a M dimensional column vector of
log-normalized measured projections. The weighting term is
given by Σ=diag{w} where w is the number of counts. This
weighting term is found from a quadratic approximation to
likelihood function and was proposed by Bouman for CT

The 4th International Conference on Image Formation in X-Ray Computed Tomography

304



reconstruction [6]. This weighting was found to noticeably im-
prove performance. For both SwDE and MECT, after the data
are decomposed into Compton and photoelectric coefficients,
filtered backprojection (FBP) method is used to reconstruct
the images shown in Fig. 1c.

Fig. 1 shows that the reconstruction using multi-energy bins
(7 bins) can noticeably improve the PSNR of both Compton
and PE images compared to the SwDE. Artifacts in both
Compton and PE images are obviously reduced by using
MECT with the proposed weighted multi-energy solution.

Fig. 1 shows results for a single phantom and a single
realization. We carried out further simulations for phantoms
with high, medium and low attenuation, and averaging across
realizations, to study how the number of bins influences image
domain results. We computed the PSNR of Compton and PE
reconstructions utilizing Eq.9. Here we use a unified peak
signal value to calculate the PSNR for all three phantoms,
which is the true Compton and PE coefficients of aluminum
(0.37 KeV3cm−1 and 72440 cm−1 respectively). Moreover,
the phantom with medium attenuation is the same as Fig. 1c
but the aluminum is replaced by cotton and ethanol is replaced
by aluminum; the phantom with low attenuation is also Fig.
1c but only aluminum is substituted by cotton. Similar to
the calculations of SNR upper bounds, we reconstructed the
Compton and PE images using both MECT and SwDE within
the range of 2 to 10 energy bins. For each point, we obtain
the PSNR by taking the average of 30 calculations. The
results are shown in Fig. 2. The circles in the figure represent
the PSNR of SwDE. We can notice that the PSNR of high
attenuation is obviously lower than the PSNRs of medium
and low attenuation. This is close to the result of SNR
upper bound, where the SNR upper bound decreases with
the increasing length of material. Fig. 2 also shows that the
increment of the number of bins can slightly improve the
PSNR. For Compton and PE images, the improvement caused
by MECT is observable when the bin number is less than
5, but the PSNR becomes flat with continuous increase of bin
number, which shows a trend similar to the SNR upper bounds.
Furthermore, the improvement is not apparent for the phantom
with high attenuation. This is result from the relatively high
mean square error (MSE) of the reconstructions with high
attenuation since MSE is the denominator of PSNR. Fig. 2
also presents the PSNR obtained by using SwDE. The PSNR
of SwDE is much lower than MECT with 2 energy bins.
Over 20 dB improvement can be seen for all three phantoms.
The result demonstrates a significant benefit of using MECT
in reconstructing Compton and PE images in contrast with
SwDE.

CRLB RESULTS: As a next simulation step, we used
the CRLB calculations described previously to study the SNR
upper bounds with respect to the number of bins as well
as the length and type of material along a raypath. In the
simulation, we calculated the SNR upper bound for 2 bins
to 10 bins. For each bin, we used the model of Roessl and
Herrmann where realistic energy resolution is considered to
obtain the spectrum [3]. We also compare the SNR upper

(a) (b)

Fig. 2: Image domain: PSNR (Peak SNR) of both Compton
and PE image reconstructed by the weighted method using
photon counting detector (weighted MECT), as a function of
number of energy bins. The circles in the figure represent
the weighted SwDE method. The results demonstrate that the
PSNR of weighted SwDE method is much lower than the
weighted MECT.

(a) (b)

Fig. 3: Sinogram domain: CRLB-predicted SNR upper bounds
for aluminum and nylon. The solid lines indicate the MECT;
the dashed lines indicate the SwDE

bound for SwDE using integrating detectors to MECT using
photon counting detectors. The asterisks connected by dashed
lines in Fig. 3 indicate the SNR upper bounds generated by
SwDE. Because the SNR upper bound is a function of the
amount of attenuation and the number of energy bins, for each
bin number, we simulated different lengths of material. Here
we choose 1 cm, 5 cm and 10 cm, which cover a range that
reflects how the length influences the SNR upper bound.

In this section, we also study the effects of material at-
tenuation, using aluminum and nylon as examples of high-
and low-attenuation materials. The Compton and PE coeffi-
cients for aluminum are 0.37 KeV3cm−1 and 72440 cm−1

respectively. The Compton and PE coefficients for nylon are
0.1325 KeV3cm−1 and 2771 cm−1 respectively. Thus the
SNR upper bounds for these two materials can be used to
provide useful information how material attenuation affects
the reconstructions.

In work not shown here, we also computed the SNR
upper bound for MECT with perfect energy resolution (‘ideal
MECT’), which means each bin is ideally resolved without
energy overlap. The result shows almost no difference in
CRLB predictions between the SNR upper bound of MECT
using Roessl’s model and the upper bound of ideal MECT.

As shown in Fig. 3, for MECT using photon counting
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TABLE I: The predicted SNR (in decibels) for upper bounds
of 2 bins and 3 bins, modeling ray paths passing through
aluminum. While Fig. 3 assumes that all energy bins have
equal size in keV, the results shown here were found by a
brute force search to find optimal, unequal bin sizes

Compton photoelectric
2 bins 3 bins 2 bins 3 bins

5 cm 71.03 71.56 64.99 65.78
10 cm 65.71 66.30 55.68 56.64

detector the number of bins has a positive effect on the SNR
upper bound when the bin number is small. The SNR upper
bound shows little increase as the number of bins increases
beyond 5 bins. However, we can observe that the SNR of 2
bins using MECT is higher than the SNR of 3 bins for the case
of 5 cm aluminum. While this appears counter-intuitive, it is
explained because our calculation assumed that energy band
are divided into equal keV ranges, which may not be ideal. If
we instead tune to find the optimal separator of energy ranges
(instead of splitting the energy range into 2 or 3 equal bins),
we can see from Table I that the best SNR upper bound for 3
energy bins is slightly better than the one for 2 energy bins, as
expected. This suggests that unequal energy bin spacing may
be of some value.

Unlike aluminum, the improvement of nylon is more no-
ticeable as the number of bins increases, but the improvement
becomes increasingly small as the number of bins grows
beyond 5 bins. As we can see, the SNR upper bound of SwDE,
which is indicated by the dashed lines in Fig. 3, is much lower
than MECT for both aluminum and nylon. Considering that
SwDE employs integrating detectors which generate Gaussian
noise (which we are not including in calculations) in addition
to Poisson noise [8], the improvement made by MECT in
reality may be understated, showing the potential of using
MECT for realistic Compton and PE reconstructions.

In addition, the variance of SNR upper bound also depends
on the length of material. For both Compton and PE coeffi-
cients, when the length is small (1 cm), the upper bound of
aluminum is higher than nylon. With the increasing length of
materials, the SNR upper bound of aluminum becomes lower
than the upper bound of nylon. Our simulation of the SNR
upper bound with respect to the length of materials shows
that the SNR of aluminum drops much faster than nylon as
the length increases, which demonstrates that the SNR of
aluminum is more sensitive to the changing length.

IV. CONCLUSION

In this paper, we presented both simulation results and the-
oretical performance bounds for dual-energy and multi-energy
systems, assuming a sinogram decomposition method is used
to decompose data in Compton and photoelectric coefficients.
We first reviewed for CRLB computation for multi-energy
using photon counting detectors. We then presented both
image-domain simulation results and sinogram-domain perfor-
mance predictions for switched dual-energy and multi-energy
systems. The results show that the trend of for simulated

performance (PSNR) is similar to the predicted theoretical
SNR upper bound. Increasing number of bins can improve
the PSNRs of reconstructions regardless of the attenuation of
material, though gains become limited as the number of bins
increases. In both sets of results, multi-energy performance
was better than switched dual-energy, showing the promise of
MECT for the Compton and PE reconstructions.

The work shown in this paper is based on a combination of
simulated data and performance bound calculation. Our future
work will be focused on attempting to demonstrate these gains
using experimental data, studying various phantoms. We will
study whether or not use of multiple energy bins can improve
the reconstructions for the realistic data, and how performance
varies with the number of energy bin.
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Abstract—We propose a CT image denoising strategy by 

combining the block-matching and 3D filtering (BM3D) 
denoising method with an estimated CT image noise model. The 
BM3D method, first developed by Foi in 2007, realizes highly 
effective image denoising through grouping similar image blocks 
into 3D arrays and applying collaborative filtering on them. 
However, the BM3D method cannot be directly applied to CT 
images because of the inhomogeneous noise distribution property 
of CT images. We therefore modify the original BM3D method 
by considering local directional noise property during the cube 
matching step and the hard thresholding step. By applying this 
modification to the original BM3D method, CT images can be 
better denoised, and especially the streak artifacts caused by the 
electronic noise in the CT rawdata can be greatly reduced 
comparing to the original BM3D results. 
 

I. INTRODUCTION 
n the CT field, minimizing the x-ray radiation exposure 

has always been a major effort for researchers. Meanwhile, 
reducing the radiation exposure always leads to more severely 
degraded CT images because of the quantum noise in the 
low-dose scanned rawdata. Therefore, effective denoising 
techniques are needed for these low-dose CT images, in order 
to obtain acceptable images for clinical diagnosis. Denoising 
can be applied either on the sinogram data for image 
reconstruction or on the reconstructed images directly, as long 
as they successfully model the noise property of the sinogram 
or the images. Currently, denoising methods which 
successfully model the noise property of CT scans are often 
applied on the sinogram data [1~2], but fewer methods 
directly applied on image domain manage to consider the 
specific noise characteristics of CT images. In this paper, our 
goal is to develop an effective image denoising method 
particularly designed for CT images by considering the 
specific noise distribution property of them.  

The BM3D method developed by Foi[3] is an effective 
nonlocal denoising algorithm. It achieves good noise 
suppression and spatial resolution preservation at the same 
time, based on two successive steps: block-matching and 
collaborative filtering. In the block matching step, an 
enhanced sparse representation of an image is achieved by 
grouping similar image blocks to form 3D data arrays. 
Collaborative filtering is then applied on these 3D arrays to 
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attenuate image noise as well as preserving unique details 
shared by the 3D arrays. The collaborative filtering approach 
includes the following four  steps: 1) transform 3D groups into 
sparse group spectra; 2) shrink these spectra by a hard 
threshold; 3) inverse 3D transform the shrinked spectra; 4) 
aggregate the block-wise estimates to obtain the final denoised 
image. A detailed description of the BM3D algorithm can be 
found in [3].   

 In this paper, we propose a modified BM3D algorithm 
specifically designed for CT image denoising. Directional 
local noise estimation is obtained by estimating noise 
characteristics of the low-dose rawdata and analyzing the 
relationship between noise distribution in rawdata and in 
reconstructed images. Two steps in BM3D algorithm are then 
modified by taking consideration of the image noise 
estimation results, which are emphasized in Fig. 1. Firstly, we 
modify the block-matching step by considering the directional 
noise at a certain pixel when computing the similarities 
between nearby image blocks; Secondly, we modify the 
hard-thresholding step by adapting the hard threshold to 
different noise estimation levels at different pixel locations. 
The conducted experiments with the proposed method show 
that it can reduce streak artifacts and random noise effectively, 
as well as preserving acceptable spatial resolution.  

 

II. PROPOSED METHOD 

A. Modification of “Grouping by Block-Matching” Step 
The first modification is on the grouping by block-matching 

step. We describe briefly the basic process of this step in the 
original BM3D method at first and then our modifications in 
the following. 

The general idea of grouping by block-matching is to find 
image blocks which are similar to a reference image block and 

Noise Model-Based CT Image Denoising by 3D 
Transform-Domain Collaborative Filtering 

Hongyan Liu 

I 

Fig. 1.  Flowchart of the BM3D image denoising algorithm. Note that two 
steps emphasized by italic font are modified in the proposed method for CT 
images. 
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then group them together in a 3D array. After all the reference 
blocks are processed, a sparse representation of the image is 
obtained which is then used for the collaborative filtering 
process. During this step, we measure the similarity between 
the two image blocks by calculating the L2-distance, and 
blocks are considered similar and grouped only when their 
similarity with respect to the reference one are smaller than a 
given threshold. 

We denote Zx an image block of fixed size N1×N1 extracted 
from a noisy image z, where � is the coordinate of the top-left 
pixel of the block. Then the similarity between a reference 
block ZxR and a neighbor block Zx could be calculated as 
 

                            

S ZxR, Zx( ) =
ZxR − Zx 2

2

N1
2

,  (1) 

 
where � � ��  denotes the L2-norm. Using (1), the result of 
grouping by block-matching is a set which contains the 
coordinates of all similar blocks with respect to ZxR, 
 

                    

SxR = x ∈ X : S ZxR, Zx( ) ≤ τ xR,x
match{ },  (2) 

 
where X � �� denotes the image domain, and the parameter 
τxR,x

match is the maximum similarity for the two blocks ZxR and Zx 
to be considered similar. 

In the basic BM3D method[3], a fixed threshold τmatch is 
given so that τxR,x

match=τmatch for any given xR and x. However, 
this general threshold for block grouping is no longer used in 
our proposed method because of the anisotropic, locally 
varying noise distribution of CT images. In order to consider 
the influence of noise during selecting similar image blocks, 
we define the noise-dependent grouping threshold as 

 

                          

τ xR,x
match = τ match /σ pixel (xR,x )

2 ,  (3) 

 
where σpixel(xR,x)

2  denotes the directional noise variance estimate 
at the location of �� in the direction along a straight line 
connecting �� and �. Referring to the noise model built in [4], 
the directional noise variance σpixel(xR,x)

2  of an image pixel xR is 
proportional to the noise variance of ray projection pj(xR,x), 
which is an integration of pixel values along a line through 
pixel xR and x. According to [5] and our discussion above, we 
can derive the variance of pj(xR,x) , as well as the directional 
pixel variance σpixel(xR,x)

2  as 
 

                

σ pixel (xR,x )
2 ≅ σ proj ( j (xR,x ))

2 ≅ 1

λ j

exp −pj (xR,x )( ),  (4) 

 
where λj is the estimated photon count of projection j where 
there is no object present. By redefining the grouping 
threshold in (3), the directional noise level is considered when 
deciding whether or not a neighbor block is similar with the 
reference block.  For one certain reference block, neighbor 

blocks in different directions are given different threshold 
values based on the noise estimate results. If a ray projection 
through the center of the reference block goes through a large 
amount of tissues in one direction, the neighbor blocks in that 
direction are going to be given a relatively large directional 
noise variance σpixel(xR,x)

2 . It means these neighbor blocks are 
given smaller threshold values, and information in that 
direction, which usually contains streak artifacts, will be much 
less preserved in the grouped 3D arrays, and thus be 
suppressed in the final denoised image after the collaborative 
filtering process. 

B. Modification of “Hard-Thresholding” Step 
The hard-thresholding process is conducted on the 3D 

transform spectrum of the formed 3D grouped array. In the 
basic BM3D method, this process allows for effective noise 
attenuation by applying a general hard threshold λ_3D on the 
transform coefficients. However, this general hard threshold 
used in the transform domain needs to be adapted to different 
noise estimation levels at different pixel locations, in order to 
achieve a good denoising effect for the whole image. 

In reference [6], derivation of accurate theoretical noise 
estimation is provided for 3D FeldKamp images, and the idea 
of their derivation process can be adapted to images 
reconstructed by other methods, such as a WFBP 
reconstruction algorithm described in [7]. Fig. 2(b) shows 
noise variance estimation of Fig. 2(a), and we could see in the 
image that areas near the center of the object often have much 
higher noise level comparing to areas near the edges of the 
object. Pixel-wise hard threshold is then obtained by a 
multiplication of the fixed threshold and the pixel-wise noise 
estimation. 

 

III. EXPERIMENTAL RESULTS 
The proposed modified BM3D method was validated by 

several experimental projection datasets acquired by NeuViz 
64 CT Scanner, and we here present only results from one 
example dataset due to the length limits. For the example 
dataset, protocol of 120 kVp, 200mA and 0.6 sec/circle was 
used, and images of 1mm-thick were reconstructed with 3D 
weighted filtered back-projection. Both the modified BM3D 

     
                             (a)                                                          (b) 
Fig. 2.  An example of noise estimation result. (a). Image reconstructed by 
weighted-FBP method from a patient scan(display window width 
300,window level 1000); (b). Noise variance estimation of (a). 
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method and the basic method were applied on the CT images, 
in order to view the improvements of the proposed method 
comparing to the original BM3D. We also provide nonlinear 
sinogram smoothing results[1] for the purpose of comparison. 

For our proposed BM3D methods, we skipped the 
Wiener-Filtering step, and remained only the hard-threshold 
step for the simplicity of calculation. Results showed that 
images obtained with or without the Wiener-filtering process 
show no obvious difference for our modified BM3D method. 
Parameters for both the proposed and original BM3D method 
used values from the last column in Table I from [3]. The 
exceptions included: τmatch

ht  and λ3D , which were modified 
following the discussion in Section II in our proposed BM3D 
method, and σ, which we set to 30 for our example data set. 
For the sinogram smoothing experiment, we select parameter 
values to reach an approximate 45% noise reduction.  

Fig. 3 gave experimental results for two images at different 
z plane. Both the basic BM3D and our proposed method 
demonstrated better noise reduction effect comparing to the 
nonlinear sinogram smoothing method, as well as maintaining 
a better spatial resolution. By comparing our modified BM3D 
method with the basic BM3D, it can also be seen from the 
figure that our modified BM3D suppressed streak artifacts 
effectively whereas the basic BM3D hardly showed any streak 
artifact suppression.  

 

IV. DISCUSSION AND CONCLUSION 
We develop a modified BM3D algorithm specifically 

designed for CT image denoising by taking into consideration 
the anisotropic, inhomogeneous noise property of CT images. 
The modified BM3D method reduces streak artifacts more 
effectively comparing to the basic BM3D, and thus 
demonstrates better performance for CT image denoising.  

Several issues should be concerned and studied in our future 
work. Firstly, more experiments on images of different parts 
of the body should be conducted, in order to determine 
whether significant information loss will be caused by the 
modified BM3D algorithm. Secondly, we should consider 

developing a modified BM4D[8] algorithm to achieve better 
x-z plane images.  
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(a)                                                                                            (b) 

     
(c)                                                                                            (d) 

     
(e)                                                                                            (f) 

     
(g)                                                                                            (h) 

Fig. 3. (a) and (b). Original images reconstructed by weighed FBP; (c) and (d). Images denoised by modified BM3D method; (e) and (f). Images denoised by
original BM3D method for comparison; (g) and (h). Images denoised by rawdata smoothing method for comparison. 
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Material Decomposition for Wide-Cone
Dual-Energy CT Using Fast kV Switching

Hewei Gao*, Adam Cohen and Priti Madhav

Abstract—In this study, a projection-space material decompo-
sition for wide-cone dual energy CT using volumetric fast kV
switching is presented and evaluated in terms of quantitative
accuracy and uniformity. A comparison between projection-space
and image-space material decomposition is also conducted on
virtual monochromatic images, including an assessment of CT
number uniformity across 160 mm of detector coverage in Z.
Results of two phantoms with multiple contrasts at various dose
levels shows that highly quantitative CT spectral imaging can be
achieved using volumetric fast kV switching.

Index Terms—Material Decomposition, Dual Energy CT, Fast
kV Switching, Wide-Cone CT

I. INTRODUCTION

THANKS to its capability of discriminating materials and
making CT quantitative, dual energy computed tomog-

raphy (CT) imaging has been more and more widely used in
clinical diagnosis, as well as industry and security inspections
[1]. Volumetric fast kV switching based dual energy spectral
imaging on a wide-cone CT system, with detector coverage of
160 mm and more, have many clinical benefits, including the
ability of providing material density images for whole organs
such as the heart in a single rotation. For the volumetric fast
kV switching, a fully physics-based projection-space material
decomposition has been developed with an advanced spectral
modeling of both X-ray source and detector including the
heel effect. For wide cone CT, the heel effect becomes a new
challenge due to the fact that X-ray photons at smaller incident
angles are attenuated more by the anode target itself than those
at larger angles [2].

The main aim of this study is to present the projection-space
material decomposition for wide-cone dual energy CT using
volumetric fast kV switching and to evaluate its quantitative
accuracy and uniformity.

II. METHOD

The dual energy acquisition with fast kV switching, com-
bined with projection-space material decomposition is cur-
rently deployed as Gemstone Spectral Imaging on the GE
“Discovery CT750 HD” system and the GE “Revolution HD”
products. The principals used here are similar but extended to
wide cone coverage.

A. Spectral Modeling for Wide-Cone Dual Energy CT Using
Volumetric Fast kV Switching

Taking advantages of the advanced 3D anti-scatter grid
along with hardware improvements on X-ray tube, high-

All authors are with the GE Healthcare, Waukesha, WI 53188 (E-mail:
gaoh@ge.com).
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Fig. 1. An illustration of a fully physics-based advanced spectral modeling
and project-space material decomposition (MD).

voltage generator and low-electronic-noise detector on a 160-
mm wide-cone CT system (Revolution CT, GE Healthcare,
Waukesha, WI), an advanced spectral modeling and a fully
physics-based projection-space material decomposition ap-
proach have been developed, where the heel effect on the X-
ray tube and the non-uniformity of spectral response on the
detector are also modeled, as illustrated in Fig. 1.

The modeling of low and high kV spectra is fundamental
for dual energy CT. For fast kV switching, the tube output
spectra for low (Tl(E)) and high kV (Th(E)) are controlled by
the waveform design in the high voltage generator and may be
characterized in the detailed calibration stages [3]. For a wide-
cone dual energy CT system, the effective low and high kV
spectra (Sl(E) and Sh(E)) consist of multiple components,

Sl(E) = Tl(E)Hl(E) exp (−Σμi(E)Di(E))η(E),

Sh(E) = Th(E)Hh(E) exp (−Σμi(E)Di(E))η(E), (1)

where, Hl(E) and Hh(E) represent the heel effect; μi and Di

denote the attenuation coefficients and thickness of a given
filter in the beam; η(E) is the detector energy response. In
an ideal case, η(E) = 1− e−μdet(E)Ddet , with μdet and Ddet

being the attenuation coefficients and thickness of the detector
scintillator. In reality, however, it could vary from one detector
cell to another.

B. Material Decomposition Approach

A key assumption in dual energy CT imaging is that the
attenuation coefficients of any material can be represented
by two basis materials (or two basis physical effects) when
ignoring k-Edge [4], [5]. For dual energy CT, a pair of
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projection data that are acquired under low and high kV can
be written as

pl = − ln

(∫
Sl(E)e−(

μ
ρ )1(E)m1−(μ

ρ )2(E)m2dE∫
Sl(E)dE

)
,

ph = − ln

(∫
Sh(E)e−(

μ
ρ )1(E)m1−(μ

ρ )2(E)m2dE∫
Sh(E)dE

)
. (2)

Here, (μρ )1(E) and (μρ )2(E) are the mass attenuation coef-
ficients of two basis materials selected; m1 and m2 are the
corresponding density path lengths.

Once the dual energy low and high spectra Sl(E) and
Sh(E) are obtained, it is straightforward to generate m1

and m2 from pl and ph in projection space using Eq. (2).
This process is called material decomposition (MD), which
is usually a nonlinear process due to the polychromatic beam
used in X-ray CT. It also requires good data alignment between
pl and ph. In practical applications, the material decomposition
may be approximated by polynomial functions [6] such as

m1 = Σαijp
i
lp

j
h,

m2 = Σβijp
i
lp

j
h, (3)

with αij and βij being the MD coefficients that can be derived
using Eq. (2).

Alternatively, materials may be decomposed after recon-
struction in image space, which is equivalent to using just the
linear teams in Eq. (3). Compared with projection-space MD,
Image-space one has advantages of simplicity and no need
of data alignment between low kV and high kV but it could
easily suffer in beam hardening artifact and MD inaccuracy.

III. EVALUATION CONDITIONS

In order to evaluate the performance of MD accuracy and
uniformity at various situations, two phantoms filled with
multiple levels of iodine contrasts (as shown in Fig. 2)) were
scanned using fast kV switching under various dose levels
(CTDI ranging from 5.3 mGy to 19.1 mGy):

• Phantom A: liquid iodine-rod phantom (24.5 cm in di-
ameter, custom made) where density of water is known
with high confidence. There are 3 tubes symmetrically
inserted in the phantom that can be filled with liquid.
In our evaluation, we filled water in the tank and three
different iodine concentrations (corresponding to about
230, 290 and 330 HU at 120 kV) in the tubes.

• Phantom B: GAMMEX dual-energy phantom (33 cm
in diameter, made by Gammex, Inc., Middleton, WI)
where densities of iodine contrasts are known with high
confidence (5, 10 and 20 mg/cc of iodine rods).

After projection-space MD and conventional image re-
construction, MD accuracy and uniformity are measured on
selected contrast locations as regions of interest (ROIs). The
values are averaged over central 25-mm thickness along Z and
compared with ground truths.

In order to evaluate the MD performance at increased heel
effect, phantom A was also scanned at 160 mm collimation us-
ing volumetric fast kV switching. The CT number uniformity
across Z were measured on the virtual monochromatic images

12.8 mg/cc /cc 10 mg/cc 

8.6 mg/cc 

33 cm 

5 mg/cc 
10 mg/cc 

20 mg/cc 

(a) (b) 

(c) (d) 

Fig. 2. Two phantoms used in this study. (a) photograph and dimension
of phantom A; (b) in-plane CT image of phantom A; (c) photograph and
dimension of phantom B; (d) in-plane CT image of phantom B.

Edge BB 

Edge AA 

Center CC 

Locations in Z 

Z 
di

re
ct

io
n 

(5 mm thickness) 

L: 315 
W: 50 

Fig. 3. The three Z-positions selected for evaluation of CT number Uniformity
across Z with the increased heel effect. Display window width: 50 HU, level:
315 HU.

generated at 70 keV, for both fully physics-based projection-
space MD and pure image-space MD without any advanced
post processing.

As the heel effect changes monotonically from one de-
tector side to another, the CT number values of the same
dense material , in general, vary monotonically along the
Z direction as well. To measure the CT number uniformity
quantitatively, three positions in the Z direction (“CENTER”
and two “EDGES”) are selected , among which the maximum
difference are computed and used as our figure of merit, i.e.,

Δ = max (HUA, HUB , HUC)−min (HUA, HUB , HUC)

where HUA, HUB and HUC represent the averaged CT
numbers (over 5 mm thickness) in the three Z-positions as
shown in Fig. 3. The smaller the Δ value is, the better the CT
number uniformity is.
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Target 

(a) 

(b) 

Fig. 4. MD accuracy and uniformity for water density (a) and iodine density
(b) of phantom A.

IV. RESULTS

A. In-plane MD Accuracy and Uniformity

For phantom A, the in-plane MD accuracy and uniformity
is shown in Fig. 4. Across all the dose and contrast levels, the
density accuracy of water is within 1% (10 mg/cc), and the
density uniformity of water and iodine are within 1% and 5%,
respectively.

For phantom B, the MD accuracy and uniformity is shown
in Fig. 5. Across all the dose and contrast levels, the density
accuracy of iodine is within 5%, and the density uniformity
of water and iodine are within 2% and 5%, respectively.

B. CT Number Uniformity Across Z at Increased Heel Effect

Virtual monochromatic images of phantom A at 70 keV
are shown in Fig. 6, with results from both physics-based
projection-space MD and pure image-space MD, respectively.
Shading artifacts between the iodine rods on the image using
image-space MD are observed as expected.

For all the three iodine rods of phantom A on monochro-
matic image at 70 keV, the averaged CT numbers of selected
ROIs in the three Z-positions are listed in Table I. Their
corresponding reformatted images are shown in Fig. 7. The
maximum CT number change along the Z is less than 5 HU
when using the projection-space MD. Similar level of CT
number uniformity across Z is also achieved by the image-
space MD when one uses slice-dependent MD coefficients. Of
course, cupping artifacts in those iodine rods are still observed.

(a) 

(b) 

Fig. 5. MD accuracy and uniformity for water density (a) and iodine density
(b) of phantom B.

(a) (b) 

L: 0 
W: 50 

L: 0 
W: 50 

Fig. 6. Virtual monochromatic images at 70 keV. (a) Fully physics-based
projection-space MD; (b) pure image-space MD. Display window width: 50
HU, level: 0 HU.

TABLE I
CT NUMBERS (HU) OF SELECTED ROIS ON MONOCHROMATIC IMAGES IN

FIG. 7 AT THREE Z-POSITIONS SHOWN FIG. 3) .

ROI Method HU @Z-Position
Δ

A B C

1
pMD∗ 203.5 205.8 205.4 2.3
iMD1

∗ 201.4 211.8 214.4 13.0
iMD2

∗ 210.5 210.2 211.8 1.7

2
pMD 236.3 239.5 239.4 3.2
iMD1 231.5 244.1 247.5 16.0
iMD2 242.0 242.2 244.6 2.6

3
pMD 309.2 312.7 311.6 3.5
iMD1 297.6 314.4 318.4 20.8
iMD2 311.2 311.9 314.7 3.5

∗pMD: projection-space MD;∗iMD1 : image-space MD with same coefficients for all image slices;∗iMD2 : image-space MD with slice-dependent coefficients.
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Fig. 7. Reformatted monochromatic images at 70 keV for phantom A. (a) ROIs selected; (b) fully physics-based projection-space MD; (c) image-space MD
with one set of MD coefficients for all image slices; (d) image-space MD with coefficients varies to compensate for the heel effect. Display window width:
50 HU, level varies as indicated on the image.

V. CONCLUSION AND DISCUSSION

We presented a fully physics-based projection-space MD
for wide-cone dual energy CT using fast kV switching. The
phantom study on a wide-cone CT system (up to 160 mm of
detector coverage) showed that highly quantitative CT spectral
imaging can be achieved with beam hardening free CT images,
which are the advantages of physics-based projection-space
MD processing.

The increased heel effect can be well compensated in the
projection-space MD, leading to less than 5 HU of CT number
difference across a 160 mm of detector coverage for iodine
levels typical used in clinical applications. A similar level of
CT number uniformity across Z may be achieved by using
image-space MD as well, despite visible beam hardening
artifact.
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Optimizing Iterative Image Reconstruction in
Digital Breast Tomosynthesis via the Hotelling

Observer
Adrian A. Sanchez1, Emil Y. Sidky1, Sean D. Rose1, and Xiaochuan Pan1,2

Abstract—In this work, we present a method for optimizing
linear iterative image reconstruction for signal detection in digi-
tal breast tomosynthesis. The figure of merit used for evaluating
the reconstruction algorithms is the Hotelling observer efficiency
metric, which characterizes the preservation of signal detectabil-
ity from the data, through the reconstruction algorithm, into
the final image. The method is based on prior work optimiz-
ing analytic reconstruction [1], and uses information within a
small image ROI to characterize algorithm performance. The
optimization problem investigated here is a penalized least-
squares problem with either a Tikhonov or “roughness” penalty.
We consider two detection tasks: detection of a small (roughly
100μm) microcalcification and detection of a 2.5mm low contrast
disk. We then compare reconstructed images at a fixed level of
Hotelling observer performance for each penalty (roughness or
Tikhonov) as well as FBP.

I. INTRODUCTION

Digital breast tomosynthesis (DBT) continues to gain
recognition as a valuable approach to obtaining volumetric
breast images, avoiding some of the difficulty posed by
overlapping tissues in conventional projection mammography
[2], [3]. While combining a narrow range of projection angles
allows for some depth-dependent attenuation information to
be captured, the data acquired is insufficient for true three-
dimensional imaging, posing an interesting problem for the
development of image reconstruction algorithms tailored to
DBT.

To date, most efforts in DBT image reconstruction have
used modifications of algorithms developed for x-ray CT.
These algorithms have a wide variety of parameters and
implementation choices, ranging from pixel size and slice
thickness to regularization strength and frequency-dependent
filtering. While experience in x-ray CT provides some basic
insight into the nature of these algorithms and their respective
parameters, there is no guarantee that this experience is suffi-
cient to translate decades of refinement in CT reconstruction
algorithms to this still emerging technology. Instead, exhaus-
tive exploration of algorithm implementations and parameter
settings is warranted for each algorithm, task, and DBT system
design under consideration. An efficiently computed, objective
metric of image quality would greatly simplify this task
and would help to illuminate basic trends of image quality,
providing insight which would be difficult to obtain through
manual parameter tuning with a limited number of data sets.

In this work, we develop an efficient implementation of the
Hotelling observer (HO) [4] for DBT algorithm design. The
HO design we propose is a direct extension of an observer

1The University of Chicago, Department of Radiology, Chicago, IL 60637
2The University of Chicago, Department of Radiation and Cellular Oncol-

ogy, Chicago IL 60637

model we have previously proposed for analytic reconstruc-
tion algorithms [1], and here we extend its application to
iterative reconstruction methods with quadratic objectives.
The HO figure of merit, the HO SNR, is computed in the
image and projection data domains in order to construct an
efficiency metric which can be used for objective algorithm
optimization

The HO has been applied to various aspects of DBT by oth-
ers, including optimization of system acquisition parameters
[5], [6], [7], and, similar to the present study, the exploration
of image reconstruction’s impact on task performance [8], [9].
Unlike most work involving the HO, the method we develop
does not apply dimension-reducing channels to the image or
observer template. Instead, dimensionality of the covariance
matrix is reduced by only considering pixels within a prede-
fined region-of-interest (ROI). Finally, our approach has the
benefit of being non-stochastic, meaning that the metric we
obtain does not arise from an ensemble of noise realizations.
Instead, an analytic quantum noise model is used. This aspect
of the model is flexible, however, and our approach can easily
be modified to accommodate realization-based noise models,
albeit with a resulting statistical uncertainty in the subsequent
efficiency metric.

Here, we focus on two versions of penalized least-squares
(PLS) reconstruction: PLS with a Tikhonov penalty and PLS
with a quadratic “roughness” penalty, which penalizes differ-
ences between neighboring pixels. We specifically investigate
optimizing the regularization weight parameter for a high- and
low-contrast signal detection task, although the method can be
applied to any classification task, as will be discussed with
regard to future work in Section IV. We then compare the
optimized images and performance trends for each iterative
algorithm to similar results previously obtained for filtered
back-projection.

II. METHODS

A. DBT Simulation

We consider a fan-beam acquisition geometry with a con-
figuration meant to mimic the Hologic Selenia Dimensions
tomosynthesis system. The source-to-image distance is set to
70cm, and 0.14mm detector pixels are used. The lateral extent
of the detector is restricted to 2cm centered on the signal of
interest, and the lateral extent of the image ROI used for HO
performance estimation is defined by the back-projection of
this detector area. There are 15 simulated projections, spaced
in 1 deg increments. We include modeling of a 0.4mm focal
spot, as well as finite detector element size through 16-fold
subsampling on the detector.
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We consider the line-integration of a continuously defined
phantom in order to construct projection data which has
already had the negative logarithm applied:

gi =

∫
L

f
(
si + lθ̂i

)
dl + ni, (1)

where bold font indicates a vector, g ∈ Rm is the projection
data, L is defined as the intersection of the ith ray with
the compact support of the object f , si denotes the sources
position, and θ̂i is a unit vector in the direction of the ith
ray. The vector n is an m-dimensional, zero-mean Gaussian
random variable, with diagonal covariance. The variance of
each element of n is given by

Var {ni} =
1

N̄i
+

1

N̄0
, (2)

where N̄0 is the average number of incident photons for
a given ray, and N̄i is the average number of transmitted
photons for the same ray. This model results in the data
covariance matrix Kg with elements given by

(Kg)i,j =

{
exp(ḡi)+1

N̄0
: i = j

0 : else
. (3)

We have set N̄0 = 105 here, but this choice is not critical,
since we are more interested in the relative performance of
different algorithm settings, rather than absolute task perfor-
mance. This noise model could be modified to incorporate
anatomic noise models based on sample images through the
addition of a sample-based covariance matrix to Kg as given
above. The subsequent formalism would remain unchanged.

B. Image Reconstruction

PLS-Tikhonov: We begin by describing PLS reconstruction
with a Tikhonov penalty. In this case, the final image f∗ ∈ RN

is obtained as the solution to the optimization problem

f∗ = argmin
f

‖Xf − g‖22 + λ‖f‖22, (4)

where λ is a free parameter controlling the strength of the
Tikhonov penalty in the second term. The matrix X ∈ RM×N

is a linear projection operator, so that the first term in the
optimization problem enforces fidelity of the image to the
obtained data. Here, we use a ray-driven model where X
computes a sum of weighted line intersection lengths through
the pixels of f∗. We note that this problem can be rewritten
as

f∗ = argmin
f

‖X̃f − g̃‖22 (5)

where we have defined

X̃ =

[
X
λI

]
, g̃ =

[
g

0n×1

]
. (6)

For a small enough number of pixels, the image f∗ can then
be obtained directly through the Moore-Penrose pseudoinverse
of X̃:

f∗ = X̃†g̃, (7)

where the superscript † denotes the pseudoinverse, and re-
duces to the conventional left-inverse if a left-inverse of X̃
exists. As mentioned previously, we consider a narrow lateral

extent of the detector (roughly 2cm), and also simulate a fan-
beam geometry. This is sufficient to allow the pseudoinverse
X̃+ to be computed directly and stored in computer memory.
Meanwhile, the image pixel size is matched to the detector
pixel size, and slice thickness is set to 8.5 times the image
pixel size.

PLS-Roughness: The second algorithm we consider pe-
nalizes differences between neighboring pixels by including
a discrete gradient operator in the vector magnitude of the
penalty term:

f∗ = argmin
f

‖Xf − g‖22 + λ‖∇f‖22, (8)

where the discrete gradient operator ∇ is given by

∇ :=

[dy

dx
∇x

∇y

]
, (9)

where dx is the slice thickness and dy is the image pixel size.
The subscripts x and y appended to the operator ∇ denote that
forward-differencing is performed in the x and y direction,
respectively. Similar to the Tikhonov case, this optimization
problem can be solved by computing a pseudoinverse, as in
Eqn. 7. Here, the matrix X̃ is given by

X̃ =

[
X
λ∇.

]
(10)

C. The Observer Model

As a first step in constructing the Hotelling observer model,
we repeat the result from Ref. [4] that the covariance matrix
Ky of y = Ax is given by

Ky = AKxA
T , (11)

where A is a matrix, and the superscript T denotes the matrix
transpose (or Hermitian conjugate in the case of complex
matrix entries). We can therefore relate the image covariance
matrix Kf to the data covariance of Eqn. 3 as

Kf = X̃†Kg

(
X̃†
)T

. (12)

One benefit of each of the penalties duscussed above is that
they tend to consolidate signal energy into a compact region of
the reconstructed image, avoiding the non-physical solutions
which would be obtained without regularization when X̃ is
poorly conditioned. In order to create an observer model
which is sensitive to this property, we apply a decimation
operator D to the reconstruction operator X̃†. This operator
selects only the slices whose location coincides to the physical
location of the signal in the phantom, discarding other slices.
The final covariance matrix in our model is then given by

KDf = DX̃†Kg

(
X̃†
)T

DT . (13)

The HO’s figure of merit, the HO SNR, is then given by
SNR2

f = (f∗)T DTK†
DfDf∗, where f∗ is the reconstruction

of the signal to be detected. Finally, the efficiency metric of
the HO can be computed as a ratio of SNR2

f in the image
domain to SNR2

g in the data domain, which is given by
SNR2

g = gTK−1
g g. This ratio cannot exceed 1 and will

be equal to 1 only if all of the information in the data
relevant to the given task is perfectly preserved through image
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Fig. 1. Hotelling observer efficiency as a function of regularization strength
for Tikhonov-regularized PLS. Both the calcification detection and low-
contrast disk detection tasks are shown and exhibit similar trends. Interest-
ingly, the plateau seen to the right side of the graph remains level for very
large λ, only dropping once numerical issues preclude computation of the
pseudoinverse.

Fig. 2. Similar to Fig 1, but for the roughness penalty.

reconstruction and the decimiation operator which selects the
appropriate image slice (or slices for a larger object).

Two tasks are studied here as examples: the detection of
a microcalcification, modeled as a Gaussian with full width
at half maximum equal to 100μm, and detection of a low-
contrast disk. The contrast of the microcalcification is set
to the mean attenuation difference between glandular breast
tissue and calcium carbonate for an 80kVp x-ray spectrum.
The contrast of the low-contrast disk is set to 5% relative to
the background.

III. RESULTS

The dependence of HO efficiency on the regularization
parameter λ is shown in Figs. 1 and 2 for Tikhonov regu-
larization and roughness, respectively. A similar plot from a

Fig. 3. Hotelling observer efficiency is shown as a function of the Hanning
filter cutoff in the FBP algorithm. The cutoff is normalized to the Nyquist
frequency of the detector. Note that the horizontal axis is inverted so that
regularization increases from left to right, as in the previous figures. However,
the trend of HO performance with respect to regularization is reversed for
the calcification detection task. The trend is similar to the iterative algorithms
for the low-contrast detection task.

previous study is shown for the FBP algorithm for comparison
in Fig. 3. In each plot the horizontal axis increases with
increasing regularization strength. For the case of FBP, this
is quantified via the cutoff frequency for a Hanning filter
(relative to the detector Nyquist frequency). Interestingly, the
trends for calcification detection are opposite for the iterative
algorithms relative to FBP, with increasing regularization
monotonically improving detection performance for the iter-
ative methods and degrading performance for FBP.

Example images at a fixed HO efficiency level of 0.9 are
shown for each algorithm for the microcalcification task and
low-contrast detection task in Figs 4 and 5, respectively. The
image plane is the coronal (cranio-caudal) plane, which leads
to nonsquare pixels since the slice thickness is not equal
to the in-plane pixel size. One potential application of this
methodology is the comparison of algorithms at fixed task
performance so that other aspects of algorithm performance
(such as resolution or computational efficiency) can be as-
sessed on somewhat equal footing.

IV. CONCLUSION

We have presented a method for applying task-based as-
sessment via the Hotelling observer to algorithm design in
DBT. The method can be applied to conventional analytic
algorithms, as demonstrated previously, as well as iterative
algorithms with quadratic objectives. Various simplifications
have been made here, including a uniform background (known
exactly), as well as a simple quantum noise model. In ad-
dition to simplifying the metric’s implementation, this also
facilitates preliminary validation using phantom data, to be
presented at the CT Meeting. More sophisticated noise models
(such as tissue-mimicking power-law noise) have also been
investigated in our work but are omitted here for conciseness.
Likewise, more complex tasks, such as discrimination tasks
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Fig. 4. Shown here are ROIs of reconstructed images (cranio-caudal
dimension) of the calcification signal from the same noisy data using different
algorithms set at equal levels of HO efficiency. Pixel size, ROI size, and slice
thickness are fixed for each algorithm. Note the variety in image texture and
resolution despite consistent detection task performance for each algorithm.
The display window is [0,vmax], where vmax is the maximum pixel value
in the image ROI.

Fig. 5. Similar to Fig. 4 but for the low-contrast disk detection task. The
display window is set to include the full range of pixel values present in the
image.

which challenge depth resolution are currently under inves-
tigation and will be completed by the time of the 2016 CT
Meeting.
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Lattice Sampling Data Acquisition Scheme as an
Alternative to Helical Scanning for X-ray Micro-CT

William M. Thompson

Abstract—Helical scanning is now beginning to find use in
micro-CT for materials science and other applications, due to
a desire to increase scanning throughput by increasing the cone
angle to make best use out of available x-ray flux. In this situation,
the cone beam artifacts from the routinely used circular scan
become unacceptable. Whilst the helical trajectory satisfies Tuy’s
condition and offers theoretically exact reconstruction, it places
a hard limit on the allowable pitch that may be used.

In many micro-CT systems, the acquisition process can es-
sentially be regarded as taking a series of discrete projections;
therefore, there is no need for the source to follow a contin-
uous trajectory. We present a technique based on a discrete
distribution of source sampling points on a regular lattice, that
removes the pitch limit, and may potentially offer higher scanning
throughput while maintaining acceptable image quality.

I. INTRODUCTION

Cone beam x-ray micro-CT is now a widely-used imaging
technique in materials science research [1]. Recently, it is
also finding use in analysis of geological samples for oil
exploration, where it is necessary to scan long cylindrical cores
of rock at high resolution, in order to characterize the porosity.
The standard technique for scanning such samples has been to
perform multiple circular scans of the object, reconstruct each
scan with the FDK algorithm [2] and “stitch” the resulting
reconstructed volumes together.

This technique results in prohibitively long acquisition times
for routine use, since in order to prevent unacceptable levels of
cone beam artifacts in the reconstruction, the cone angle must
be kept small, reducing the amount of x-ray flux incident on
the detector. In order to speed up the acquisition time to an
acceptable level, it is desirable to increase the cone angle;
for this reason, use of the helical trajectory paired with exact
reconstruction algorithms such as the methods in [3], [4] has
been the subject of recent investigation.

Typically, micro-CT systems rotate the object in the path of
the x-ray beam to scan with a circular trajectory. To achieve
the equivalent of a helical trajectory, an additional object
translation is introduced. Although in reality the object is
moved, we adopt the standard convention that the source and
detector move around the object, which is equivalent by a
simple change in coordinate systems. We define the pitch of
the helix as the ratio of the absolute translation distance per
full source rotation to the detector length of a virtual detector
located at the rotation axis.

Whilst the helical trajectory offers the capability of theo-
retically exact reconstruction, it has the problem that there

Carl Zeiss X-ray Microscopy, Pleasanton, CA 94588, USA. E-mail:
william.thompson@zeiss.com

is a hard limit imposed on the pitch of the helix. If pitch is
increased beyond this value, then regions of the reconstruction
volume no longer receive the required 180 degree angular
range of illumination, introducing severe artifacts. A secondary
disadvantage is that the regions of the volume towards the ends
of the helical trajectory also do not receive the necessary 180
degrees illumination, which necessitates an over-scan of the
trajectory in order to completely cover the region of interest.

The work presented here builds on the author’s previous
work presented in [5] and [6], extending this in generality to
cover the micro-CT geometry. We demonstrate that through the
use of a data acquisition scheme where the source points lie
on a regular lattice surrounding the object, the disadvantages
of the helical trajectory can be mitigated, allowing the pitch
to be increased beyond the theoretical limits of the helical
trajectory whilst maintaining acceptable image quality. If the
time taken to move the system between acquisition points is
small compared to the acquisition time of each projection, as
is often the case in micro-CT of materials, then this can result
in increased overall acquisition speed compared to the helical
trajectory.

II. METHODS

A. A Discrete Approach
The continuous helical trajectory makes complete sense

for medical CT systems, where the source and detector are
physically rotated about the object, and the acquisition time
for each projection is short. However, in typical micro-CT
systems there is no such constraint, and the system can be
regarded as fixed during the acquisition of each projection.
Therefore, the source can be moved to an arbitrary position for
each projection, and we can consider the acquisition process
as a set of discrete points.

If we assume that the source-rotation axis and rotation axis-
detector distances remain constant during scanning, then the
set of all possible source positions is a cylinder surrounding
the object. Allowing the set of acquisition points to be chosen
freely from the set of all possible positions, then instead of a
source trajectory, we now have a pattern of discrete sampling
points on the surface of a cylinder. Lattice sampling refers to
the case when the sampling points are chosen so as to lie on
a regular hexagonal grid, as shown in figure 1. This creates
an even distribution of the source points, which, intuitively,
should result in more even illumination of the object.

B. Generating an Optimal Lattice
A lattice sampling pattern may be generated from a dis-

cretized helical trajectory using a permutation of the possible
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Fig. 1: Lattice sampling pattern (points represent source posi-
tions).

z positions for each angle, where the z-axis is defined as the
axis of rotation. This results in a sampling pattern where the
sets of angular positions and source z positions are the same
as for the helical scan, only the order is changed.

In a similar terminology to the helical trajectory, we define
each complete set of 360 degree projection angles as a revolu-
tion. Then analogous to the pitch of the helical trajectory, we
also define the pitch of a lattice sampling pattern as the ratio
of the range of z values for each revolution, to the detector
length at the rotation axis.

The z coordinate of the ith point on the lattice can be
calculated by

zi = δz

[(
k(i− 1) mod NA

)
+ 1
]
, (1)

where NA is the number of projection angles per revolution,
k is some number coprime to NA, and δz is the distance
between consecutive z points. The number k is chosen so as
to minimize the standard deviation of the distance of a point
on the lattice to its 6 nearest neighbors. Since the lattice is
rotationally symmetrical by construction, only one point need
be considered, and any point may be chosen. The optimization
is a simple empirical process due to the (usually small) finite
number of candidate values of k. Note that the discretized
helical trajectory can also be viewed as the special case of
a lattice for k = 1. The optimal value of k depends on the
number of projection angles per revolution, the pitch, and the
source-rotation axis distance.

Figure 2 shows a flattened out section of the cylinder
of possible source positions, with the sampling patterns for
an optimized lattice, and the equivalent discretized helical
trajectory. Note that the optimized lattice gives a far more
even coverage.
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Fig. 2: Sampling patterns for discretized helical trajectory (left)
and optimized lattice (right).

C. Reconstruction Algorithms

Due to their independence from any specific scanning
geometry, the work so far has focused on iterative methods
for reconstruction. Development of a faster analytical recon-
struction method is currently under review.

III. RESULTS

Noise-free simulated data were generated for a “multi-
sphere” phantom, as shown in the top row of figure 3. Line
integrals were calculated analytically using a simple length-of-
intersection model, and assuming a mono-energetic spectrum.
The phantom is made up of 11 layers of 110 spheres of random
radius between 0.1 and 0.3mm, randomly positioned within a
cylinder of radius 10mm. A uniform distribution was used for
both the spheres’ radii and positions. This phantom was chosen
since it gives results broadly representative of objects that are
often imaged in micro-CT of materials.

Datasets were generated for circle and helical trajectories,
and optimized lattice sampling patterns. For the helical and
lattice cases, two datasets were generated, the first with pitch
1, and the second with pitch 2. Each dataset consists of 720
projections; in the helical and lattice cases this covers one
full revolution. Additionally, for comparison with the pitch
2 reconstructions, a pitch 1 helical dataset was generated
with half the angular sampling rate, covering 2 full source
revolutions. In each case, the source-rotation axis and rotation
axis-detector distances were both equal to 25mm, with a
512 × 512 detector of size 50 × 50mm, giving a half-cone
angle of approximately 26.5 degrees.

Figure 3 compares central and off-center x-y, and central
x-z slices through the reconstructed volumes from the circle
and pitch 1 helical and lattice datasets with the ground truth
images of the phantom. The off-center x-y slices correspond to
the outermost bottom layer of spheres. Figure 4 shows central
x-y and x-z slices through the reconstructed volumes from
the pitch 2 helical and lattice datasets, and the pitch 1 helical
dataset with half angular sampling. In this case it did not make
sense to include an off-center x-y slice, since the entire volume
is within the fully sampled region of the acquisition scheme.

Reconstructions in each case were performed with 30 itera-
tions of the CGLS algorithm, with forward and back projection
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Fig. 3: Reconstructions of the pitch 1 simulated data with
common grayscale window of [−0.2, 0.2]. Top row: ground
truth; second row: circle trajectory; third row: helical trajec-
tory; bottom row: lattice sampling. Left column: central x-
y slice; middle column: off-center x-y slice; right column:
central x-z slice

using the method described in [7]. Reconstructed volumes
were of size 5123 voxels. Figure 5 plots the 2-norm of the
image error for particular x-y slices at each iteration in all
cases.

IV. DISCUSSION

Central x-y slices of the circle and pitch 1 helical and lattice
reconstructions are all of good quality; the low level artifacts
are most likely caused by aliasing due to the forward and back
projection process used in the iterative algorithm. As expected,
the off-center x-y slice of the circle scan reconstruction shows
strong cone beam artifacts. The artifacts present in the off-
center x-y slice of the helical scan are caused by the fact
that this region of the volume is at the end of the helical
trajectory, and as such, regions of the slice do not get the
necessary range of illumination angles. The off-center x-y
slice of the lattice reconstruction shows slightly increased
noise and reduced sharpness, again caused by this slice being

Fig. 4: Reconstructions of the pitch 2 and pitch 1 half angular
sampling simulated data with common grayscale window of
[−0.2, 0.2]. Top row: helical trajectory, pitch 2; middle row:
helical trajectory, pitch 1 with half angular sampling; bottom
row: lattice sampling, pitch 2. Left column: central x-y slice;
right column: central x-z slice.

at the edge of the lattice sampling pattern. The artifacts are
far less severe in the lattice case since the illumination angles
are still evenly spread out, and only get sparser towards the
edges. These observations are backed up by the image errors,
which show similar error levels for the central slice in all
cases. Significantly lower error is observed in the lattice case
for the off-center slice, with a circle scan performing worst, as
expected. This demonstrates that for a given length of object
or region of interest, the necessary amount of extension of the
scan in the z direction is lower for lattice sampling than for
the helical trajectory.

The pitch 2 helical reconstructions show severe artifacts, due
to the pitch exceeding the theoretical limit. Therefore, certain
regions of the volume are not getting the necessary range
of illumination angles. The equivalent lattice reconstructions,
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Fig. 5: 2-norm of image errors. Top: experiments with pitch
1; bottom: experiments with pitch 2, and pitch 1 with half
angular sampling.

although showing more noise than the pitch 1 case, do not
suffer from such artifacts, and are of acceptable quality. Again,
these observations are supported by the image errors, showing
lower error overall for the lattice case, compared to the helical
trajectory.

The purpose of the pitch 2 comparison is to demonstrate that
the strict limits on the pitch of the helical trajectory do not
apply to lattice sampling; as the lattice pitch is increased, there
is a gradual degradation in image quality. Through the use
of reconstruction algorithms incorporating TV minimization
[8], [9], or statistical methods incorporating edge-preserving
regularization [10], it may be possible to mitigate this gradual
degradation and extra noise, but it would not be possible to
mitigate the severe artifacts caused by increasing the helix
pitch beyond its limit. The lattice acquisition scheme may
therefore be able to offer increased scanning throughput com-
pared to helical scanning.

Alternatively, with the helical trajectory, in order to cover

an increased length of the object with the same number
of projections, the pitch can be kept constant, within the
theoretical limit, and the angular sampling rate reduced. For
this reason, a helical scan covering 2 revolutions at pitch
1, with half the angular sampling rate, was added to the
comparisons. Although in this case the severe systematic
artifacts are eliminated, there is still a higher overall level of
error than with the pitch 2 lattice scan. It is possible that these
errors could be reduced by using an exact analytical algorithm,
but that was outside the scope of this investigation.

V. CONCLUSIONS

By placing source positions on a regular hexagonal lattice
on a cylinder surrounding the object, we have demonstrated
that the pitch can be increased beyond the theoretical limit
for helical scanning, whilst still maintaining acceptable im-
age quality. An equivalent number of x-ray projections may
therefore be taken over an increased range in z, offering the
potential for increased scanning throughput.

Although this method is clearly not relevant for medical
scanners, where source motion is generally continuous, it is
well-suited to micro-CT systems where the acquisition time
per projection may be long, and there is complete freedom
of movement of the system between successive projections.
This work demonstrates that in such a system, the helical
trajectory may not be the optimal acquisition protocol. Testing
of the lattice sampling technique on real experimental samples
is currently in progress.
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Abstract— The availability of digital X-ray detectors, together 
with the development of new reconstruction algorithms, open 
the opportunity to the development of new techniques that 
provide 3D capabilities to conventional radiology systems. 
These rely on the acquisition of a limited number of 
projections with non-standard geometrical configurations. 
Computer simulations are a valuable tool to explore the 
possibilities of these techniques before its actual 
implementation on real systems.  
We present a software tool for the design and simulation of X-
ray acquisition protocols. It can be used to study the viability 
of new acquisition protocols on a specific real system or to 
design the optimal system for a given functionality. 
Through a graphical user interface it allows defining flexible 
projection geometries for any X-ray system configuration. The 
software provides a preview of the simulated projections and a 
preliminary reconstruction through GPU-accelerated kernels, 
as well as the scanned field of view (FOV) and the estimation 
of the total radiation dose, to allow the evaluation of the 
protocol in real time. 
We show the utility of the software with a preliminary 
evaluation based on the design of a tomosynthesis protocol and 
the comparison of the simulated projections with the ones 
obtained from the real X-ray system. 

Index Terms—X-ray, simulation, acquisition protocols, 
tomography. 

 INTRODUCTION I.
In the past decades there has been a rapid advance 

towards the use of digital equipment in radiology. The 
introduction of digital detectors, together with a more 
flexible movement of the system, opened the possibility of 
obtaining 3D information from conventional X-ray systems 
using flexible geometrical configurations. This allows 
bringing tomography in situations in which a CT system is 
not available, such as, for instance, during surgery or ICU. 
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On the other hand, there is great social concern regarding 
the radiation dose delivered to the patient. New imaging 
protocols are aimed at improving image information while 
reducing the dose to the minimum possible value, according 
to the ALARA principle ("As Low As Reasonably 
Achievable").  

In this context, computer simulations are a valuable tool 
to explore the possibilities of new acquisition schemes 
before implementing them on real systems. Several 
simulation tools that model X-ray image generation [1]–[4] 
have been developed in recent years. These are able to 
simulate the acquisition of 2D images or tomographic 
studies. However, restrictions generally apply regarding the 
positioning of the source and the detector, which reduce the 
ability to simulate new acquisition protocols based on not-
standard setups. Furthermore, they do not provide a 
straightforward method to adapt the positioning of the 
elements to a real acquisition system. 

In this work, we present a tool that makes it possible to 
design flexible acquisition geometries and protocols 
adapted to specific system configurations, performing 
simulations in near real-time thanks to GPU acceleration 
and providing additional information such as the scanned 
FOV, the preliminary reconstruction or the dose estimation. 

 METHODS II.
The purpose of this software tool is to enable the design 

and simulation of X-ray acquisition protocols. It allows 
defining flexible projection geometries through a graphical 
user interface which provides a near real time preview of 
the acquisition thanks to a fast implementation of a 
projection kernel. The tool is mainly implemented in 
MATLAB, with the exception of the projection kernel, 
which is developed in CUDA to benefit from GPU 
acceleration techniques. 

We define a protocol as a set of positions defined by the 
placement and orientation of the X-ray source, patient and 
detector in the acquisition system. The protocol creation 
workflow is outlined in Fig. 1.  

The first step is to define a set of rules and constraints 
that affect the placement of the three elements for a given 
X-ray system (panel 1 of Fig. 2). We refer to this as system 
definition. For instance, a system definition may allow 
moving the source and detector in opposite directions while 
keeping the FOV centered in the patient’s region of interest, 
replicating a tomosynthesis acquisition. 

A software tool for the design and simulation 
of X-ray acquisition protocols 

Álvaro Martínez*, Alba García-Santos*, Inés García, Estefanía Serrano, Javier García, Claudia de 
Molina, Ramón Polo, Manuel Desco, Mónica Abella 
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Fig. 1. General workflow followed when creating an acquisition protocol. 

 After the selection of the 3D volume representing the 
density map of the patient, the design of the protocol is 
done interactively by adding individual positions. The 
placement of the three elements for each position is done 
through the graphical user interface (GUI) shown in panel 2 
of Fig. 2, taking into account the restrictions of the system 
definition. Alternatively, the positions can be automatically 
generated through the definition of final requirements like 
the size of the scanned FOV, defined as the intersection of 
all the views, which is shown as a solid polygon. 

The preview of the resulting images for each position 
(panel 4 in Fig. 2) is done through a pixel-driven projection 
kernel. This requires translating the geometry defined in the 
real coordinate system, used for the positioning and 
angulation of the three elements within the real system, to a 
second one called the object coordinate system (Fig. 3), 
which is the one used by the projection kernel. We define a 
virtual detector that is placed orthogonally to the line that 
passes through the source and the origin; the intersection of 
this line with the virtual detector’s plane is denoted as , 
and corresponds with its center. 

 
Fig. 3. Visual description of the two coordinate systems used to represent 
the position of the three elements in the GUI and the 
projection/backprojection kernels. 

Fig. 2. Graphical user interface of the protocol design tool. The system definition and 3D volume are set in (1), each position is defined in (2) and 
managed through (3). Simulation is launched and previewed in panel (4). The source spectrum, KV and mAs are set in (5), which also shows the 
dose estimation. 
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Any real detector’s position in the object coordinate 
system is expressed as a set of linear displacements and 
angular tilts applied to a virtual detector position, as shown 
in Fig. 4. This optimal virtual detector is located by first 
calculating the linear displacement (  in Fig. 4) so that the 
source-object line passes through the center of the detector, 
coincident with the  point of the virtual detector. The 
tilting (  in Fig. 4) is then calculated as the angles formed 
between the real and virtual detectors. 

 
Fig. 4. Calculation of the detector position in the object coordinate system. 

The attenuation of the X-rays traversing a material or 
tissue is modeled by the Beer Lambert Law expressed in 
Eq. 1, 

    (1) 

where  is the energy spectrum,  and  are 
respectively the mass attenuation coefficient and density 
map of material , and  is the result of the projection 
kernel. The energy spectrum, as well as the mass 
attenuation coefficients and density thresholds for each 
material are provided in text files along with the raw 
volume data. The  projection images are displayed 
on panel 4 of Fig. 2. 

Panel 4 of the GUI additionally displays a preview of the 
reconstruction, obtained by one of the two currently 
available methods: an FDK-based kernel implemented in 
CUDA, and the shift-and-add algorithm for tomosynthesis.  

In order to evaluate the tradeoff between image quality 
and radiation dose, an estimation of the Dose Area Product 
(DAP) is also performed and showed in the GUI. The DAP 
used in assessing the radiation risk [5], is calculated for 
each projection following Eq. 2,  

   (2) 

where  corresponds to the used tube current (mAs),  to 
the focal distance in cm,  to the field size (cm2),  to the 
reference beam quantity, and α characterizes beam quantity 
dependence with Kilo-voltage. The reference beam quantity 
is previously obtained at 80kV and a source-to-detector 
distance of 100cm according to Eq. 3,  

        (3) 

Once a protocol is designed, its positions can be 
translated into the real system taking into account its own 
coordinate system and units, included in the system 
definition file. 

 PRELIMINARY VALIDATION III.
Preliminary evaluation of the tool was done based on the 

Sedecal NOVA FA digital radiography system shown in 
Fig. 5, which consists of an automatic ceiling suspension, a 
mobile elevating table and a tilting vertical wall stand 
system.  

 
 

Fig. 5. Picture of the NOVA FA radiography system 

We created a system definition file representing a 
tomosynthesis configuration in which the patient is placed 
on the table and both the X-ray tube and the detector follow 
a linear trajectory with opposite directions. These are shown 
in Table 1. 

 
Movement range (mm) x y z 
Source 0 1000 [-800,800] 
Detector 0 0 [-400,400] 
Angular range (º)    
Source 0 [-30,30] 0 
Detector 0 0 0 

Table 1. System definition for the tomosynthesis protocol. Only relevant 
parameters are listed. The values in gray are locked, the ones in cursive are 
common to all positions and the rest can be freely set withing the allowed 
ranges. 

 
Fig. 6.  Picture of the PBU-50 antropomorphic phantom (left) and axial, 
coronal and sagittal views of the CT volume (right). 

The sample is a life-size human thorax phantom (PBU-50 
model shown in Fig. 6, manufactured by Kyoto Kagatu), 
acquired previously with a Toshiba Aquilion/LB 
(512×512×1645 voxels, 0.931×0.931×0.5 mm voxel size). 
Axial, coronal and sagittal slices of are also shown in Fig. 
6. 
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We created a tomosynthesis protocol with seven 
positions setting the source-to-detector distance to 1500 mm 
at the central position, and the appropriate constraints to 
cover the desired FOV. Fig. 7 shows a diagram of the 
described acquisition protocol. 

 
Fig. 7. Diagram representing three of the seven positions of the designed 
tomosynthesis protocol. The blue polygon outlines the total scanned FOV. 

The obtained positions were translated into the 
coordinates of the real system in order to perform the 
acquisition of the phantom. The images were acquired with 
a Perkin Elmer XRpad 4336 flat panel detector with a pixel 
size of 100 μm and a matrix size of 4320×3556 pixels. 

The capture of the GUI in Fig. 2 shows the results of 
both the projection and reconstruction (using the shift-and-
add algorithm) in panel 4. 

Fig. 8 shows three of the seven images resulting from the 
simulation and the real acquisition.  

 
Fig. 8. Comparison between the simulated projections (upper row) and the 
ones acquired with the real system (bottom row). Only three of the seven 
positions are shown. 

The dotted lines in Fig. 8 highlight the high degree of 
similarity between the simulated and real data.  

 DISCUSSION IV.
We have presented a software tool to support the design 

of X-ray acquisition protocols, that can be used to asess the 
viability of different acquisition schemes on a real system, 
as well as to define the optimal system requirements for a 
specific protocol.  

Through a graphical user interface it allows defining sets 
of flexible projection geometries taking into account the 
constraints of a given X-ray system configuration. The  
software provides a near real-time preview of the 
acquisition and an estimation of the total radiation dose.  

The projection kernel takes into account the geometry of 
the system and the polycromatic nature of the spectra but 
does not include the scatter estimates. 

Preliminary evaluation has been done using the software 
to design and simulate a tomosynthesis protocol, and to 
export the positions in order to perform a real acquisition. 
The results showed a high degree of similarity between the 
simulated and the real data.  

The modular approach followed through the design and 
implementation of this tool allows easy integration of new 
modules and features. We are currently working on the 
integration of new reconstruction kernels including other 
tomosythesis geometries and iterative reconstruction 
methods for limited angle tomography. 
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Abstract— Spectral imaging systems need to be able to produce 
"conventional" looking images, and it's been shown that systems 
with energy discriminating detectors can achieve higher CNR 
than conventional systems by optimal weighting.  Combining 
measured data in energy bins (EBs) and also combining basis 
material images have previously been proposed, but there are no 
studies systematically comparing the two methods. In this paper, 
we evaluate the two methods for systems with ideal photon 
counting detectors using CNR and beam hardening (BH) artifact 
as metrics. For both linear comb-stick spectrum with one delta 
function per EB and 120-kVp polychromatic simulations, the 
difference of the optimal CNR between the two methods for the 
studied phantom is within 1%.  For a polychromatic spectrum, 
beam-hardening artifacts are noticeable in EB weighted images 
(BH artifact of 3.8% for 8 EB and 6.9% for 2 EB), while 
weighted basis material images are free of such artifacts.  

Index Terms— conventional CT images, photon counting 
detector, optimal CNR.  

I. INTRODUCTION 

 
he development of imaging systems with energy 
discriminating detectors is especially motivated by 
increased material specificity, but the systems also need to 

be able to produce "conventional" looking images.  Indeed, 
they ideally should outperform energy integrating detectors in 
this regard.  Schmidt showed that combining energy bin (EB) 
images (equivalent to post-log combination assuming a linear 
reconstruction algorithm) offered better CNR and less severe 
artifact compared to pre-log combination and other methods 
[1-4].  Combining basis material images produces “equivalent 
monochromatic” images and depending on the energy, they 
can have high CNR.  In addition, combining basis material 
images may be more convenient since the data storage may be 
lower, the system may produce them for other reasons, and the 
images can be quantitative.  While both approaches have been 
described, there has been no comparison between combined 
EB images and combined basis material images. We perform 
the comparative study and show the effects on CNR and BH 
artifacts for the two methods, both of which can affect image 
quality and detectability.  
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N. J. Pelc is professor of Bioengineering and Radiology at Stanford 
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II. METHODS 

A. Combining CT images 
Schmidt showed that images formed by optimally weighted 

EB images (Fig. 1a) give superior CNR compared to images 
formed by pre-log intensity weighting. Optimal weights � in 
Fig. 1a have been previously established [1]. Effective 
monochromatic images can be formed using weighted basis 
material images (Fig. 1b). Basis material images can be 
formed using a material decomposition estimator [5]. 

B. CNR Metric 
CNR for evaluation is derived using noiseless simulation and 
analytic derivation of noise. For example, for detectors with 
five energy bins, the analytic noise map for weighted EB 
images (Fig. 1a) is derived assuming uncorrelated energy bins 
as  
 ^^^^^^^^^^^^^^^^^���� � �����^���� � � ^�����^���� � ��� � � �^���� � � [1] 
 
where ���� �  is the variance map of �-th energy bin obtained 
using propagation through reconstruction process.  
The analytic noise map for combined basis material images 
(Fig. 1b) is derived as 
 ^^^^^^^^^^^^^^^^^���� � �����^���� �� � ^�����^���� �� � �� � � � ��� �� ��� �� �^ ���^
 
where �������� and �������� are variance maps for basis 
material images, and ��� �� �^^^������ is the covariance map 
between basis material images since these will have 
significant noise correlation. Variances and covariance of 
basis material images are obtained using propagation of 
Cramér-Rao Lower Bound (CRLB) through the reconstruction 
process. The CRLB gives the lower bound on noise of 
estimates any unbiased material decomposition algorithm can 
achieve. Irrespective of material decomposition estimator, the 
CRLB allows comparison of the best performance of 
combined basis material images to the combined EB image 
method.  
 

 
(a) 

Comparison Weighted Energy Bin vs. Weighted 
Basis Material CT Images 
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(b) 

Fig. 1.  (a) Combining EB images and (b) combining material decomposition 
images to form conventional CT images. 
 
Contrast is calculated as the difference between the average 
pixel value of a region of interest within the contrast material 
and local background (water). Since the background pixel 
values are location dependent (due to BH artifact), selection of 
the background region can alter the estimated CNR. We 
therefore obtain local background for contrast estimation from 
a second phantom simulation with no contrast inserted and 
using the same ROI as for the contrast insert. This makes CNR 
estimation robust against beam hardening. 
A water cylinder phantom with four pairs of contrast regions – 
2 mg/cm3 iodine, 7.5 mg/cm3 CaCO3, adipose, and blood – is 
simulated (Fig. 2a). We also simulated an anthropomorphic 
head phantom, in which beam hardening artifacts can be 
caused by bone, to evaluate differences in artifacts between 
the two methods and see effects on detectability. 
 
 

 
 

(a) (b) 
Fig. 2. (a) Contrast phantom with four contrast material and bone inserts in 
water cylinder. (b) Line profile along the center of plain water cylinder 
showing parameters used for the measure of beam hardening artifact. 

C. Optimal Weights 
Optimal weights � for combining basis materials (Fig. 1b) is 
calculated with optimization of CNR in the selected contrast 
region of interest as  
 

. [3] 
 
The optimization will yield different values of � based on 
selected contrast region, and is therefore task-dependent. For 
example, optimizing iodine contrast versus adipose contrast 
may yield different ��. Once an optimal �� is estimated for a 
certain task, it is applied to all the pixels in the image. 

D. Beam Hardening Metric  
BH artifact primarily appears as cupping artifact and streaks 
between dense objects. When these artifacts are present, they 
can occlude features. The goal of the study is the compare 
CNR and BH artifact, both of which in effect can affect 
detectability. 

Beam hardening in images is measured as the percentage-
cupping artifact relative to the signal at the edge of the water 
cylinder (Fig. 2b) as 
 

. [4] 
 
BH in the anthropomorphic head image was assessed 
subjectively. 

III. RESULTS 

A. Images and Line Profile 
Below are the results when the optimal weights^� and � are 
optimized for iodine contrast, but a similar trend is found for 
other materials. Cupping artifact is visible in polychromatic 
weighted EB images (Fig. 3a). It is also worth noting that due 
to cupping, the HU levels of the same contrast material at 
different radial positions are not consistent in weighted EB 
images (Fig. 4). For weighted basis material images, there is 
no cupping artifact, as the material decomposition estimator 
accounts for non-linear processes such as beam hardening. 
 

 
(a) 

 
(b) 

 

Fig. 3. CT image with contrast optimized for iodine using (a) EB image 
weighting and (b) MD image weighting. 2 EB detector with 120 kVp 
spectrum [- 200 200]. 
 

 
(a) 

 
(b) 

Fig. 4. (a) Horizontal and (b) vertical line profile of CT images with CNR 
optimized for iodine. 2 EBs with a 120-kVp spectrum.  
 

B. CNR and BH Artifact 
Two sets of simulations were performed – one with a comb-
stick spectrum with a single delta-function in each EB and the 
other with a continuous polychromatic spectrum. With comb-
stick spectra, weighted EB and weighted basis images show 
effectively the same CNR for 2, 5 and 8 EBs (Fig. 5a). 
Similarly, the CNR is progressively increasing with more EBs. 
In this case, the material decomposition algorithm is 
effectively a linear mapping from energy bins to basis 
materials. Fig. 5b also shows that for comb-stick spectra, as 

Image pixel
100 200 300 400

H
U

-200

0

200

400 EB
MD

Image pixel
100 200 300 400

H
U

-300

-200

-100

0

100 EB
MD

The 4th International Conference on Image Formation in X-Ray Computed Tomography

328



expected, there is negligible BH artifact for all EBs since the 
log approximation of line integral is accurate. 
In the 120 kVp polychromatic simulation, weighted EB 
images provide less than 1% better CNR than weighted basis 
material images (Fig. 5a). The benefit of increasing the 
number of energy bins is also visible in polychromatic 
simulation as well. The material decomposition algorithm for 
polychromatic x-ray is a non-linear process and transforms 
from N energy bins to two basis materials, correcting for any 
non-linear process such as beam hardening effect. For EB 
weighted images, BH is visible and it reduces from 6.9% to 
3.8% when increasing the number of EBs from 2 to 8 (Fig. 
5b). BH artifact for weighted basis material images is 
negligible. 

 
(a) 

 
(b) 

Fig. 5. (a) Iodine CNR for monochromatic, and (b) polychromatic spectrum 
for different EB detectors.  
 
Fig. 6 shows a comparison of CT images of the 
anthropomorphic phantom formed by weighted EB and basis 
material images. In weighted energy bin images (Fig. 6a), BH 
artifact is visible as dark and bright streaks between and 
around dense bones. If such artifacts are present over features 
of interest, this could impact detectability. In weighted basis 
material images (Fig. 6b), there is no discernable BH artifact. 
Circular low contrast iodine was inserted in the posterior fossa 
(shown by the read arrow in Fig. 6). CNR for weighted energy 
bin and weighted basis material images are 1.0526 ± 0.0004 
and 1.0462 ± 0.0005, respectively. Weights were optimized 
for the inserted low contrast iodine.  
 

 
(a) 

 
(b) 

Fig. 6. Simulated brain CT showing (a) beam hardening artifact (red arrows) 
in CT image formed using EB image weighting, and (b) artifact free image 
formed using material decomposition weighting. 2 EB detector with weights 
optimized for iodine are used; display window [-150 150] 

IV. CONCLUSIONS 
Basis material weighted image offers artifact free CT images 
with CNR that is comparable to weighted energy bin images. 
The improvement in reduction in BH artifact is more 
significant at low number of energy bins, as there is more 
beam hardening with wide energy bin. This shows that given 
an accurate and noise optimal material decomposition 
estimator, producing conventional CT images using weighted 
basis material images will offer similar CNR with no non-
linear artifacts. BH effects seen in weighted energy bin images 
– like cupping artifacts, inconsistent HU of same material at 
different location, and streaking artifact between dense objects 
– can affect detectability of subtle features in images. It may 
be possible to achieve higher CNR by varying the weighting 
parameter within a single scan from pixel-to-pixel, and will be 
explored further.  
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A(0, 0) A(25, 45) A(50, 45) A(50, 90)

A(ψ, θ)
±t̂(α)
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Attenuation-Based Reconstruction of Low and High
Frequency Components of Detected X-Ray Spectra

Carsten Leinweber, Joscha Maier, Stefan Sawall, Henning Stoschus, Frederic Ballach, Tobias Müller,
Michael Hammer, Ralf Christoph, and Marc Kachelrieß

Abstract—Several applications in computed tomography (CT)
imaging require detailed knowledge about the detected x-ray
spectrum. Reconstructing x-ray spectra from transmission data
is a promising alternative to experimentally demanding direct
measurement techniques. The ill conditioning of this inverse
problem is commonly encountered by incorporating prior knowl-
edge of the CT system. However the amount of this prior
knowledge has to be carefully selected as it has a strong
influence on the resulting spectrum. In this work we present the
theoretical framework of a singular value decomposition (SVD)
approach which provides detailed x-ray spectra by applying only
minimal physical assumptions. The proposed method is tested on
simulated data and compared to the expectation-maximization
(EM) algorithm widely used in literature.

Index Terms—Detected X-Ray Spectrum, CT, SVD

I. INTRODUCTION

DOSE calculations and artifact reduction techniques re-
quire detailed knowledge about the spectral distribution

of the x-ray radiation utilized in computed tomography (CT)
scanners. Several methods have been developed that aim at
assessing the x-ray spectrum experimentally, which can be
classified as either direct or indirect. In direct methods the
spectrum is measured in a spectroscopic manner which may
require additional equipment and dedicated imaging modalities
[1], [2]. In contrast data acquisition for indirect methods can
generally be performed in standard routine providing not only
spectral information about the x-ray source but also about the
detector response.

An attractive strategy is to perform transmission measure-
ments of objects of known dimension and material composi-
tion and to treat x-ray spectrum reconstruction from this data
as an inverse problem. Previously proposed solutions to this
problem can again be separated into two categories. In few-
parameter modeling methods the spectrum is specified using a
functional form with only a small number of free parameters.
In an optimization approach these parameters are estimated
such that the transmission curve resulting from the model spec-
trum fits best with the measured transmission data [3]. Bin-
by-bin reconstruction methods in contrast attempt to estimate
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every single bin of a discretized representation of the x-ray
spectrum. In these methods the process of x-ray attenuation is
formulated as a system of linear equations. Numeric analysis
of the corresponding system matrix shows that the problem is
ill-conditioned, meaning that small perturbations in the trans-
mission data will lead to large changes in the x-ray spectrum
when direct inversion is performed [4]. The thus obtained
spectra tend to exhibit negative values and high oscillations
not reflecting the physical nature of bremsstrahlung induced
radiation. The ill-conditioning of the problem is attributed
to the weak dependence of the attenuation coefficient μ to
the energy E in the interesting energy range, which can be
improved by an appropriate choice of the attenuators [5], [6].

Several procedures have been established that solve the
linear system by incorporating a priori knowledge or ap-
plying regularization techniques. These include expectation-
maximimization (EM) [5], iterative perturbation [7], neural
networks [8] and singular value decomposition (SVD) [4], [9].
In this work we show how minimal spectral prior information
can be used to incorporate high frequency components into
spectra estimated with the SVD method resulting in an accu-
rate spectrum with a physically reliable shape.

II. MATERIALS AND METHODS

A. Measurement model

Under the absence of scatter radiation transmission mea-
surements of polychromatic x-rays can be described by the
relation

I(d) =

Emax∫
0

dE w(E) e−μ(E) d, (1)

where I(d) is the intensity of radiation attenuated along the
path length d with linear attenuation coefficient μ(E), relative
to the unattenuated radiation. Emax represents the maximum
photon energy corresponding to the x-ray tube voltage. The
detected spectrum w(E) = S(E)D(E) attributes for both the
source spectrum S(E) and the detector response D(E). The
principal problem assessed in this work is to reconstruct w(E)
with knowledge of I(d), μ(E) and d.

In order to evaluate the spectrum estimation method de-
scribed below we generate detected x-ray spectra based on the
the model of Tucker et al. [10]. We assume a tungsten target
for x-ray generation and a CsI:Tl scintillator for detection.
Transmission measurements are simulated according to (1)
with aluminum (Al) as absorption material and 50 different
attenuation length ranging from 0.5mm to 200mm. The
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Fig. 1. Comparison between the simulated true spectrum and the spectra
wR estimated using the truncated singular value decomposition (TSVD). The
spectral resolution of the estimated spectrum increases with R. At R = 41 the
singular value is numerically close to zero resulting in an unstable solution.
Hence the estimate exhibits strong oscillations and negative values, which
is not in accordance with the physical nature of the problem. The spectral
resolution of the stable solution R = 37 however is not sufficient to resolve
the characteristic lines of the true spectrum.

attenuation coefficients μ(E) for Al are taken from Cullen
et al. [11].

B. Spectrum estimation

As a first step we discretize the detected spectrum into B
equally distributed energy bins of width 1 keV. We assume
a total number of M measurements with different absorbers
and denote the m-th measurement with Im. The expected
attenuation of each measurement can be formulated as

Amb = e−μmb dm ,

where dm denotes the absorber thickness and μmb the corre-
sponding attenuation coefficient at energy bin b. Equation (1)
now reads

Im =
∑
b

Amb wb.

We may estimate the detected spectrum w by minimizing the
L2-norm

χ2 =
∑
m

(
∑
b

Amb wb − Im)2 = ‖A ·w − I‖22. (2)

The resulting system of linear equations can be solved using
SVD. With help of SVD we decompose the response matrix
A into B uncorrelated matrices

A =
B∑

b=1

ub · sbvT
b

where ub are the M -dimensional orthogonal eigenvectors of
the M × M matrix A · AT and vb are the B-dimensional
orthogonal eigenvectors of the B × B matrix AT · A. The
singular values sb are the square roots of the eigenvalues of
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Fig. 2. L-curve criterion. The the L2-norm of the solution ‖Q·w‖22 is plotted
as function of the residual norm ‖A ·wR −I‖22 for different selections of R.
The numbers in die graph indicate the R values of the corresponding points.
The value closes to the corner of the L-shaped graph provides the solution
that optimizes both constrains best. In this case the optimal value is R = 37.

A · AT or AT · A. According to the principle of SVD the
solution to (2) can now be calculated as [12]

w =

(
B∑

b=1

vb ·
uT
b

sb

)
· I. (3)

C. Numerical analysis

When the system matrix exhibits full rank or has non-zero
singular values (3) exactly solves the linear system A ·w = I .
However the matrix A generally shows singular values which
are numerically close to zero. This property is referred to
as ill-conditioning and results in numerical instability of the
solution. Due to this instability small perturbations in the
measurements result in entirely different solutions. Assuming
the singular values to appear in descending order

1 = s1 ≥ s2 ≥ . . . ≥ sR > sR+1 ≈ sB ≈ 0,

the numerical instability of the solution can be addressed to
the components in (3) with index b > R, where R describes
the rank of A. By only considering the first R singular values
in (3) we can calculate an approximate solution wR to (2)
which is numerically stable. Regularizing w hereby is also
referred to as truncated singular value decomposition (TSVD)
[13]. With

cb =
uT
b · I
sb

we separate (3)

w =
R∑

b=1

cb vb +
B∑

b=R+1

cb vb = wR +wN,

and denote wR and wN as solution from range and null
space respectively. However for the problems discussed here,
the singular values typically decrease gradually which makes
the determination of the rank of A nontrivial. In Fig. 1 the
reconstructed spectra are shown for different selections of R.

The 4th International Conference on Image Formation in X-Ray Computed Tomography

336



-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0 50 100 150 200

w
(E

)

E / keV

true spectrum
wR
wN
w

Fig. 3. Spectrum reconstructed with the PTSVD method. The solution from
null space wN compensates for the low frequencies in the solution wR from
range. The resulting spectrum w is in good accordance with the simulated
true spectrum.

Between the solutions obtained with R = 37 and R = 41 we
observe a significant change in the shape of wR. This motivates
a criterion for choosing the regularization parameter R often
referred to as the L-curve criterion [13]. The idea is to find a
solution that minimizes both the residual norm ‖A ·wR−I‖22
and the L2-norm of the solution ‖Q · w‖22 by plotting the
latter as function of the former for different R and selecting
the value closest to the corner of the thus obtained L-shaped
graph. We require maximum flatness of the estimated spectrum
by choosing Q as the discretized first derivative:

Q =

⎛⎜⎜⎜⎜⎝
−1 1

. . . . . .
. . . 1

−1

⎞⎟⎟⎟⎟⎠
In Fig. 2 the L-curve for the simulation example is given. The
plot reveals that choosing R > 37 does not provide a better
solution to (2) but leads to a decrease in flatness. Therefore
R = 37 is the best choice here.

D. Integration of prior knowledge

The regularization method introduced thus far limits the
spectral resolution of the estimated spectrum. As shown in Fig.
1 the stable solution R = 37 is not capable of reproducing
the characteristic lines of the simulated true spectrum. We
therefore seek for a method that resolves such spectral details
while conserving the accuracy of the TSVD solution.

From A·wN = 0 follows that we can add any solution from
null space to the solution from range without increasing χ2 in
(2) and therefore without loss of accuracy. Let us first assume
that we exactly know the contribution of the characteristic
peaks which we call wC to the total spectrum. We further
assume that the difference between the true spectrum and the
TSVD solution can be uniquely attributed to high frequencies.

We may now choose the cb vb from null space such that they
represent wC. Minimizing

‖
B∑

b=R+1

cb vb −wC‖22

with respect to cb results in

wN =
B∑

b=R+1

(vT
b ·wC)vb,

which can be understood by recalling that vb are orthogonal
eigenvectors. As adding wN to wR does not alter the spectral
information of the solution, the contribution of wN must
compensate for the difference between the true spectrum and
the TSVD solution. In Fig. 3 the results of this method we
refer to as prior TSVD (PTSVD) are shown. The reconstructed
spectrum w is in good agreement with the simulated true
spectrum reproducing the high frequencies of the characteristic
peaks as well as the low frequencies of the bremsstrahlung
fraction.

In reality however we are not aware of the exact contribution
of the characteristic peaks. With knowledge about the target
material of the x-ray source though we at least know at which
energies we expect high frequency contributions. In the sim-
ulation example we use a tungsten target with peak energies
Ep at 58.0 keV and 59.3 keV for Kα together with 67.2 keV
and 69.1 keV for Kβ [10]. We now treat the assessment of the
contribution of these peaks to the characteristic spectrum wC
as optimization problem using the parameter model

wC(h) =
4∑

p=1

hp ep,

where the ep have a 1 at the entry corresponding to the energy
of the p-th peak and zeroes elsewhere and where hp are the
(unknown) peak heights.

Now we define a cost function C that includes physical
boundary conditions that are not intrinsically fulfilled by the
TSVD method. These are non-negativity of the resulting spec-
trum w(h) = wR+wN(h) and flatness of the bremsstrahlung
spectrum w(h) − wC(h), which is given by subtracting the
characteristic spectrum from the final spectrum. Our cost
function thus reads

C(h) = α1 ‖w(h) ∧ 0‖22 + α2 ‖Q · (w(h)−wC(h))‖22
where ∧ is the element-wise minimum operator, i.e. the first
term of our cost function penalizes the sum of squares of all
negative spectrum entries.

We minimize C with a downhill simplex method. The peak
heights hp are initialized using random start values ranging
from 0 to 1. For our investigations we use α1 = α2.

III. RESULTS

In Fig. 4 a comparison between the results of the PTSVD
and the EM method based on the simulated dataset is shown. In
order to obtain comparable results we incorporated the same
prior information into the EM method as mentioned before
for the PTSVD method. The EM algorithm was initialized
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Fig. 4. Comparison between spectra reconstructed with PTSVD and EM.
Two results of the EM algorithm are shown for an initial background to peak
ratio of 1:3 and 1:8. In both cases 5000 iterations were performed.

TABLE I
COMPARISON BETWEEN PTSVD AND EM

Method χ2 d

PTSVD 3.22 ×10−29 5.52× 10−05

EM 1:3 5.57 ×10−07 4.71× 10−03

EM 1:8 6.42 ×10−08 1.93× 10−03

with a constant positive function to fulfill the non-negativity
constraint. Characteristic peaks were added to account for
Kα and Kβ of the tungsten target. The intensity w(E) of
each peak was set to a constant value. The ratio between this
value and the constant positive function is referred to as initial
background to peak ratio. Fig. 4 indicates a strong dependence
of the reconstructed spectrum on the initial background to peak
ratio. Concerning the squared difference to the true simulated
spectrum wT

d = ‖wT − w‖22.

an initial background to peak ratio of 1:8 was manually found
to yield the best results. As indicated in Fig. 5 increasing the
number of iterations leads to a decrease in χ2. The quality
parameter d however shows a minimum at 5000 iterations and
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Fig. 5. Dependence of (a) χ2 and (b) d of the number of EM iterations. The
initial background to peak ratio was set to 1:8.

increases for a higher number of iterations. In table I numbers
for χ2 and d are given for both PTSVD and EM. A comparison
between both methods reveals, that PTSVD performs better in
reconstructing the true spectrum.

IV. CONCLUSION

We presented a new approach for the reconstruction of
detected x-ray spectra by regularizing a TSVD solution with
help of minimal prior information. Our method is capable
of reproducing high frequency components in the spectrum
addressed to characteristic radiation while conserving the
accuracy of the TSVD solution. We showed that the proposed
approach outperforms the widely used EM algorithm in both
accuracy and physical reliability of the resulting spectrum
when the same prior knowledge is incorporated in both
methods. In future work the influence of perturbations to the
implied transmission data like noise on the PTSVD method
have to be investigated.
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Spectral response effect-compensated estimator in
photon counting CT using low-order Gram

polynomials
Okkyun Lee, Steffen Kappler, Christoph Polster, and Katsuyuki Taguchi

Abstract—Photon counting detector (PCD)-based computed
tomography (CT) exploits the abundant spectral information of
the transmitted x-ray spectrum through multiple pulse height
analysis to perform the material decomposition. However, it
suffers from the spectral response effect (SRE) that distorts
the transmitted x-ray spectrum. On the SRE-modeled PCD-CT
problem, maximum likelihood (ML) estimator is the conventional
method for the compensation of SRE; however, one major
drawback of the ML estimator is a heavy computational burden.
In this paper, we propose a computationally efficient three-step
algorithm to estimate basis sinograms in the PCD-CT based
on a hypothesis that energy dependent x-ray transmittance
can be modeled by low-order Gram polynomials. Under this
hypothesis, original non-linear ML approach can be changed
into two-step linearized approach followed by a bias correction
step. We validate the proposed method using various simulation
studies and show an improved computational efficiency over the
conventional ML estimator while accuracy is comparable.

Index Terms—Photon counting, spectral response effect, Gram
polynomials, least squares, maximum likelihood

I. INTRODUCTION

Photon counting detector (PCD)-based computed tomog-
raphy (CT) has recently emerged as a candidate of the

spectral CT with the help of advanced detector technology [1].
Multiple comparators in each PCD pixel perform pulse hight
analysis (PHA) and provide an abundant spectral information
of the transmitted x-ray spectrum; hence, PCD-CT has a great
potential in clinical applications such as simultaneous multi-
agent imaging and molecular CT with K-edge imaging [1].
However, PCD suffers from pulse pileup effect (PPE) and
spectral response effect (SRE) due to the quasi-coincident
photons and various interactions (ex. charge sharing and K-
escape), respectively. These two effects cannot be resolved
simultaneously [1], and it is rather easy to mitigate the PPE
than the SRE by reducing x-ray dose level and PCD pixel
size. So, we focus on the SRE compensation in this study by
reflecting a spectral response function calculated by a Monte
Carlo simulation to PCD measurements modeling [2].

On the SRE-compensated PCD-CT problem, the reconstruc-
tion can be described as the estimation of basis line-integrals
based on the SRE-modeled PCD measurements. Conventional
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methods are maximum likelihood (ML) and calibration-based
estimators. The ML estimator is the well-known method which
guarantees an asymptotic optimality and shows promising
results in the PCD-CT [3]. However, it requires to solve
non-linear optimization problem for each sinogram point and
it suffers from the heavy computational time to deal with
the entire sinograms. On the other hand, calibration-based
approaches such as A-table and polynomial expansion meth-
ods [4, 5] are fast but they require additional estimation of
noise covariance or polynomial coefficients from empirical
calibration process that has no golden standard procedure.
Therefore, it is necessary to develop a fast and calibration-
free estimator.

In this paper, we propose a computationally efficient three-
step algorithm to estimate the basis line-integrals in PCD-CT.
For this purpose, we hypothesize that energy dependent x-ray
transmittance can be modeled by low-order Gram polynomials
[6] when heavy elements are absent. Under this hypothesis,
the original non-linear PCD measurements model can be
linearized. The first step is then to estimate Gram polynomial
coefficients from the linearized PCD model. Next, the basis
line-integrals can be estimated by the least squares fitting
with the results from the first step and energy dependent basis
functions. The final step is a bias correction step to compen-
sate bias factor which comes from the previous linearization
procedures. We validate the proposed method using various
simulation studies and show that it is more computationally
efficient than that of the conventional ML estimator while the
accuracy is comparable.

II. BACKGROUND

The linear attenuation coefficients of human body can be
modeled by a linear combination of two energy-dependent
basis functions such as photoelectric effect (φp(E)) and
Compton scattering (φc(E)):

μa(r, E) = cp(r)φp(E) + cc(r)φc(E), (1)

where cp(r) and cc(r) are their associated basis coefficients.
Line-integral of (1) can then be given by∫

μa(r, E)dr = vpφp(E) + vcφc(E) = Φ(E)v, (2)

where Φ(E) = [φp(E), φc(E)] denotes the basis functions
and v = [vp, vc]

T is the line-integrals of their coefficients.
Based on this model, the expected number of photons counted
at b-th energy bin can be formulated by

λb(v) =

∫ Emax

Emin

Ab(E) exp (−Φ(E)v) dE, for b = 1, 2, · · · ,m, (3)
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where m is the number of energy bins. Ab(E) consists of the
incident x-ray spectrum S0(E) and the energy bin-dependent
function which is calculated by a Monte Carlo simulation to
model the SRE [2]. We omit the dependency of PCD pixels
for the sake of simplicity and assume that S0(E) is equivalent
to all PCD pixels. Finally, the PCD measurements can be
modeled by

y = λ(v) + ε, (4)

where y ∈ Rm×1 denotes the measurements vector, λ(v) ∈
Rm×1 is its expected number whose b-th element is equivalent
to (3), and ε ∈ Rm×1 denotes the quantum noise. The PCD-CT
problem can then be described as to estimate the line-integrals
v for the entire sinograms and perform either a filtered back-
projection (FBP) or an iterative method to get basis images of
cp(r) and cc(r).

III. PROPOSED ALGORITHM

Let us define the energy-dependent x-ray transmittance as
follows:

X(E) = exp (−Φ(E)v) . (5)

When heavy elements are absent, X(E) is a smooth and
monotonically increasing function in E ∈ [Emin, Emax]. We
hypothesize that X(E) can be presented by k − 1 degrees of
Gram polynomials as follows:

X(E) = Ψk(E) + δXk(E) =

k−1∑
i=0

θiPi(E) + δXk(E), (6)

where Pi(E) is the i-th order Gram polynomial [6], θi is the
associated coefficient, and δXk(E) is the residual transmit-
tance. After substituting (6) into (3), we can formulate the
expected number of photons as follows:

λb(v) =
k−1∑
i=0

B(b,i)θi + η(k,b), for b = 1, 2, · · · ,m, (7)

where η(k,b) =
∫ Emax
Emin

Ab(E)δXk(E)dE is the residual factor and

B(b,i) =

∫ Emax

Emin

Ab(E)Pi(E)dE. (8)

Under the assumption that η(k,b) is negligible compared to the
quantum noise, the original nonlinear model of the PCD mea-
surements can be linearized as the following matrix equation:

y � Bθ + ε, (9)

where B ∈ Rm×k is the sensing matrix whose b-th row
and (i + 1)-th column element is B(b,i), and θ ∈ Rk×1 is
the polynomial coefficients vector. Based on this model, we
propose a three-step algorithm which will be described in the
following sub-sections.

A. Estimation of the Polynomial Coefficients (1st step)
The first step of the proposed algorithm is to estimate the

polynomial coefficients θ in (9) and we propose the following
optimization problem:

θ̂ = argmin
θ
||y −Bθ||2 + λ||Kθ||2, (10)

where K ∈ Rk×k is the contrast matrix to regularize the
selected polynomial coefficients. Then, (10) has the solution
in a closed form as follows:

θ̂ =
(
BTB + λKTK

)−1

BTy. (11)

The estimated x-ray transmittance X̂(E) can then be calcu-
lated by

X̂(E) =
k−1∑
i=0

θ̂iPi(E). (12)

B. Estimation of the Basis Line-integrals (2nd step)

From the definition of the x-ray transmittance, we can for-
mulate the following least squares fitting problem to estimate
the basis line-integrals:

v̂ = argmin
v

∥∥∥X̂(E)− exp (−Φ(E)v)
∥∥∥2

. (13)

Since it is the non-linear optimization problem, we propose
the following linearized least squares fitting by taking a log-
operator to each term in the cost function:

v̂ = argmin
v

∥∥∥ln(X̂(E)
)
+Φ(E)v

∥∥∥2

. (14)

Note that the values close to zero in X(E) are more likely to
occur at the low x-ray energy range so error in those values can
be boosted by taking the log-operator. Therefore, we neglect
X̂(E) values on E ∈ [Emin, Emin + EL] before taking the
log-operator, where EL is empirically calculated by

EL = 10 ·
(
1− log10

(
θ̂0

))
. (15)

Since the meaning of the 0-th order polynomial coefficient θ0
is the average value of the x-ray transmittance, EL increases
as the amount of attenuation increases.

C. Bias Correction (3rd step)

The final step is to compensate a bias in the estimated
v̂ caused from the linearized procedures in the previous
steps. Since the exact correction is intractable, we apply bias
correction tables to correct the bias factor. It is similar with
the one in [5], however, we perform it multiple times to
improve the accuracy. To generate bias correction tables, we
discretize vp ∈ [0, 2] and vc ∈ [0, 10], and generate a 10, 000
noisy PCD measurements for each combination of (vp, vc).
After applying the proposed method on these training sets,
we can generate bias correction tables of photoelectric effect
(BCT

(1)
p ) and Compton scattering (BCT

(1)
c ) by calculating

the bias from the estimated results at each combination of
(vp, vc). Furthermore, the bias corrected training sets can be
used again to calculate the remaining bias and then to generate
the second bias correction tables BCT

(2)
p and BCT

(2)
c . This

process can be repeated to generate subsequent bias correction
tables.

D. Practical Implementation

Discrete orthogonal polynomial (DOP) tool box [7, 8] can
be used to generate the DOP set which satisfies the nature
of Gram polynomials on the discretized domain of E ∈
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[Emin, Emax]. We set EL as the number of neglecting points
by rounding up the value in (15) and limiting it from zero to
Lmax to keep it from having a negative or excessive value.
Then, we can group together the estimated x-ray transmit-
tances which have the same EL value so that these grouped
data can be processed at once to estimate the associated
basis line-integrals. We provide a pseudo-code implementation
of the proposed method to estimate the entire sinograms in
Algorithm 1.

Algorithm 1 Pseudo-code Implementation of the Proposed Method.

[1st step]
1: Estimate the polynomial coefficients using (11).
2: Calculate the estimated x-ray transmittance using (12).

[2nd step]
3: Calculate EL for the entire PCD measurements using (15).
4: for � = 0, . . . , Lmax do

5: Group together the estimated x-ray transmittances having EL = �.
6: Neglect the first � points and estimate the basis sinograms using (14).
7: Set V̂� as the estimated results.
8: end for

9: Set V̂ as a combined data of V̂�, for � = 0, 1, · · · , Lmax.
[3rd step]

10: Set q = 0 and V̂ (0) = V̂ .
11: for q = 1, . . . , Itermax do

12: V̂
(q)
p = V̂

(q−1)
p −BCT

(q)
p (V̂ (q−1))

13: V̂
(q)
c = V̂

(q−1)
c −BCT

(q)
c (V̂ (q−1))

14: Set V̂ (q) as a combined data from V̂
(q)
p and V̂

(q)
c .

15: end for

We set Lmax = 25 and Itermax = 3. We also set m =
k = 4, as will be explained later, and the contrast matrix as
K = uuT ⊗ I2, where u = [0, 1]T , I2 is the 2 × 2 identity
matrix, and ⊗ is the Kronecker product. λ in (11) is calculated
by λ = 0.1 ·λmax(B

TB), where λmax(B
TB) is the maximum

eigen-value of BTB.

IV. METHODS

We set m = 4 and the associated energy thresholds as
[20, 39, 62, 81] keV. Total number of incident photons per
projection per PCD pixel was given by 275, 000 based on
the 0.5mm × 0.5mm pixel size, 500mA of currents, and
1msec/proj of time duration. To validate the hypothesis, we
calculated Δ(ηk) which is given by

Δ(ηk) =
1

m

m∑
b=1

∣∣∣∣ η(k,b)λb(v)

∣∣∣∣ ,
where η(k,b) is the residual factor when Ψ̂k(E) in (6) is
the optimal solution of approximating X(E) in the sense
of l2 norm [6]. We define the hypothesis can be considered
to be true when Δ(ηk) ≤ 0.02. We used a simple object
consists of water (0 ∼ 36 cm) and bone (2 cm) to test the
tendency of the estimated vp and vc, and compared it in
terms of bias and standard deviation (SD). We also used the
420mm × 420mm abdominal phantom which is uniformly
discretized by 512 × 512 pixels. We assigned the basis coef-
ficients of photoelectric and Compton scattering to phantom
image and performed the 2D fan-beam projection for each
basis images to generate the ground-truth basis sinograms. The
number of PCD pixels per projection view was 1718 and the
number of projection views was 1, 000 over 2π. Using these

basis sinograms, we generated PCD measurements for each
sinogram points with 100 noise realizations. FBP is performed
on the estimated basis sinograms and their combined CT
images at E = 55 keV are compared to the FBP results of
the ground-truth basis sinograms. We used Algorithm 1 as the
proposed method and Nelder-Mead algorithm [9] as the ML
estimator to solve the following problem:

v̂ = argmin
v
L(v), (16)

where L(v) is the negative logarithm of the likelihood which
is equivalent to

L(v) =
m∑
b=1

[λb(v)− yb ln (λb(v))] . (17)

V. NUMERICAL RESULTS

A. Validation of the Hypothesis

The results of Δ(ηk) for various values of k and objects,
which consist of water and bone, are illustrated in Fig. 1. As
we can see, k = 4 is enough to satisfy Δ(ηk) ≤ 0.02 in general
(the tendency was similar for other thicknesses of bone). The
polynomial set {Pi(E)}3i=0 is illustrated in Fig. 2(a) and the
example of the approximation by using it is shown in Fig. 2(b).

Fig. 1: Δ(ηk) for various k and thicknesses of water and bone.

Fig. 2: (a) 0th to 3rd degree of DOPs and (b) the example of
the approximation with 16 cm of water and 3 cm of bone.

B. Simple Object

The various results of bias and SD for the simple object are
illustrated in Fig. 3. The ML estimator shows a strong bias
for the photoelectric effect compared to that of the proposed
method when water is larger than 30 cm. Both methods meet
the Cramer-Rao lower bound (CRLB) except that the SD of the
proposed method is slightly larger than CRLB for Compton
scattering when water is less than 20 cm. The tendency for
different thicknesses of bone was similar (the results are not
shown here).

The 4th International Conference on Image Formation in X-Ray Computed Tomography

341



Fig. 3: Various results for the simple object.

C. Abdominal Phantom

The average CT images and their bias and SD images are
illustrated in Fig. 4. CT and SD images for both ML estimator
and proposed method are qualitatively similar while a certain
bias can be observed in the result from the ML estimator,
especially around the bone area.

Fig. 4: (a) Average μa, (b) bias, and (c) SD images from ML
estimator and proposed method.

The average run time for estimating the entire sinograms
and the average absolute value of bias and SD calculated in

the non-air region are compared in Fig. 5. As we can see, the
proposed method is more computationally efficient than ML
estimator while the accuracy is comparable.

Fig. 5: Comparison of the various quantitative measures.

VI. CONCLUSION

We developed the computationally efficient algorithm for
estimating basis sinograms in the SRE-modeled PCD-CT
problem based on the approximation of the x-ray transmittance
with low-order Gram polynomials. The algorithm consists of
two-step linearized approach and the bias correction step. The
proposed algorithm is validated using the various simulation
studies and compared with the conventional ML estimator. The
results show that the proposed method estimates the entire
sinograms in much faster time compared to the ML estimator
while the accuracy is comparable.
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� 
Abstract—In order to reduce radiation dose in X-ray computed 

tomography (CT), the optimization based image reconstruction 
(OBIR) from sparse projection views has been proposed and 
investigated. However, the OBIR algorithms usually generate 
images with quite different texture compared to the widely used 
reconstruction method (i.e. filtered back-projection – FBP) in 
clinical practice, which may lead to less confidence while the 
radiologists/physicians making diagnostic decisions. In this paper, 
we propose and evaluate a novel and practical texture enhanced 
OBIR (TxE-OBIR) method, in which a texture image is 
reconstructed by the FBP algorithm from synthesized projection 
views of noise and added into the OBIR image. The texture of the 
TxE-OBIR image is optimized by matching noise magnitude and 
taking detector cell cross talking effect into account. As confirmed 
qualitatively by visual inspection and quantitatively by noise 
power spectrum (NPS) of a water phantom and an 
anthropomorphic head phantom, the proposed method can 
produce images with textures that are visually identical to those of 
the gold standard full view FBP images. 

Index Terms—Texture Enhancement, Optimization-Based 
Image Reconstruction, CT 

I. INTRODUCTION 
HE X-ray ionizing radiation has become a main concern in 
the clinical utility of CT scanners. In order to reduce the 

radiation dose, many approaches, such as bowtie filtration [1], 
automatic exposure control (AEC) [1, 2] and tube voltage 
and/or current modulation, have been adopted. In addition, the 
optimization-based image reconstruction (OBIR) from sparse 
projection views has been proposed and investigated to further 
reduce the radiation dose in X-ray CT through acquiring [3, 4]. 
However, due to the different noise transfer behavior from 
projections to reconstructed images between the OBIR and 
FBP algorithms, the OBIR usually generates images with a 
quite different texture compared to that of the widely used FBP 
algorithm. Fig. 1 shows the full view FBP and sparse view 
OBIR images and their noise power spectrum (NPS). Using 
fewer projection views, the sparse view OBIR can generate an 
image at the accuracy that is identical to that of the full view 
FBP and thus reduce radiation dose. However, the sparse view 
OBIR image has a “flatter” texture, corresponding to the low 
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frequency components ( ) in its NPS. 
In this paper, we propose and evaluate a novel and practical 

texture enhanced OBIR (TxE-OBIR) method, in which, the 
OBIR is carried out first, followed by adding a texture image 
that is reconstructed by the FBP algorithm from synthesized 
full projection views of noise. In synthesizing the projection 
views of noise, in addition to taking the bowtie and AEC effects 
are taken into consideration for magnitude equalization, the 
detector cross talking effect is also taken into account to 
modulate the NPS of the texture image.  

Texture Enhanced Optimization-Based Image 
Reconstruction (TxE-OBIR) Algorithm 

Huiqiao Xie, Tianye Niu, Huipeng Deng and Xiangyang Tang* 

T 

Fig. 1. The image of full view (984) FBP reconstruction of a water phantom and 
its NPS (top row); The image of 4-time sparser view (246) OBIR of the same 
water phantom and its NPS (middle row); The profiles of the full view FBP and 
sparse view OBIR along the center dashed line in the full view FBP image and 
their radial averaged NPS profile (bottom row). (Display window: [ ] 
HU and [ ] for images and NPS, respectively. 
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II. METHOD AND MATERIALS 

A. The TxE-OBIR Algorithm 
Given sparse projection views, the magnitude of noise is 

acquired at first, which is utilized to synthesize a full set of 
noise projection views. Then a texture image is reconstructed 
from the synthesize noise projection views with the FBP 
algorithm, which is added into the sparse view OBIR image for 
texture enhancement. This algorithm is referred as texture 
enhanced optimization-based image reconstruction (TxE-OBIR) 
and its steps are shown in Fig. 2 as a flow chart.  

1) Generation of the Texture Image 
In general, the X-ray photon noise comes with each detector 
cell through different views [5]. However, certain dose 
reduction methods (e.g. AEC [1, 2]), which may jeopardize the 
noise’s statistics, are used in practice. In addition, the X-ray 
intensity is made relatively uniform across detector cells by 
beam forming devices (e.g. bowtie filtration [1]), which leads 
to a virtually constant noise statistics over detector cells [6]. 
Recognizing these facts, we acquire the magnitude of noise as 
the standard deviation of the inter-detector cell variance in the 
regions where no object presents (air region) for each view: 
  (1) 
where  stands for the projection data,  is the sparse view 
index and  is the detector cell index ( ). 

Suppose a clinical CT scanner acquire  times projection 
views in a full scan, the noise magnitude of the th (

) projection between each pair of adjacent 
sparse views  and  is obtained via linear interpolation as 
shown in Fig. 2. 

Then, the noise projection views are synthesized as  
  (2) 
where  is a Gaussian random variable with zero 
mean and unit variance [9] and  is the amplitude modulation 
factor.  

From the synthesized full noise projection views, a texture 
image can be readily reconstructed with the FBP algorithm and 
added into the OBIR image for texture enhancement.  

2) Optimization-Based Image Reconstruction 
In OBIR, the image reconstruction is usually formulated as 

solving an optimization problem – minimizing the total 

variation (TV) in an image with constraints in data fidelity and 
non-negativity [3]:  

 
 (3) 

where the column vector  with length  (  and 
 are the number of detector cells and the number of views, 

respectively) denotes the measured sinogram.  is the cascaded 
column vector of the image to be reconstructed with length  
(the number of image voxels).  is the system matrix with 
dimension .  is the TV term which is calculated as 
in Ref. [4].  represents the  norm, and , ranging from  
to , denotes the index of image voxel.  

Note that, the parameter  constraints the variance of 
difference between the predicted and raw projections. After 
beam-hardening and scattering corrections, the noise in 
projection data should observe Poisson distribution, and thus  
can be estimated from measured projection data [7]. 

To improve computational efficiency, the optimization 
problem can be reformatted into [4] 

 

  (4) 
in which the modified logarithmic term [4] is adopted. This 
optimization is solved with the GP-BB method [4], and the 
parameter  is set to . 

B. Modulation of the Texture Image Magnitude 
The magnitude modulation factor  in Eq. (2) should be  

if the X-ray intensity in the central detector region 
corresponding to the object was the same as that in the 
periphery region corresponding to the air due to the X-ray beam 
forming devices. However, this situation will not happen in a 
real CT scan; so, the factor  needs to be adjusted for better 
texture fitting of the full view scan FBP case. 

We calculate the magnitude modulation factor  as  
  (5) 
where  is the average of the full view FBP water 
phantom image NPS that above the threshold of 0.2 times of its 
maximum, and  is the average of the  texture 
image NPS that above the threshold of 0.2 times of its 
maximum. 

C. Detector Cross Talking Effect 
The texture image can also be affected by the inter-cell cross 

talking. By taking this effect into account, we further calculate 
the noise projection data as  

  (6) 

where  is the noise projection data generated by Eq. (2); 
, ranging from to , indexes the detector cell; and 

parameter  controls the cross talking strength. A smaller  
represents higher cross talking between detector cells; and 

 means there is no cross talking. 

D. Evaluation  
A water phantom and an anthropomorphic head phantom 

Fig. 2. Flow chart of the texture enhanced optimization-based image 
reconstruction (TxE-OBIR) method; and illustration of the linear interpolation 
of noise magnitudes of two adjacent sparse views. 
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were used for visual inspection and quantitative performance 
evaluation of noise power spectrum (NPS) [8, 9]. The water 
phantom was scanned at 120 kVp, 200 mA and 1.0 s/rot, and 
the anthropomorphic head phantom was scanned at 120 kVp, 
300 mA and 1.0 s/rot. In the scanning, the source to gantry iso 
distance was 541.0 mm and the gantry iso to detector distance 
was 408.1 mm. The full view scan acquired 984 projections 
along the angular range of [0, 2 ]. The 4-time sparse projection 
views (246) were selected in an equal angular step for the OBIR 
and TxE-OBIR reconstructions. 

III. RESULTS 

A. NPS and Its Variation over Cross Talking 
Fig. 3 shows the normalized NPS of the synthesized texture 

images over various detector cross talking, in which 
modulation on the NPS by the detector cross talking is observed. 
Specifically, the NPS has a lower frequency with a greater cross 
talking strength, and the modulation effect is more obvious in 
the frequency range that is greater than 0.3 lp/mm. The texture 
image has almost the same NPS as that of the full view FBP 

water phantom image at . 

B. Evaluation by Water and Head Phantoms 
The full view FBP image, sparse view OBIR image and 

TxE-OBIR images with different texture enhancement 
implemented at various noise magnitudes and cross talking of 
the water phantom and their corresponding NPS are shown in 
Fig. 4. It is observed that the reconstruction accuracy of OBIR 
is the same as that of the full view FBP reconstruction. 
However, the texture in the OBIR is quite different from that of 
the full view FBP. The major noise power in the OBIR image 
concentrates at low spatial frequency (< 0.2 lp/ mm), and the 
noise power in the full view FBP image distributes over the 
range of 0.0 lp/mm to 0.8 lp/mm.  

With the texture enhancement approach, the proposed 
TxE-OBIR can produce an image with its texture virtually 
identical to the full view FBP reconstruction. The effect of 
noise magnitude and detector cross talking on the texture can 
also been observed in Fig. 4. By matching the amplitude of 
NPS, the TxE-OBIR can generate an image with the same noise 
magnitude as that of the full view FBP image. However, the 
image has a more “crispy” appearance than the full FBP image. 
By taking the detector cross talking effect into account, the 

“crispy” appearance of the TxE-OBIR image can be “softened” 
and is identical to the full view FBP image. This visual 
inspection can be confirmed by comparing the NPS of these 
images.  

The full view FBP image, sparse view FBP image, sparse 
view OBIR image and the TxE-OBIR images with different 
texture amplitudes and cross talking strength of the 
anthropomorphic head phantom are shown in Fig. 5. It is 
observed that the OBIR algorithm outperforms the FBP 
algorithm when only sparse projection views are acquired for 
image reconstruction. Similar to the case of water phantom, by 
matching the noise magnitude and altering the detector cross 
talking effect with the parameters that taken from the water 
phantom scan, the TxE-OBIR can generate an image with 
texture that is identical to that of the full view FBP image. 

IV. DISCUSSIONS 
As can be seen from the image profiles in Fig. 4 and images 

in Fig. 5, there are capping/cupping and shading artifacts that 
caused by beam hardening effect. These artifacts can be readily 
corrected by methods described in other literatures [10, 11].  

It is observed that, due to the intrinsic assumption that an 

Fig. 3. NPS over various cell cross talking strength (  and ); 
The NPS of the full view FBP water phantom image is also shown in the figure. 

Fig. 4. The full view (984) FBP image and the TxE-OBIR images of original 
texture magnitude ( ) and matched magnitude ( ) without 
( ) and with ( ) detector cell cross talking (top and middle rows); 
Their profiles along the center dashed line in the full view FBP image and NPS 
(bottom row). (display window of the images: [ ] HU). 
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image to be reconstructed is piece-wise continuous and the 
intrinsic information loss in the acquisition of sparse projection 
views, the edges and small structures in the images 
reconstructed by the OBIR and TxE-OBIR from sparse 
projection views are blurred or lost. Such degradation in the 
edge and/or fine structure may be partially recovered by salient 
views [12], but a detailed investigation is beyond the scope of 
this work.  

As can be seen from Fig. 1 and Fig. 4, due to the noise 
suppression ability of the OBIR, images reconstructed by the 
proposed method has NPS peaks at low frequency (

) and is difficult to be eliminated. Fortunately, the 
human eyes are not sensitive to low frequency noise, especially 
while the noise texture image is being added into the OBIR 
image. 

It is a practical solution to modulate the noise magnitude and 
alter the inter-detector cell cross talking while generating the 
texture image. It should be noted that the beam forming devices 
cannot guarantee a uniform X-ray intensity and thus noise 
distribution across detector cells in a real scan. In this paper, we 
determine the magnitude modulation factor  through water 

phantom scan. It may be more appropriate way to determine the 
parameters for texture enhancement by taking the input from 
radiologists/physicians in practice. 

V. CONCLUSIONS 
As confirmed qualitatively by visual inspection and 

quantitatively by the noise power spectrum (NPS) evaluation 
using a water phantom and an anthropomorphic head phantom, 
the proposed method can produce images with textures that are 
visually identical to those of the gold standard FBP images. The 
proposed method is a novel and practical solution, and thus is 
believed to be of clinical relevance in the future. 
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Abstract— Low dose CT imaging is typically constrained to be 
diagnostic. However, there are applications for even lower-dose 
CT imaging, including image registration across multi-frame CT 
images and attenuation correction for PET/CT imaging. We 
define this as the ultra-low-dose (ULD) CT regime where the 
exposure level is a factor of 10 lower than current low-dose CT 
technique levels. In the ULD regime it is possible to use 
statistically-principled image reconstruction methods that make 
full use of the raw data (sinogram) information. However, clinical 
CT scanners have a data processing stream that uses the standard 
approach of a negative logarithm transformation in as well as 
pre-log and post-log corrections (most importantly a pre-log 
non-positivity correction). Our goal is to understand the statistical 
distribution of ULD CT data through the different data 
processing steps to understand when analytic or iterative image 
reconstruction methods may be effective in producing images that 
are useful for image registration or attenuation correction in 
PET/CT imaging. We used calibrated simulation studies and the 
Kolmogorov–Smirnov statistic to evaluate the normality of 
processed sinogram data. In summary, our results indicate that 
there are three general regimes: (1) Diagnostic CT, where post-log 
data are well modeled by normal distribution. (2) Low-dose CT, 
where normal distribution remains a reasonable approximation 
and statistically-principled (post-log) methods that assume a 
normal distribution have an advantage. (3) An ULD regime that is 
photon-starved and the normal approximation is no longer 
effective. This leads to fundamental limits in the estimation of 
ULD CT data when using a standard data processing stream. 

I. INTRODUCTION 
ONCERNS with CT dose have led to lower dose scanning 
protocols, often using statistically-principled  (i.e. 

iterative) image reconstruction methods to suppress the effects 
of increased quantum noise [1]. These low-dose methods are 
often developed using the assumption that the projection data 
after the logarithm transform follow a normal distribution 
[2]-[4]. However, there are applications for even lower-dose 
CT imaging, including multi-frame CT image registration and 
attenuation correction for PET/CT. We have previously shown 
that several commonly used statistical models are biased in 
estimating the attenuation coefficients for ultra-low dose CT 
sinograms [5]. The aim of this study is to determine the 
statistical distribution due to the data processing steps for 
ultra-low dose CT sinograms, specifically, we evaluated the 
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impact of the non-positivity correction and the negative log 
transformation. We would like to determine if the processed 
data is normally distributed, and if not, we would also like to 
know that what is its impact on WLS reconstruction algorithms. 

II. METHODS 

A. Polyenergetic Cascaded Noise Model  
A polyenergetic cascaded noise model was used to simulate 

the CT signal distribution in this study. The pre-log detector 
signal, s, was defined as: 

 

 

 
where P() is the Poisson function with the mean as the 'detected 
counts' (C) of each sub-energy E of the spectrum. The 
weighting term (W) was set to the sub-energy for the integrated 
photon detector. The gain factor (G) for converting photon 
counts to detector unit was set at 0.0195 based on our previous 
studies, and the Gaussian electronic noise (N) was with zero 
mean and ����-.. Energy-dependent absorption, 
beam-hardening, and scatter were not considered in this study.  

B. Acquisition and Non-positivity correction 
The x-ray spectra were generated from XPECT tool (ver. 3.5c) 
and incorporated into CatSim (Computer Assisted Tomography 
SIMulation, v5.6) system [6], [7]. Each spectrum has 240 sub 
energies with 0.5 keV in bin size, and the peak energy was set at 
120 keV (Fig.1). The NIST [8] tables for linear attenuation 
coefficients for water were used. Simulated signal distributions 
of the CT data with were generated for 20,000 realizations each 
of diagnostic-level (200 mAs), low-dose (10 mAs), and 
ultra-low dose (0.5 mAs) flux settings for each sub energy. The 
water thickness varied from 5.0 to 75.0 cm. Non-positive 
values of the pre-log detector signal were modified with a 
simple 'flip' correction: 

 

 The post-log Pi value in the attenuation domain was then 
calculated as , where A is the air scan 
value. For the 2-D 35-cm water phantom simulations, 2000 
realizations, each with 224 detectors x 984 projection angles 
were generated. The images were reconstructed with FBP with 
default settings in Catsim.  

Statistical Distributions of Ultra-Low Dose CT 
Sinograms in the Data Processing Stream 

Tzu-Cheng Lee, Ruoqiao Zhang, Adam M. Alessio, Lin Fu, Bruno De Man, Paul E. Kinahan  
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C. Kolmogorov–Smirnov statistic 
The Kolmogorov–Smirnov (K–S) distance (DMAX) describes 

a normalized distance (from 0 to 1) between a given sample 
distribution and a reference distribution [9]. DMAX will be close 
to zero if the sample data is normally distributed. For a given 
cumulative distribution function (CDF) of Pi , DMAX is: 

 

where SUPPi is the supremum of the set of distances, and N() is 
the normal function. All calculations were performed using 
Python-3 with the SciPy library (SciPy.Org, ver.0.16.0).  

 
Fig. 1. Left: Simulated x-ray detected counts for the GE 

Lightspeed CT scanner. Blue: Air scan. Red: Attenuated 
spectrum with 35cm of water. Right: Attenuation Pi as a 
function of water phantom thickness. 

D. Statistical distributions at different processing steps 
Fig. 2 shows the distributions for 20K realizations for 35 cm 

of water. The data in the intensity domain are symmetric with a 
mean close to the truth. After non-positivity transformation, 
asymmetry is evident in the low-dose and ultra-low dose 
regimes. After the log transformation, both the low dose and 
ultra-low dose settings have skewed distributions, and the latter 
also display a large bias from the truth. The diagnostic regime 
data behaves as expected. 

 
Fig. 2. Histogram of 20,000 realizations of 1D-single 

detector model with three different flux levels: 0.5, 10, and 200 
mAs and three processing stages: top pre-log raw signal in 
intensity domain (detector unit), middle pre-log raw signal with 

non-positivity correction, and bottom after taking logarithm 
with air-scan in attenuation domain (pi). Ideal values were 
indicated with vertical line.  

 
Fig. 3. Kolmogorov–Smirnov distance DMAX as a function of 

water thickness in the 1D-single detector model (20,000 
realizations) with the ultra-low-dose, low-dose, and diagnostic 
regimes and three processing stages: top pre-log raw signal in 
intensity domain (detector unit), middle pre-log raw signal with 
“flip” non-positivity correction, and bottom after taking 
logarithm with air-scan in attenuation domain (Pi).  

E. K-S distance DMAX at different processing steps 
Figure 3 shows the K-S distance DMAX but now as function of 
the water attenuation thickness. Distributions without 
non-positivity correction in the intensity domain are all very 
close to zero (<0.01) DMAX indicating a normal distribution. 
With the non-positivity correction, DMAX increases rapidly at 
approximately 20, 35, and 51 cm of water attenuation for the 
ultra-low-dose, low-dose, and diagnostic regimes. After the log 
transformation, the increase in DMAX occurs for thinner layers of 
water, but with a more gradual transition. 

 
Fig. 4. 2-D Histogram of estimated post-log signal (Yi) as a 

function of true attenuation (Pi) for ultra-low-dose, low-dose, 
and diagnostic regimes. The x-axis is the true attenuation (Pi, a 
function of the water thickness) and the y-axis is the 
distribution of estimated attenuation values (Yi) from 20K 
realizations. Histogram counts are shown with a log scale for 
the color table (right). 

F. 2-D histogram of signal distribution in attenuation domain 
By combining histograms of estimated Yi attenuation values 

for each given true value of Pi, a useful 2-D histogram can be 
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generated (Fig. 4) [5]. Vertical profiles are PDFs of Yi for a 
given true value of Pi 

 
Fig. 5. Bias of the signal distribution in three different flux 

levels (0.5, 10, and 200 mAs). The vertical line represents the 
ideal (unbiased) correlation between given Pi and the measured 
attenuation Yi. The mean, median, and mode values, are shown.   

There are three distinct regions: The first is for low 
attenuation values and is a linear region where the mean of the 
distribution is very close to the true value, and where the 
distribution is normal. The second is a transition region, whose 
location w.r.t. the attenuation level Pi is dependent on the dose 
regime and correspond to the rapid increase in DMAX in Fig. 3. 
Third is a region that is strongly biased (Fig. 5) and with a 
non-normal distribution (Figs. 3 and 6). 

By comparing the ideal given Pi with the measured Yi of the 
distributions (Fig. 5), one can see the bias starts to show around 
Pi = 4, 7, and 10 (water thicknesses of 20, 35, and 52 cm). The 
distribution profiles for the ultra-low dose regime (Fig. 6) 
reveal that a positive skewness starts to appear between 15.5 
and 22.5 cm of the water thickness. 

Horizontal profiles in Fig. 4 correspond to likelihood 
functions (i.e. the relative likelihood of true values of Pi for a 
given estimated value Yi). These are shown in Fig. 7. for the 
ultra-low dose regime, and the ability to find a maximum 
likelihood disappears at Yi = 4.5 ~ 5.8. 

 
Fig. 6. Distribution profiles of 0.5 mAs flux setting with 

different water thickness (Left to right, top to bottom: 8.5, 15.5, 
22.5, 29.5, 36.5, 43.5, 50.5, 57.5cm). (ref Fig. 4 right). The 
cyan represents the normalized histogram, and the red line 
shows the normal fitting with the least-squared approach. The 
black vertical line indicates the ideal Pi value.  

G. Catsim simulation of a 35-cm water phantom 
To evaluate the results of the 1-D simulations in the context of a 
2-D setting where there are a range of attenuation values in a 
sinogram, we used Catsim to simulate the reconstruction of a 
35-cm water phantom at three flux levels. Compared to 

diagnostic level of setting, the noise effects caused by photon 
starvation are evident in both low-dose and ultra-low dose 
settings (Fig. 8). A maximum Pi value for a 35-cm phantom 
should be at around 6.8. The histogram of the 200 mAs setting 
shows a narrow peak right on the Pi = 6.8; a broader peak of the 
histogram in the 10 mAs group deviate slightly to Pi =6.4, 
whereas for the 0.5 mAs group, an even broader peak deviate 
heavily down to 4.6. 

 
Fig. 7 Likelihood profiles of 0.5 mAs flux for different 

measured Yi (Left to right, top to bottom: Yi = 1.7, 3.1, 4.5, 
5.8, 7.1, 8.4, 9.7, 11.0). The cyan line is the possible true values 
of Pi, (ref Fig. 4 right) and the red line shows a least-squares fit 
to a normal distribution.  

 

 
Fig. 8 Catsim simulation of a 35-cm water phantom in three 

different flux levels (0.5, 10, and 200 mAs). top the 
representative FBP reconstructed image (unit: mm-1), middle 
post-log sinogram with non-positivity correction, and bottom 
the histogram of the sinogram in attenuation domain. 

III. DISCUSSION AND CONCLUSIONS 
Through 1-D simulations, we saw that the post-log 

distribution is skewed but the mode of the distribution is still 
close to the true attenuation value Pi as the tube flux is lowered 
from a diagnostic to a low-dose regime. This was true for a 
wide range of attenuation values. On the other hand, for the 
ultra-low dose regime, the distribution became wider and 
markedly skewed, and with substantial bias. We used the 
Kolmogorov–Smirnov (K-S) distance DMAX to quantify how far 
the distribution deviated from a normal distribution. In the 
signal intensity domain, DMAX value was close to zero as a 
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function of attenuation (i.e. thickness), indicating a normal 
distribution, until a threshold that depended on the dose regime. 
Over the next approximately 5 cm of water attenuation, DMAX 
increased to 1, reaching a plateau where the distribution was 
dominated by the electronic noise and the non-positivity 
correction method. After the log conversion, the behavior was 
more complex, where DMAX increased gradually with 
attenuation, followed by a rapid increase to a peak value at 
around the point where the negative values in the intensity 
domain started to show. Interestingly, the DMAX decreased again 
and reached a lower plateau. We think this may be due to the 
balance between the log operation and the lognormal-similar 
distribution generated by the non-positivity correction, which 
became more normally-distributed after the log transformation.      

Figs. 4-7 demonstrate that there are three distinct regions in 
the statistical distribution of the post-log sinogram data. For 
low attenuation values and/or diagnostic regime there is a linear 
region where the mean of the distribution is very close to the 
true value, and where the distribution is normal. Beyond a 
certain attenuation threshold, which depends strongly on dose 
regime and water thickness, any estimates of the mean, median, 
or mode are strongly biased (Fig. 5) and the PDF is non-normal 
(Figs. 3 and 6). In addition, maximum likelihood estimate will 
fail, as all true attenuation values above the threshold appear to 
be equally likely (Fig. 7). In between these two regions is a 
somewhat complex transition region where the Kolmogorov–
Smirnov distance DMAX starts to deviate from 0, indicating a 
non-normal distribution. 

The impact of these effects could be seen in the 2-D 
simulated sinograms. For diagnostic-level of flux, (true 
maximum of Pi = 6.8), was contained in its linear and 
symmetric region, and the maximum peak in the histogram is 
sharp and narrow at 6.8. Whereas for the low-dose setting, Pi 
6.8 was at the edge of a biased and skewed distribution. For the 
ultra-low dose regime, Pi = 6.8 is located in the plateau section, 
and we can see that the peak on the histogram is both broadened 
and biased.   

There are several implications we can draw from this 
analysis. First is that image reconstruction methods that assume 
a normal distribution in the post-log sinograms (e.g. WLS 
methods) may work well in the low-dose regime [4]but the 
model may be incorrect in the ultra-low-dose regime, leading to 
no benefit w.r.t. analytic methods [10], [11]. Second is that 
there is a fundamental limit to estimating the true attenuation 
value, as past a certain threshold the mean, median, and mode 
are all heavily biased. In addition there is no defined maximum 
for the likelihood function[5]. 

The threshold for this fundamental limit is dependent on the 
amount of attenuation, the dose regime, the electronic noise, 
and non-positivity correction method (data not shown). Clearly 
the threshold can be shifted to some extend by sinogram 
smoothing methods that suppress non-positive values in the 
ultra-low-dose domain[12] or sparse sampling and judicious 
use of iterative image reconstruction methods [13]. However, 
there is also impact of the increased bias and variance in 
estimating the weights to be used in a WLS image 
reconstruction algorithm. 

Finally we note that the impact on image reconstruction, 
either 2-D or 3-D, is not clear due to the range of attenuation 
values that occur in sinograms and the data redundancy 
inherent in 3-D CT imaging. Further work is needed to clarify 
the impact of these fundamental limits in tomography. 
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Image Quality Comparison of a CBCT
Virtual-Isocenter Imaging Trajectory to a Clinical

Circular Scan
Andrew M. Davis1,2, Xiaochuan Pan1,2, and Charles A. Pelizzari1

Abstract—Optimization-based reconstruction algorithms have
the potential to enable a variety of novel imaging techniques
that could improve clinical utility for image-guide radiation
therapy (IGRT). One such technique is patient-specific imaging
trajectories where the patient’s treatment table could be moved
to avoid a patient collision with the linac gantry. However, it is
important to determine the impact that using such a trajectory
has on image quality. In this study, we compare the spatial
resolution and the low-contrast resolution of a typical clinical
circular scan FDK reconstruction with a MLEM reconstruction
from a trajectory where both the linac and treatment table are
moving simultaneously. We found that image quality from this
new trajectory was comparable to the current clinical standard.

I. INTRODUCTION

In image-guided radiation therapy (IGRT), the most popular
treatment modality is the clinical linear accelerator (linac)
to which a kV cone-beam computed tomography (CBCT)
imaging system is mounted [1], [2], [3]. In clinical practice,
the reconstruction workhorse is still the analytic-based FDK
algorithm [4], [5]. As such, the formulation of the FDK
algorithm necessitates a circular scanning trajectory of the
CBCT imaging system. For IGRT with the linac, this is
achieved via the rotation of the linac gantry and the mounted
CBCT system.

Optimization-based reconstruction methods enable a variety
of novel imaging techniques that are difficult, if not impossi-
ble, to reconstruct with analytic-based methods [6], [7], [8],
[9], [10]. One technique that is possible with optimization-
based methods is reconstructing from scanning trajectories for
which analytic-based solutions to the inverse problem have not
been formulated [11].

With the flexibility in scanning trajectories allowed with
optimization-based algorithms, it is conceivable that imaging
trajectories could be designed on a patient-specific basis.
This would be beneficial for patients who would typically
experience a mechanical collision with the linac gantry during
treatment. These collisions are particularly common in head
and neck, breast, and lung cancer patients [12], [13]. Such a
patient would typically have to raise her arms above her head
as shown in Figure (1) which puts her arms at risk of collision.

Department of Radiation and Cellular Oncology (1), and the Department of
Radiology (2), The University of Chicago, 5841 S. Maryland Avenue, Chicago
IL, 60637 Email: amdavis@uchicago.edu

Fig. 1. Typical example of a mechanical collision. The mannequin’s raised
arms (representing a patient) could collide with the linac head.

If a scanning trajectory could be designed using the treat-
ment table and the linac’s mechanical controls to avoid a
collision for a given patient, it would both improve patient
comfort and reduce costly delays in the clinic. Currently, when
a potential collision is detected, the patient must be moved in
order for the linac to continue its rotation before the patient
can be re-positioned. With optimization-based methods, it is
possible to reconstruct from scanning trajectories where both
the treatment table and linac are moving simultaneously.

However, in order to justify using a patient-specific imaging
trajectory, it is necessary to demonstrate that the image quality
from such a scan is not significantly degraded from the cur-
rent clinical imaging standard. Though linac-mounted system
cannot deliver diagnostic-quality images, there are a variety
of recommended quality assessment methods for the linac-
mounted CBCT system [14]. In this work, we compare some
of these metrics for a simple collision-avoiding trajectory with
those for the standard clinical circular scan. Most collisions
involve the gantry head as shown in Figure (1) rather than
the imaging arms. Thus, we have utilized a simple ”virtual
isocenter” trajectory where the couch translates with gantry
rotation, maintaining an increased separation between gantry
head and the imaging isocenter within the patient.

II. METHODS AND MATERIALS

We acquired all of our CBCT scans using Varian’s True-
Beam kV imaging system (Varian Medical Systems, Palo Alto,
CA). All of the scanning trajectories were implemented with
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the TrueBeam 2.0 Developer Mode. This functionality gives
researchers control of a variety of scanning parameters that
enable scanning configurations that are not available in the
clinical mode.

For evaluating image quality metric for the different scan-
ning trajectories, we used our clinic’s Catphan 500 (The
Phantom Laboratory, Salem, NY). This is a standard quality
assessment (QA) phantom for clinical CT devices that provides
a series of sections with different objects for calculating image
quality metrics. We used the CTP 515 module for evaluating
the low-contrast resolution and the CTP 528 module for
evaluating spatial resolution.

We placed the center of the low-contrast module at the
mechanical isocenter for all of the scans. We then acquired
a traditional circular scan as well as the virtual isocenter scan.
The virtual isocenter scan provides a trajectory for treating a
spot 5 cm below the mechanical isocenter. When the trajectory
is acquired, the table moves as the gantry rotates so that
this point 5 cm below the mechanical isocenter becomes the
effective isocenter of the scan.

For comparison to a clinical standard, we reconstructed the
circular scan (679 projection views) using Varian’s FDK im-
plementation provided by the iTools reconstruction software.
We then reconstructed the circular scan using 100 iterations
of the well-understood maximum-likelihood expectation max-
imization (MLEM) algorithm [15]. We also reconstructed this
same scan using two thirds of the projections (452 views) with
100 iterations of the MLEM algorithm. All of the images were
reconstructed onto a clinical-resolution voxels of 0.5 mm x
0.5 mm in the transverse slice and 2 mm in the longitudinal
direction.

For the virtual isocenter scan, we again used 100 iterations
of the MLEM algorithm to reconstruct the 424 projection
views. From each projection view acquired from the TrueBeam
system, we are able to extract the position information of
both the CBCT imaging arms and the table. This information
can then be used to correctly account for the position of
the phantom’s image space in the system matrix of the
linearized imaging model we use for formulating the MLEM
optimization problem.

To characterize the spatial resolution of the reconstructions,
we looked for the smallest line pair gauge that could visually
be resolved in the CTP 528 module. To characterize the low-
contrast resolution, we calculated the percent contrast of the
1% nominal low-contrast rods in the CTP 515 module. The
iTools FDK reconstruction provides an attenuation coefficient
mapping to Hounsfield units (HU) whereas the MLEM recon-
structions are just a map of the linear attenuation coefficients
(μ). The percent contrast is calculated as

HUsig − HUback

HUback + 1000
× 100 (1)

for the iTools reconstruction, and

μsig − μback

μback
× 100 (2)

for the MLEM reconstructions.

III. RESULTS

As shown in the top row of Figure (2), all of the recon-
structions had approximately the same spatial resolution when
looking at the slice from the CTP 528 module. The highest line
pair/cm that could be resolved for the FDK was the 7th largest
gauge which corresponds to a line spacing of approximately
0.071 cm. For the MLEM reconstructions, the 8th largest gauge
is resolved which is a line spacing of approximately 0.063 cm.
This is reasonable considering the resolution of the transverse
pixels is 0.05 cm x 0.05 cm.

Figure (3) shows a plot of the calculated percent contrast
of the five largest supra-slice low-contrast rods that have a
nominal 1% contrast for each of the reconstructions. Only the
sparse-view circular MLEM reconstruction is plotted as the
percent contrast was the same for the full-view reconstruction.
The reconstructed slices of this module from the different
scans are shown in The bottom row of Figure (2).

IV. CONCLUSION

In all of the reconstructions of the spatial resolution module
shown in the top row of Figure (2), we can see that the 7th

largest gauge is visually resolvable. Here, MLEM actually
outperforms the clinical FDK reconstruction in that the next
smallest gauge is visually resolvable in these reconstruc-
tions though it is more difficult with the virtual isocenter
reconstruction. This agrees with our previous experience that
reconstructions using MLEM generally have better spatial
resolution than analytic-based methods.

For the low-contrast resolution shown in Figure (3), we
see that the FDK reconstruction and the circular MLEM
reconstructions show the same trend in contrast for each of
the rods. There is a bias between the two, but this could arise
from the fact there are no pre-processing steps performed on
the MLEM reconstructions. The iTools FDK has a variety of
corrections for effects like beam hardening and ring artifacts
that were not used for the MLEM reconstructions.

Figure (3) does show a fixed contrast verses rod diameter
for the virtual isocenter trajectory, while reconstructions for
the circular trajectory exhibit a characteristic variation with
diameter. Given the contrast for the rods is designed to provide
the same contrast level for all of the rods at a nominal contrast,
one would ideally expect the percent contrast to be the same.
In the circular scans, the isocenter is at the center of the
phantom. For the virtual isocenter scan, the effective isocenter
is actually centered on the 15 mm diameter 1% contrast rod
at the bottom of the phantom. Scanning the phantom with a
diagnostic CT system would determine if this trend seen in the
percent contrast of the circular scans is a physical discrepancy
in the 1% contrast rods or an artifact of the reconstruction.

From these results, we found the MLEM reconstructions of
the circular scan with full-view and sparse-view data as well
as the new virtual isocenter trajectory to be comparable to
the current clinical FDK reconstruction from a circular scan.
This shows that is indeed possible to reconstruct useful images
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iTools FDK Circular Full-View MLEM Circular Sparse-View MLEM Virtual Isocenter MLEM

Fig. 2. Images of the two metric modules from the reconstruction studies. The top row shows the region of the module that is visually resolvable in the
reconstructed slice. The 7th largest gauge is indicated by the red arrow in the FDK reconstruction which has a display window of [50, 300] HU. The MLEM
spatial resolution images have a display window of [0.21, 0.35] cm−1. The second row shows the low-contrast module. The FDK display window is [-160,
230] HU, and the MLEM display window is [0.16, 0.24] cm−1.

Fig. 3. Plot of percent contrast versus diameter for the nominal 1% contrast
rods for each of the reconstructions.

from trajectories where the treatment table and linac gantry
are moving simultaneously. As the image quality metrics are
comparable to current clinical images, it may be possible
to eventually enable collision-avoiding imaging trajectories
with optimization-based algorithms. This would provide a real
increase in clinical utility in terms of both patient comfort and
clinic efficiency.
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Abstract—X-ray Tensor Tomography (XTT) is a novel imaging
modality for reconstruction of three-dimensional X-ray scattering
tensors from dark-field projections obtained in a grating inter-
ferometry setup. In this work we propose a new component-
based total variation (TV) regularized conjugate gradient (CG)
reconstruction method for XTT data. First results suggest that the
proposed method’s convergence rate is comparable to different
regularization methods, while the resulting reconstructions show
less noise and streak artifacts compared to previous, unregular-
ized methods.

I. INTRODUCTION

Conventional X-ray imaging techniques are based on the
absorption of X-rays in the examined object. However, X-rays
are not only absorbed in the object, but are also refracted and
scattered, producing measurable deviations from their original
direction, enabling the measurement of new signal components
such as phase contrast and dark-field contrast [1].

X-ray Tensor Tomography (XTT) is a novel imaging modal-
ity combining three-dimensional X-ray imaging with a Talbot-
Lau interferometer, allowing the reconstruction of X-ray scat-
tering tensors revealing the local orientation, anisotropy and
average size of microstructures [2], [3].

As shown in the schematic setup of Fig. 1, XTT employs an
X-ray grating interferometer including three gratings G0, G1

and G2 between the X-ray source (X) and the detector (D).
The sample (S) is freely rotated using three Eulerian angles,
while several horizontal steps of the phase grating (G1 or G2)
are used to acquire several images allowing the recovery of
three signal components (see Fig. 2), including the dark-field
contrast [1] used for XTT.

Malecki et al. [3] formulated the first approach of a
mathematical forward model for XTT by considering several
scattering directions at each point of the sample and proposed
a block-based, modified SART-based reconstruction method.
Building on this work, Vogel et al. [4] introduced an itera-
tive reconstruction scheme for XTT data by generalizing the
original approach of Malecki et al. to allow the usage of recon-
struction methods different from SART. Based on the approach
of Vogel et al., we recently proposed a component-based total
variation (TV) regularization method for XTT based on the
alternating direction method of multipliers (ADMM) [5].

In this paper, we will address the problem of component-
based regularized XTT reconstruction again by introducing a

Fig. 1. Schematic of an X-Ray Tensor Tomography setup. It consists of an
X-ray source (X), a sample (S), the grating interferometer (G0,G1, and G2)
and a detector (D).

more efficient approach to TV regularization for XTT. We
will compare the performance and image quality of both
methods on experimental data acquired of a sample consisting
of wooden sticks.

II. METHODS

For XTT reconstruction we follow the approach introduced
by Malecki et al. [3] and Vogel et al. [4]. To represent
the scattering tensors, the aim is to reconstruct scattering
coefficients ζk(x) ∈ R at each location x ∈ R3 correspond-
ing to several pre-selected normalized scattering directions
ε̂k ∈ R3, k = 1, . . . ,K. A measured dark-field signal mj ∈ R,
j = 1, . . . , J , can then be modeled as

mj = exp

[
−
∫
Lj

K∑
k=1

〈
|ŝj × ε̂k|ζk(x)ε̂k, t̂j

〉2
dx

]
, (1)

where Lj denotes the ray with normalized direction ŝj ∈ R3

corresponding to the j-th measurement, and t̂j ∈ R3 is the
normalized interferometer sensitivity direction, orthogonal to
the grating lines.

After discretization into I voxels, we rewrite the quantity
to be reconstructed, the squared scattering coefficients, as a
vector ηk ∈ RI (corresponding to the scattering directions
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Fig. 2. Example images of the three signals acquired in an X-ray grating interferometry setup, from left to right: absorption, phase contrast and dark-field.
The imaged sample consists of two wooden sticks.

ε̂k). The reconstruction problem can now be written as several
linear equations

− lnmj =

K∑
k=1

vkj
〈
aTj , ηk

〉
, (2)

where aj denotes a single row of the system matrix A =
(aj) ∈ RJ×I corresponding to the j-th measurement, and
weights vkj :=

(
|ŝj×ε̂k|〈ε̂k, t̂j〉

)2
, which can be precomputed.

In [4], the linear system is solved using an iterative
component-based scheme, where in each “outer” iteration a
single step of the conjugate gradient (CG) method is applied to
each component ηk separately in parallel, merging the results
of the parallel steps at the end of each iteration.

Building on this, we introduced a component-based total
variation regularization method in our previous work [5],
where we replaced the single CG step with several steps of
the ADMM. In order to get useful regularization results [6],
several “inner” iterations of ADMM had to be performed for
each component ηk,

argmin
ηk

{
1
2‖Aηk −m‖22 + λ‖z‖1

}
s.t. Fηk = z, (3)

where m denotes the full measurement vector m = (mj), F
denotes the discretized finite differences operator and λ ∈ R

denotes the regularization parameter. In order to keep com-
putational efforts comparable to the previous unregularized
approach, the number of “outer” iterations had to be reduced
accordingly.

In this work we introduce a new, more efficient approach
to incorporate component-based TV regularization into the
XTT reconstruction scheme. We keep the iterative component-
based scheme of [4], using Q “outer” iterations. However, in
addition to the single CG step for each component ηk we
add a consecutive step applying TV regularization only to
that component ηk, similar to the approach in [7]. In order
to apply TV regularization, we use P iterations of ADMM
for each component ηk

argmin
ηk

{
1
2‖Iηk − ηk‖22 + λ‖Fηk‖1

}
, (4)

where I denotes the identity operator. As the ADMM now only
operators on the volume, without any projection operations,
the computational cost for regularization is now negligible.

The algorithm of the proposed component-based TV reg-
ularized CG reconstruction method for XTT is shown in
Algorithm 1.

Algorithm 1 TV regularized CG reconstruction for XTT
η0k = 0 for all k = 1, . . . ,K
for outer iteration q = 1 to Q do

// pre-compute weighted forward projections
for scattering directions k ∈ {1, . . . ,K} do

WFPk = diag(vkj) ·A · ηq−1
k

end for

// component-wise reconstruction
for scattering directions k ∈ {1, ..,K} do

// compute right-hand side
r = m−

∑
l =k WFPl

// compute xk using single CG iteration
xk = CG(diag(vkj) ·A, r, ηq−1

k )

// TV using several ADMM iterations
for inner iteration p = 1 to P do

xk = ADMM(I, xk, xk)
end for

// update with relaxation
ηqk = (1− 1

k )η
q−1
k + 1

kxk

end for

end for

III. EXPERIMENTS AND RESULTS

In order to compare our proposed method (abbreviated
as CG+TV) with the original method of Vogel et al. [4]
(abbreviated as CG) and the previously proposed method of
Seyyedi et al. [5] (abbreviated as ADMM), we evaluate the
results on experimental data acquired of a sample consisting of
two wooden sticks. The sample is shown in Fig. 3, it consists

The 4th International Conference on Image Formation in X-Ray Computed Tomography

356



Fig. 3. Photograph of the sample consisting of wooden sticks.

of two wooden sticks attached to a sample holder using hot
glue. We use 121 X-ray dark field projections of 320 × 320
pixels, sparsely sampling the unit sphere. The reconstruction
volume was discretized using 3203 isotropic voxels.

All three methods were implemented within our C++ soft-
ware framework for linear inverse problems [8]. In order to
have comparable computational costs, we selected 54 outer
iterations for the original CG method and the proposed
CG+TV method (with 5 inner iterations to compute the TV
regularization), while we used 6 outer iterations and 9 inner
iterations for the ADMM method. Using grid search, we
selected the coupling parameter ρ = 10 for the ADMM
method and ρ = 100 for the proposed CG+TV method.
The regularization parameter λ was chosen using an adaptive
thresholding scheme, such that 99% of the coefficients are zero
afterwards.

To study the numerical behavior of the three methods, we
computed the normalized residual norms

r(q) :=

∥∥∥m−
∑

k diag(vkj) ·A · η
(q)
k

∥∥∥
2

‖m‖2
, (5)

and also the normalized update

�(q):=
mean

∥∥η(q)k − η
(q−1)
k

∥∥
2∥∥η(q)k

∥∥
2

. (6)

Fig. 4 shows a comparison of r(q) and �(q) for the three
methods. The CG method shows the smallest residual norm
r(q), but oscillating behavior in update �(q), while both the
ADMM method and proposed CG+TV method show a larger
residual norm and smoother updates.

TABLE I
CNR OF SLICES FROM FIG. 5. REPRESENTATIVE ROI IS MARKED IN RED

AND BACKGROUND AS GREEN IN FIG. 5(A).

component CG ADMM CG+TV
ε̂1 2.63× 105 2.88× 105 1.32× 106

ε̂8 2.14× 105 3.73× 105 4.84× 105

ε̂9 4.40× 105 8.07× 105 1.04× 106

(a) residual norm r(q) (b) update �(q)

Fig. 4. Comparison of normalized residual norm r(q) normalized mean update
�(q) for the three studied reconstruction methods.

(a) CG (d) ADMM (g) CG+TV

(b) CG (e) ADMM (h) CG+TV

(c) CG (f) ADMM (i) CG+TV

Fig. 5. Center slice of the reconstructed component volumes corresponding
to the scattering directions ε̂1, ε̂8. and ε̂9 for all three methods.

Example reconstructions are shown in Fig. 5 and Fig. 6. In
Fig. 5 we show the center slice of reconstructed component
volumes η1 for the scattering direction ε̂1 = (1, 0, 0)T , η8
for ε̂8 = (0.7, 0.7, 0)T and η9 for ε̂9 = (0.7,−0.7, 1)T . On
the left hand side, the slices are from the unregularized CG
reconstruction, the middle column shows the result of the
previous ADMM method, while the right hand side shows
the results of the proposed CG+TV method.

We also obtain a quantitative measure for the contrast in
the images for the three different methods: we compute the
contrast-to-noise ratio (CNR) as,

CNR =
|η̄ROI − η̄BG|

σbg
, (7)

where η̄roi and η̄bg denote the mean of the scattering signal in
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a certain region of interest (ROI) of each component (marked
in red in Fig. 5(a)) and background (BG) (marked in green in
Fig. 5(a)), respectively. The CNR results are shown in Table I.

Finally, Fig. 6 shows the center slice of the reconstructed
tensors using all scattering directions, visualized as ellipsoids
with the color encoding the main structure orientation.

IV. DISCUSSION AND CONCLUSION

A comparison of the components in Fig. 5 shows a clear
qualitative improvement when using regularization, in partic-
ular in terms of suppressed background noise. Compared to
our previous ADMM approach, the more efficient proposed
CG+TV approach allows for better incorporation of the TV
regularization and shows even better noise suppression, while
showing less artifacts (see for example Fig. 5(e) vs. (h)). The
visualization of the fitted tensors in Fig. 6 also shows a marked
improvement, with smoother tensors representing the structure
orientations, while the background is less noisy. Quantitatively,
the convergence behavior is comparable as seen in Fig. 4,
while the CNR is markedly improving, as seen in Table I.

In summary, we have presented a new, efficient component-
based TV regularized reconstruction technique for XTT data.
First results for our experimental show a marked improved
performance both qualitatively and quantitatively when com-
pared to both previous approaches.

ACKNOWLEDGMENTS

This work has been supported by BERTI, funded by the
European Commission under grant agreement number 605162,
and partially funded by the DFG Cluster of Excellence
Munich-Centre for Advanced Photonics (MAP). CJ acknowl-
edges the TUM Graduate School for the support of his studies.

REFERENCES

[1] F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Brönnimann,
C. Grünzweig, and C. David, “Hard-x-ray dark-field imaging using a
grating interferometer,” Nat. mat., vol. 7, no. 2, pp. 134–137, 2008.

[2] F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and
differential phase-contrast imaging with low-brilliance x-ray sources,”
Nat. phys., vol. 2, no. 4, pp. 258–261, 2006.

[3] A. Malecki, G. Potdevin, T. Biernath, E. Eggl, K. Willer, T. Lasser,
J. Maisenbacher, J. Gibmeier, A. Wanner, and F. Pfeiffer, “X-ray tensor
tomography,” EPL, vol. 105, no. 3, p. 38002, 2014.

[4] J. Vogel, F. Schaff, A. Fehringer, C. Jud, M. Wieczorek, F. Pfeiffer, and
T. Lasser, “Constrained x-ray tensor tomography reconstruction,” Opt.
exp., vol. 23, no. 12, pp. 15 134–15 151, 2015.

[5] S. Seyyedi, M. Wieczorek, Y. Sharma, F. Schaff, C. Jud, F. Pfeiffer, and
T. Lasser, “Component-based TV Rgularization for X-ray Tensor To-
mography,” in Biomedical Imaging (ISBI), 2016 IEEE 13th International
Symposium on, April 2016.

[6] S. Boyd, N. Parikh, B. P. E Chu, and J. Eckstein, “Distributed Opti-
mization and Statistical Learning via the Alternating Direction Method
of Multipliers,” Found. and Tre. in Mach. Lea., vol. 3, no. 1, pp. 1–122,
2011.

[7] E. Y. Sidky and X. Pan, “Image reconstruction in circular cone-beam com-
puted tomography by constrained, total-variation minimization.” Physics
in medicine and biology, vol. 53, no. 17, pp. 4777–4807, Sep. 2008.

[8] M. Wieczorek, J. Vogel, and T. Lasser, “CampRecon - a software
framework for linear inverse problems,” TUM Technical Report, 2014.

(a) CG

(b) ADMM

(c) CG+TV
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Abstract— Changes in x-ray attenuating tissue caused by lung 

disorders like emphysema or fibrosis are subtle and thus only 
resolved by high-resolution computed tomography (CT). The 
structural reorganization, however, is of strong influence for lung 
function. Dark-field CT (DFCT), based on small-angle scattering 
of x-rays, reveals such structural changes even at resolutions 
finer than the systems resolution and it provides access to their 
spatial distribution.  

In this contribution we review the recent progress in grating-
based in-vivo small-animal imaging, and present several DFCTs 
of healthy, emphysematous and fibrotic mouse. The 
tomographies show excellent depiction of the distribution of 
structural – and thus indirectly functional – changes in lung 
parenchyma, on single-modality slices in dark field as well as on 
multi-modal fusion images. Therefore, we anticipate numerous 
applications of DFCT in diagnostic lung imaging. Finally, we also 
introduce a scatter-based Hounsfield Unit (sHU) scale to facilitate 
comparability of scans. In this newly defined sHU scale, the 
pathophysiological changes by emphysema and fibrosis cause a 
shift towards lower numbers compared to healthy lung tissue. 
The presentation is concluded with an outlook to human 
translation, and discusses the main challenges ahead. 
 

Index Terms—phase-contrast imaging, dark-field contrast 
imaging, lung diseases, COPD, fibrosis, emphysema 
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I. INTRODUCTION 

A. Clinical motivation 
In chronic obstructive pulmonary disease (COPD), airflow 
obstruction and airway inflammation frequently lead to 
destruction of alveolar architecture with enlargement of distal 
airspaces, which is referred to as pulmonary emphysema. 
Conventional chest radiographs have poor to moderate 
sensitivity particularly in patients with mild to moderate 
emphysema and cannot be used to reliably assess emphysema 
severity. Spirometry is commonly used to diagnose COPD/ 
emphysema but it is highly dependent on the patient’s 
cooperation and effort. Partly due to the limitations of 
spirometry and conventional imaging techniques, COPD – 
currently –  remains under-diagnosed. Studies have estimated 
that 60-85% of patients suffering from COPD, mainly those 
with mild to moderate disease, have not been diagnosed. The 
substantial morbidity and mortality resulting from this under-
diagnosis could be prevented since COPD is a treatable 
disorder.  
For example, if detected early, smoking cessation can 
substantially slow disease progression and lower mortality. 
According to the most recent (2012) world health organization 
(WHO) data, COPD ranks third among all causes of deaths 
claiming over 3 million lives globally each year (5.6% of all 
deaths). Further it is the fourth most common cause of 
disability responsible for over 30 million years lived with 
disability (YLDs) annually (4.2% of all YLDs). Estimating the 
cost of COPD to society is difficult, particularly due to under-
diagnosis of the disease and the frequency of comorbidities. 
Nevertheless, it is clear that both direct costs (health care 
services, medications, treatment) and indirect costs (loss of 
productivity due to disability or premature death) are 
substantial. In Europe, COPD has been estimated to affect 5-
10% of adults over 40 years of age. This translates to 12-25 
million individuals affected by COPD in the European Union. 

II. METHODOLOGY 

A. Overall concept of wave-optical x-ray imaging. 
Dark-field (small-angle scatter) image contrast is created 
through differences in the local scattering power within the 
sample. Small-angle scattering results from microstructures of 
a much smaller scale than the spatial resolution of the imaging 
system. For homogeneous objects that show no or negligible 
small-angle scattering, the dark-field signal is close to zero, 
whereas strongly scattering samples yield a significant dark-

Pre-clinical dark-field CT imaging of small-
animal lung disease models 

F. Pfeiffer1, A. Velroyen, A. Yaroshenko, A. Tapfer, S.D. Auweter, K. Hellbach, F.G. Meinel,  
T. Koehler, M. Bech, P.B. Noël, A.Ö. Yildirim, O. Eickelberg 
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field signal. The dark-field signal reveals indirect structural 
information on the nanometre and micrometre length scale 
that is inaccessible from the conventional attenuation CT 
image.  

B. Grating-based x-ray dark-field imaging 
Figure 2 shows the basic experimental arrangement for 
grating-based x-ray imaging. It consists of a source grating 
G0, a phase grating G1, and an analyser grating G2. The 
source grating (G0), typically placed close to the X-ray tube, 
is an aperture mask with transmitting slits. It creates an array 
of periodically repeating line sources and effectively enables 
the use of relatively large, that is, square-millimetre-sized, x-
ray sources, without compromising the coherence 
requirements of the arrangement formed by G1 and G2. The 
image contrast itself is formed via the combined effect of the 
two gratings G1 and G2. The second grating (G1) acts as a 
phase mask and imprints a periodic phase modulation onto the 
incoming wave field. 
 

 
Fig. 2: Basic setup for grating-based x-ray imaging and micrograph of a 
typical grating structure. (Left) The arrangement for grating-based x-ray 
imaging (a so-called Talbot-Lau interferometer) consists of a source grating 
G0, a phase grating G1, and an analyser grating G2. The source grating (G0) 
is typically placed close to the x-ray tube, whereas G1 and G2 are placed close 
to the detector, behind the sample. (Right) Scanning electron micrograph of a 
typical grating structure (here a micro-structured silicon-template with gold 
fillings) with a period of 5 microns, and a height of 50 microns [for more 
details, see Pfeiffer et al., Nature Physics, 2008]. 
 
Through the Talbot effect, the phase modulation is 
transformed into an intensity modulation in the plane of G2, 
forming a linear periodic fringe pattern perpendicular to the 
optical axis and parallel to the lines of G1 (see Figure 3, left 
panel). The third grating (G2), with absorbing lines and the 
same periodicity and orientation as the fringes created by G1, 
is placed in the detection plane, in front of the detector. When 
one of the gratings is scanned along the transverse direction, 
the intensity signal in each pixel in the detector plane 
oscillates as a function of the grating transverse position 
(Figure 3, right panel).     

 
Fig. 3: Contrast generation and data processing in grating-based x-ray 
imaging. (Left) In order to detect the dark-field (small-angle scattering) signal 
created by an object, the periodic fringe pattern created by G1 is analysed in 
the plane of G2. A sample with a significant scattering contribution diffuses 
the beam and yields a locally reduced fringe visibility. (Right) The signal is 
obtained by analysing the intensity oscillations in every detector pixel as a 
function of the grating position G2 [for more details, see Pfeiffer et al., Nature 
Materials, 2008]. 

 
The setup allows obtaining three different image signals 
(conventional attenuation, phase-contrast, and dark-field 
contrast) from the object. In order to retrieve these signals, a 
so-called phase-stepping scan is performed with the 
interferometer, in which several exposures (typically 3 or 4) 
are acquired while one grating is stepped sideways in the 
direction perpendicular to the grating lines. Subsequently 
Fourier processing of the recorded frames is used to extract 
the three image signals. A typical result of such a procedure is 
shown in Figure 4 for a simple test sample. 
  

 
Fig. 4: Multi-contrast x-ray images of a test sample containing two plastic 
containers filled with a liquid (water, left, A) and a powder (sugar, right, B). 
(a) Conventional x-ray attenuation image, (b) differential phase-contrast 
image, and (c) dark-field image of the same sample [for more details, see 
Bech et al., Zeitschrift für Med. Physik, 2010]. 
 

III. SMALL-ANIMAL EXPERIMENTS AND RESULTS 

A. Small-Animal CT prototype setup 
The prototype scanner (see Figure 5) consists of a standard 
rotating CT gantry with x-ray source, specimen opening, and a 
flat-panel detector. It comprises additionally a three-grating 
Talbot-Lau interferometer to extract multi-contrast x-ray 
projection images. This allows the system to deliver 
conventional attenuation images, differential phase-contrast 
images, and dark-field images. In the first step of the 
development, the compact gantry was built and operated 
stand-alone in rotating sample mode [11]. In its present 
configuration, the gantry is now implemented into a typical 
preclinical CT scanner housing, featuring an animal bed, 
animal monitoring, gas anaesthesia, and a flat-panel imaging 
detector. 
 

 
Fig. 5: Small-animal phase- and dark-field CT scanner. (Left) Photograph of 
the previously developed rotating-gantry CT scanner. (Middle) Schematics of 
the scanner housing with rotating gantry (gantry movement indicated by red 
arrows). The gantry is oriented horizontally in the displayed view. The 
housing dimensions are approximately 95 cm in width, 100 cm in height, and 
85 cm in depth. (Right) Grating interferometer implementation, which is 
contained within the gantry [for more details, see Tapfer et al, PNAS, 2012]. 
 
Using the system at hand, we have successfully performed the 
first in-vivo phase- and dark-field contrast x-ray images of 
mice (see Figure 6), staying well within the dose limits for 
small-animal imaging (3.5 mGy in total).  
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As illustrated, the information gained from each of the three 
contrast mechanisms is of complementary nature. The 
conventional x-ray image (Figure 6a) shows very good 
contrast between bones and soft tissue, mainly due to the 
increased x-ray attenuation of calcium compared to the lighter 
soft tissue. The differential phase-contrast image (Figure 6b) 
enhances details in the soft tissue. In particular the interfaces 
of air filled regions are clearly shown, such as the trachea 
(marked by an arrow) or the lungs. Finally, the dark-field 
image (Figure 6c) enhances features containing sub-pixel-
sized microstructures. Particularly the lungs exhibit a strong 
signal, as their main morphological structures – the alveoli – 
have a typical size of a few tens of micrometres. 
      

 
Fig. 6: First in-vivo multi-contrast x-ray images of a mouse. Data processing 
of the phase-stepping scans (shown in Figure 4) yields three separated and 
complementary x-ray images. (Left) Conventional x-ray attenuation image. 
(Middle) Differential phase-contrast image based on x-ray refraction. (Right) 
Dark-field image based on x-ray small-angle scattering. All three images are 
intrinsically registered as they are extracted from the same data. Examples of 
regions of enhanced contrast compared to the attenuation image are marked 
with arrows, showing the refraction of the trachea (middle) and the small-
angle scattering of the lung (right). The total dose for these images was 3.5 
mGy [for more details, see Bech et al., Nature Scientific Reports, 2013]. 
 

B. Disease screening in small animals 
Based on the first successful – and dose-compatible – in vivo 
proof-of-principle experiments (see above), we have started to 
exploit the system to assess the full diagnostic potential of the 
dark-field technology in the area of lung imaging using small-
animal (mouse) disease models. One example, showing 
particularly the potential benefits in diagnosing emphysema 
(COPD) or fibrosis (in an endpoint study with histological 
confirmation) is shown in Figure 7 [6][8].  
 

 
Fig. 7: Conventional in-vivo x-ray transmission (top row) and new x-ray dark-
field (bottom row) radiographs of lung disease mouse models. The chosen 
examples highlight the potential of this new in-vivo medical imaging 
technology for improving diagnosis, monitoring, and - after potential drug 
administration - therapeutic response in the case of two important 
manifestations of chronic pulmonary disease, namely lung emphysema 
[9][4][6] and lung fibrosis [1]. While difficult (or almost impossible) to assess 
on the basis of the conventional transmission radiographs, the increased size 

of alveoli in the lung in the case of lung emphysema results in reduced 
scattering of x-rays and thus a (homogeneously) lower signal in the x-ray 
dark-field image, which is clearly detectable (bottom row, centre).  In the case 
of lung fibrosis patches of diseased lung tissue can be clearly identified based 
on the missing dark-field signal (due to reduced tissue-air interfaces, bottom 
row, right). All images were recorded with our previously developed small-
animal dark-field CT scanner prototype, with a typical total dose of 3-4 mGy 
for both images.      
 
A further example of a longitudinal study is shown in 
Figure 8, see [4], which particularly highlights the method’s 
ability to stage emphysema disease progression – and thus 
therapy monitoring. 

 
Fig. 8: X-ray transmission and dark-field images of mice in various stages of 
emphysema severity. Transmission (upper row), and dark-field (lower row) 
are shown for healthy (left), mildly (middle left), moderately (middle right), 
and severely (right) emphysematous lungs. The study shows that x-ray dark-
field radiography can visualize different stages of emphysema in vivo and 
demonstrates significantly higher diagnostic accuracy for early stages of 
emphysema than conventional attenuation-based radiography [for more 
details, see Hellbach et al., Investigative Radiology, 2015]. 
 

C. First in-vivo small-animal dark-field CT images 
To further explore the system’s capability for performing full 
in vivo x-ray dark-field CT scans of mice, thoracic 
tomographic data were acquired of a healthy control mouse, a 
mouse with pulmonary emphysema, and a mouse with 
pulmonary fibrosis [3]. The scope of this  study was to 
highlight the feasibility and to demonstrate the potential 
diagnostic benefit of the novel contrast modality in three-
dimensional imaging. 
Figure 9 provides an overview of the CT datasets of this study. 
Comparing the conventional attenuation CT images of the 
emphysematous mouse (Fig. 9 b, e) with the control (Fig. 9 a, 
d), only subtle differences towards darker grey values in 
peripheral lung tissue in the emphysematous case can be 
observed. The resolution of the imaging system does not allow 
a direct depiction of the alveolar wall structure. In the 
corresponding CT slices of the dark-field channel (Fig. 9 g, j 
for control, h, k for emphysema), the strong difference in 
signal allows for striking discernibility between control and 
diseased case. The destruction of alveolar walls and resulting 
enlargement of air spaces causes significantly reduced small-
angle x-ray scattering.  
In the case of lung fibrosis (Fig. 9 c, f for attenuation, i, l for 
dark-field) the replacement of the functional alveolar network 
by solid scar tissue is clearly apparent in both modalities, since 
the presented case is at an advanced stage. The dark-field 
image reveals areas with remaining functional alveolar 
structure.  
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Fig. 9: Attenuation and dark-field CT slices, their fused representation, and 
volume renderings of lungs of three in vivo mice. Pathophysiological changes 
are subtle in the attenuation-based, but striking in dark-field images. Grey-
value windows for single-modality slices were chosen for best visual 
appearance, but consistent within the same modality, respectively. 
(a,d,g,j,m,p,s) Control mouse. (b,e,h,k,n,q) Emphysematous mouse. 
(c,f,i,l,o,r,t) Fibrotic mouse. (a-c) Coronal slices of attenuation CT. (d-f) Axial 
slices of attenuation CT. (g-i) Coronal slices of dark-field CT. (j-l) Axial 
slices of dark-field CT. m-o: Coronal slices of fused CT. (p-r) Axial slices of 
fused CT. (s,t) Volume renderings of (s) emphysematous and (t) a fibrotic 
case. The skeletal structure was segmented from attenuation CT, whereas the 
lung tissue was extracted from dark-field CT and represented by a semi-
transparent hot color map [see also 
https://www.youtube.com/watch?v=WeiADQ0h3B4]. 
 
For a better three-dimensional visualization, Fig. 9 s, t provide 
views of volume renderings of the acquired datasets. Bones 
were segmented from the attenuation signal, whereas lung 
tissue was extracted from the dark-field CTs and represented 
by a semi-transparent hot colour map to enhance inter- and 
intra-pulmonary structural variations. The 3D views confirm 
the earlier findings from the 2D slices: The control lung 
exhibits a strong homogeneous scattering pattern all over its 
volume, whereas the fibrotic lung lacks scattering areas in the 
central, peribronchial regions.  

 

IV. FUTURE TRANSLATION TO HUMAN CT 
Based on these first successful pre-clinical, small-animal 
DFCT application results, the potential translation to human 
scale can be envisioned. This contribution will focus on the 
main challenges (grating quality, energy, acquisition 
strategies) that have to be addressed, before an implementation 
into a human CT system could be possible.  
Translating this modality into a clinical setting has the 
potential to significantly improve the diagnosis of e.g. COPD, 
which changes the structure of the lung parenchyma on a 
micrometre length scale. It even allows monitoring and 
staging this disease using the additional information on the 
microstructural changes, which cannot be directly resolved by 
the imaging system. 
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Abstract—It has been demonstrated in many instances that 

phase-based computed tomography (CT) can provide superior 
contrast-to-noise ratio for weakly attenuating samples than 
attenuation-based CT. In order to exploit this benefit on a wider 
scale, phase-based tomography implementations must be 
compatible with standard x-ray equipment. The edge 
illumination method, which is based on aperturing a beam and 
measuring spatial displacements caused by refraction, is an 
attractive choice for such use due to its low requirements on 
spatial and temporal coherence. This document provides a brief 
introduction to the working principle of the edge illumination 
method and reviews recent advances that lead to increased 
robustness, faster acquisitions and lower dose delivery. 
Moreover, it reports on a recent study in which the edge 
illumination method was applied to samples from the field of 
tissue engineering, yielding synchrotron-like image quality with 
exclusively commercially available, laboratory-based x-ray 
equipment.  
 

Index Terms—computed tomography, phase contrast imaging, 
x-ray imaging 

I. INTRODUCTION 

OMPUTED tomography (CT) has come a long way since its  
invention by Hounsfield and Cormack in the sixties. 
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Regardless of whether it is used for clinical decision making, 
pre-clinical biomedical research, materials science or 
homeland security, CT is nowadays an integral part to various 
aspects of our society. The strength of this three-dimensional 
imaging modality lies in the wide range of spatial resolution 
regimes that can be accessed (on the macro-, micro- and even 
the nano-scale) and the fact that it can be implemented with a 
variety of x-ray sources (from compact hospital x-ray tubes to 
large, highly specialized synchrotron facilities) and detectors 
(from CCD cameras to cutting-edge energy resolving photon 
counters). Despite this versatility, CT suffers from one 
limiting issue; since image contrast is based solely on x-ray 
attenuation (dominated by photoelectric absorption or 
Compton scattering, depending on the energy used), materials 
with low atomic number suffer from a low contrast-to-noise 
ratio (CNR), leading to poor feature detectability. Although 
higher photon statistics can in principle improve the CNR, this 
option is often ruled out in practice by tight constraints on 
dose delivery and acquisition time.  

On the other hand, attenuation is not the only physical effect 
that x-rays undergo when they travel through matter; phase 
shifts occur at the same time, since the wave velocity is 
different for different media. A sample’s ability to attenuate 
and shift the phase of an x-ray beam is commonly described 
by the complex refractive index: ;  
and β drive phase shift and attenuation, respectively, and k  is 
the wave number. For weakly attenuating materials and within 
the diagnostic energy range,  can be up to three orders of 
magnitude larger than β, implying that CNR can be largely 
improved if phase effects are exploited [1]. 

Several methods have been developed to use x-ray phase 
shifts for imaging [2]. When a beam has a sufficient degree of 
spatial coherence, interference fringes develop as it propagates 
after exiting the sample, converting phase shifts into 
measureable intensity variations. This so-called propagation-
based phase contrast imaging is however restricted to 
synchrotrons or micro-focal x-ray sources, due to its stringent 
coherence requirements . Another way of measuring phase 
shifts is by exploiting the Talbot effect, which creates an 
interference pattern (a self-image) at some specific distances 
downstream of a diffraction grating. Grating interferometry-
based phase contrast imaging methods seek to measure this 
interference pattern as well as any disturbances to it caused by 
additional refraction introduced by the sample. The Talbot 
effect intrinsically requires coherence; however, 
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implementations with low-coherence x-ray sources are 
possible by splitting the beam into an array of mutually 
incoherence but self-coherent sub-sources. Other phase 
contrast imaging methods  also measure x-ray refraction, i.e. 
the macroscopic manifestation of the phase shift. These 
methods make use of an analyzer positioned in the beam path 
behind the sample, which modulates the beam intensity 
depending on the refraction angle. The analyzer can be a 
crystal (exploiting the laws of Bragg diffraction) or a single 
aperture/an array of apertures (exploiting spatial beam 
displacements resulting from refraction). While demanding 
less spatial coherence, crystal-based methods still require a 
temporally coherent beam due to the crystal’s narrow-band 
energy acceptance. In turn, aperture-based methods tolerate 
low spatial and temporal coherence; thus, they can be 
implemented with conventional x-ray tubes, making them 
attractive for use in laboratory environments .  

This document focusses on the edge illumination method 
[3,4], a specific aperture-based phase contrast imaging method 
that was developed initially at the Elettra synchrotron (Trieste, 
Italy), and more recently in the radiation physics laboratories 
of University College London (UCL). Following a brief 
introduction to the working principle of the method, it s 
potential for use in standard laboratory environments  is 
discussed through recent advances on robustness, scan speed 
and dose delivery. Finally, imaging examples of soft tissue 
specimens from the field of tissue engineering are presented.  

II. THE EDGE ILLUMINATION METHOD 
The edge illumination method converts x-ray refraction into 

image contrast. This is achieved by illuminating only the 
edges of a row of pixels with a narrow (typically < 20 μm) 
laminar beam (collimated by a slit-shaped aperture): a 
refraction of the beam towards/away from the pixels’ active 
areas causes an increase/decrease in the measured intensity. In 
order to obtain a two-dimensional image, the sample has to be 
scanned through the beam. This implementation stems from 
early developments at the Elettra synchrotron where the flux is 
sufficiently high to perform fast acquisitions despite the need 
for sample scanning. When x-ray flux is limited (e.g. with 
conventional x-ray sources), the edge illumination method is 
typically implemented in full-field mode [Fig. 1]. In this setup, 
a mask, i.e. an array of slit-shaped apertures in front of the 
sample (“pre-sample mask”) splits the beam into an array of 
physically separated beamlets, and a second mask in front of 
an area detector (“detector mask”) creates insensitive areas 
(“edges”) between the pixels. By positioning the pre-sample 
mask such that each individual beamlet falls partially on a 
pixel and partially on an absorbing detector mask septum, the 
edge illumination principle is replicated over the entire field of 
view (FOV), eliminating the need for sample scanning.  

A prototype of such a setup has been built at UCL, based 
exclusively on commercially available x-ray equipment. The 
setup features a Rigaku MicroMax 007 HF x-ray tube with 
rotating molybdenum target (focal spot ≈ 70 μm), a 
Hamamatsu C9732DK flat panel detector with CMOS read-
out (pixel size = 50 μm x 50 μm) and two sets of masks 

fabricated by electroplating gold strips onto a graphite 
substrate (Creatv MicroTech Inc., Potomac, MD, USA). The 
aperture widths of the pre-sample and detector masks are 23 
μm and 29 μm, respectively, and their periods are 79 μm and 
98 μm.  

 

 
Figure 1. Schematic showing the full-field implementation of the 
edge illumination method (as seen from top). The distances in the 
prototype scanner at UCL are z1 =1.6 m, z2 = 0.05 m and z3 = 0.35 
m.  

Intensity variations (contrast) in a single radiograph are 
typically due to a combination of x-ray attenuation and 
refraction. The acquisition of a second image frame, after the 
pre-sample mask is re-positioned such that the beamlets fall 
onto the opposite sides of the detector mask apertures  
(“opposite illumination configuration”), and the subsequent 
processing of these two images  according to a dedicated 
procedure (“phase retrieval”) enables the separation of the 
attenuation and refraction channels [5,6]. If the sample 
contains scattering structures , each radiograph contains an 
additional (the so-called “dark field”) channel. In that case, the 
acquisition of a third image frame, with the pre-sample and 
detector mask apertures fully aligned, is required to separate 
the attenuation, refraction and dark-field information [7]. In 
order to acquire a CT dataset, the sample must be rotated and 
two (or three, for scattering samples) projection images must 
be acquired at each CT angle. For each transverse sample slice 
(y = const.) this yields sinograms of the following form [8]:  

 
    (attenuation)        (1) 
    (refraction)          (2) 

          (dark-field)          (3) 
 
where  describes the scattering properties of the sample, 

 are the rotating  
coordinates of the sample and θ is the rotation angle. These 
sinograms enable the reconstruction of tomograms of  
(attenuation),  (phase),  (dark-field) via standard 
reconstruction methods, e.g. the filtered back projection (FBP) 
formula. The derivative in the refraction sinogram imposes the 
use of an additional integration step or the use of a dedicated 
filter function in the FBP. 
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III. ROBUSTNESS, SPEED AND DOSE 

Since the edge illumination method is compatible with 
conventional x-ray tubes, it offers potential for a widespread 
use outside specialized synchrotron radiation facilities. 
However, the implementation of an imaging setup in non-
synchrotron environments such as academic research 
laboratories or hospitals imposes several stringent 
requirements: a) the experimental setup should be easy to 
align and robust towards environmental vibrations , b) 
acquisitions should be fast, and c) the delivered radiation dose 
should be low (although the definition of “low” is obviously 
application dependent). Recently, strategies were developed 
for the edge illumination method in order to  increase its 
compatibility with these criteria: 

a) While the alignment of the pre-sample and detector 
masks is relatively straight forward and is currently carried out 
via a semi-automatic procedure [9], manufacturing-related 
mask imperfections prevent the alignment from being perfect, 
and therefore a certain, mask-dependent accuracy limit exists 
which cannot be overcome. Hence, local variations of the 
illumination level (the fraction of each beamlet falling into the 
detector mask aperture and therefore onto the pixel active 
area) across the field-of-view cannot be avoided. However, by 
applying a “local phase retrieval” procedure [10], this 
misalignment can be completely accounted for and its 
negative effect on the retrieved absorption, refraction and 
dark-field channels eliminated. In fact, the “local” method has 
been shown to tolerate mask imperfections of up to a few tens 
of micrometres, which is way above current manufacturing 
standards.  

b) Due to the limited flux of conventional x-ray tubes and 
the fact that, until now, the separation of attenuation and 
refraction contrast required two input images, edge 
illumination CT has suffered from relatively lengthy scan 
times. To tackle this problem, an alternative phase retrieval 
method (“reverse projection”), which was first published by 
Zhu et al. (2010) for grating interferometry [11], has been 
further developed to make it applicable to EI datasets [12]. 
Reverse projection retrieval relies on the observation that two 
images acquired with a rotation offset of 180 degrees between 
them provide the same information as two acquired in the 
opposite illumination configurations as described above. This 
retrieval simplifies the experimental procedure and enables a 
more efficient (and thus faster) acquisition. In fact, it allows a 
continuous rotation of the sample while previously this had to 
be interrupted to reposition the pre-sample mask from one to 
the opposite illumination configuration at each rotation angle. 
Keeping the pre-sample mask in a fixed position throughout 
scans also improves robustness, as it eliminates any potential 
misalignment caused by repeated motor movements.  

c) As a possibility for dose reduction, we have developed a 
new phase retrieval algorithm that does no longer require two 
images as input [13]. Instead, it relies only on a single image, 
and yields the projected thickness of a sample (in a similar 
manner to the widely used method developed by Paganin et al. 
for propagation-based phase contrast imaging [14]). This 

retrieval method reduces the number of image frames needed 
for a CT acquisition/reconstruction and, therefore, the dose 
and the acquisition time by a factor of 2. Since the method 
relies on the assumption of a s ingle material sample, it cannot 
be considered strictly quantitative. However, so far high image 
quality results were obtained for all biological soft tissue 
samples that have been investigated. 

IV. APPLICATION IN TISSUE ENGINEERING 
Tissue engineering, a sub-discipline of regenerative medicine, 
aims at the development of replacement organs by combining 
appropriate scaffolds and cells. An important question is how 
to produce scaffolds enabling cell adhesion, proliferation and 
differentiation. There is strong evidence that scaffold 
microstructure, biomechanical properties and extracellular 
matrix composition play a crucial role in this. Typically, 
microstructure and matrix composition are analyzed using 
histology and electron microscopy. These imaging techniques, 
however, require destructive sample preparation; hence they 
are not suitable for a volumetric analysis, longitudinal studies 
or in vivo translation. In a 2013 review paper on imaging 
modalities used for tissue engineering applications, x-ray 
phase contrast imaging was identified as a potential method to 
overcome the current lack of non-destructive, three-
dimensional imaging technology that provides detailed 
scaffold information [15].  
 

 
Figure 2. Phase tomograms of a decellularized rabbit esophagus 
acquired with a) propagation-based phase contrast CT at the 
ESRF (ID17) and b) the edge illumination method in the 
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radiation physics laboratories of UCL. Reprinted by permission 
from Macmillan Publishers Ltd: [Scientific Reports] (16), 
copyright (2015). 

To demonstrate this potential, a range of tissue engineering 
scaffolds obtained via decellularization of small rodent organs 
was scanned recently [16], first with propagation-based phase 
contrast CT at beamline ID17 of the European Synchrotron 
Radiation Facility (ESRF), and then with the laboratory-based 
edge illumination setup at UCL. Phase tomograms were 
reconstructed, showing high image quality for both the 
propagation-based and the edge illumination data. As an 
example, Figure 2 shows tomograms of a rabbit esophagus 
scaffold; in both images , contrast is sufficiently high to 
identify all native anatomical layers of the esophagus (mucosa, 
sub-mucosa, muscularis propria, adventitia, as indicated by 
arrows in the figure), and to assess their structural integrity. 
The latter is important to judge the performance of the 
decellularization method used. Most importantly, the fact that 
an image quality comparable to that of synchrotron-based 
phase contrast CT was obtained in a standard laboratory using 
exclusively conventional x-ray equipment indicates that not 
only does phase contrast CT have the capability to replace 
histology and SEM for this range of applications, but also that 
imaging could be performed inside tissue engineering research 
laboratories, enabling a high-throughput and wide uptake.    

V. SUMMARY  
Despite many advantages and widespread exploitation, CT 
imaging is still limited by poor CNR when applied to weakly 
attenuating samples like biomedical soft tissue. Phase contrast 
imaging methods can overcome this problem, since the phase 
exploited by these modalities for contrast generation can be 
much larger than attenuation effects. The edge illumination 
method’s sensitivity to x-ray refraction is realized through the 
use of apertures in the beam path. Low demands on spatial and 
temporal coherence make the method attractive for use outside 
specialized synchrotron facilities  such as research laboratories 
and hospitals. In order to ensure the method’s compatibility 
with “real life” applications encountered in such 
environments, strategies for improved robustness, increased 
acquisition speed and dose reduction have been developed. 
These advances, together with the recent achievement of 
synchrotron-like image quality with laboratory equipment for 
tissue engineering samples, suggest that the edge illumination 

method provides opportunities for a widespread exploitation 
of phase-based tomography.  
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Iterative Reconstruction of Grating-based PCCT
Without Phase-Stepping

Maximilian von Teuffenbach, Bernhard Brendel, Andreas Fehringer, Peter B. Noël, Franz Pfeiffer, Thomas Köhler

Abstract—Grating-based X-ray phase-contrast computed tomog-
raphy (PCCT) has been in the focus of a lot of research
in recent years. It does not only allow access to information
about X-ray attenuation but also about X-ray refraction and
small-angle scattering in a sample while still being usable with
ordinary polychromatic, incoherent X-ray tubes. The improved
functionality over conventional CT comes with the drawback
of longer exposure times. This is because standard processing
algorithms require not a single image per projection angle but
several. Additionally, precise grating movements have to be
performed in between, which hinders adaptation of PCCT in a
continuously rotating gentry. Here we propose to use an iterative
reconstruction algorithm with a forward model based directly
on the measured intensities to circumvent the problematic part
of projection-based phase retrieval. We show that using this
approach successful reconstruction is not only possible with a
single stepping position per projection but that, if combined with
high frequency moiré fringes, reconstruction is possible without
any grating movement at all.

I. INTRODUCTION

S
INCE its first clinical use in the 1970s computed tomog-
raphy (CT) has been developed into a standard imag-

ing technique in medicine and industrial testing. New phase
sensitive X-ray imaging techniques offer the possibility to
reconstruct not only the spatial distribution of the attenuation
coefficient in a sample but also the spatial distribution of the
electron density (via sample refraction) and of a small-angle
scattering contribution of sub-resolution features in the sample.
Using these new imaging modalities phase-contrast computed
tomography (PCCT) can offer significantly improved image
contrast, especially if the attenuation of the sample is small
such as in soft tissue [1].
Grating-based differential phase-contrast (GB-DPC) imaging
is one of the most promising X-ray techniques offering phase
sensitive information because it can be used with ordinary X-
ray sources [2], offers high sensitivity and resolution [1], and
has been successfully applied in several studies for biomedical
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imaging [1]–[8]. It is based on an interferometric self-imaging
phenomenon called Talbot effect. An interference pattern is
created by introducing the so-called phase grating (G1) into
the beam path. This pattern is modulated by the scanned
object. A second absorption grating acts as an analyzer grating
(G2) to resolve the pattern, which has features below detector
pixel size, with a conventional X-ray detector. If used with an
incoherent X-ray source, the Talbot interferometer is usually
turned into a Talbot-Lau interferometer by introducing another
absorption grating (G0) in front of the source to increase
spatial coherence [2].
One of the biggest hindrances of wide-spread adaptation of
differential phase-contrast tomography is that it requires long
acquisition times compared to conventional CT. The main
cause for higher acquisition times is the standard procedure
of phase stepping. Phase stepping produces transmission,
differential phase, and dark-field projections but at least three
measurements (interferograms) per projection angle are re-
quired. Additionally, precise grating movements have to be
performed between the measurements which demands a great
deal of stability from the setup and effectively hinders the
adaption of PCCT in state-of-the-art continuously rotating CT
gentries.
Several methods have been proposed to ease these require-
ments. Interlaced phase stepping combines rotation and phase
stepping in one step but is still limited by speed and stability
of the grating movement and suffers from a loss of tangential
resolution [3]. Fringe analysis is a method that works with
a single shot per angle but loses spatial resolution [4]. The
reverse projection method uses complementary information of
opposing projections in a 360◦ scan but only works correctly
for weakly refracting objects, does not recover scattering in-
formation and, of course, needs a 360◦ scan [5]. Model-based
iterative reconstruction techniques would allow to consider
all necessary configurations of the imaging setup, including
grating positions, in a forward-model. Several studies using
iterative reconstruction techniques have been published but
almost all of them utilize transmission, differential phase, and
dark-field projections as the basis of their model [6], [9], [10].
As these projections have to be previously processed from
the measured interferograms, it means that these techniques
can not account for errors introduced during processing and
that the interferograms have to be taken in a specific way
that allows processing them (a full phase-stepping, opposing
projections, etc.) To our knowledge, so far only two studies
have based their models on the measured intensities of the
interferogram [11], [12]. In [11] an unregularized maximum
likelihood model was used and a heuristic method for opti-
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mization was employed that is not guaranteed to converge.
Additionally the study was performed on a noise-free numeric
phantom and utilized manually constructed starting images
containing information about the object. The image acquisition
was following the standard phase-stepping procedure.
Intensity-based statistical iterative reconstruction (IBSIR)
should give a framework which allows to take all relevant
system parameters into account [12], allows to correctly
consider measurement noise, and allows any single recorded
interferogram to add usable information to the reconstruction.
That last point should ease the requirements for the image
acquisition process substantially. The goal of this work was
to test IBSIR on real measurements using non-standard image
acquisition procedures and to test how far that is possible.
First we will formulate the algorithm used in this study by
stating the used objective function, forward model, and solver.
Then we show that the linear attenuation coefficient μ, electron
density δ, and linear scattering coefficient ε of a complex
biomedical sample can be successfully reconstructed with this
method using only a single grating position per projection
angle. After that another successful reconstruction is shown
where only a single constant grating position is used throught
the scan to reconstruct a continuously moved sample.

II. METHOD

As mentioned in Section I prior to conventional reconstruction
in PCCT first a set of three sinograms containing attenuation,
differential phase, and dark-field projections has to be obtained
via various techniques. The linear attenuation coefficient μ,
electron density δ, and a linear scattering coefficient ε are
then separately reconstructed from one sinogram at a time via
filtered back projection (FBP) [1] or iterative reconstruction
algorithms [6], [9].
Alternatively, a cost function incorporating a model of the
imaging system can be optimized. The cost function contains a
data term, calculating the likelihood for the reconstructed im-
ages to belong to the measurement, and a regularization term
that penalizes deviations of the images from prior knowledge
i.e. smoothness of the images. Now the values for μ, δ, and
ε which minimize the cost function for given measurements
I are the best estimate of their distribution in a penalized
maximum-likelihood sense.

A. Intensity-based Statistical Iterative Reconstruction

In the following, the index i denotes the measurement for
a specific detector element at a specific angular and grating
position. For conventional detectors and for high photon counts
in photon counting detectors the measured intensities Ii are
Gaussian distributed around their expected values Īi with
variance σ2

i . The joint negative log-likelihood (without any
prefactors) to measure I can be written as

L(I|Ī) =
∑
i

1

σ2
i

(Ii − Īi)
2. (1)

The forward model for Īi is dependent on the distribution of
μ, δ, and ε and can be written as

Īi = I0i Ti[1 + V 0
i Di cos(Φ

0
i − Φi)] (2)

where I0, V 0, Φ0 are mean intensity, visibility, and phase
position of a blank scan without sample. The transmission T ,
dark field signal D, and differential phase Φ are defined as

Ti = exp [−
∫
li

μ(x)dx], (3)

Di = exp [−
∫
li

ε(x)dx], (4)

Φi = ∂y

∫
li

δ(x)dx, (5)

where
∫
li
dx is the line integral from detector i to the x-ray

source and ∂y is the partial derivative perpendicular to the
grating direction. These can be calculated by a conventional
CT projector [13].
For the regularization term a single independent constraint en-
forcing smoothness can be applied to each of the reconstructed
images [12]:

R =
∑

θ∈{μ,δ,ε}
βθ

∑
j

∑
k∈Nj

wjkΨ(θj − θk, γθ). (6)

The index j runs over all voxels (all three images are defined
on the same grid) and k runs over all voxels in the neighbor-
hood Nj of j. wjk is a distance dependent weight and Ψ(·)
is the Huber potential function [14]. Regularization strength β
and Huber parameter γ are individually set for all three images
such that no details are lost in that image but also significant
noise suppression can be observed.
The cost function C = L + R was minimized by iteratively
applying a simple steepest descent algorithm separately on
one image after the other. That means that the gradient of all
voxels in one image was calculated, then a 1D linesearch in
gradient direction was performed and the image was updated
accordingly. It should be noted that this algorithm is not
optimal with respect to execution time at all, but is easy to
implement and does not diverge.

B. Data acquisition schemes

To correctly reconstruct μ, δ, and ε every part of the sample
has to be imaged not only from a sufficient number of angular
positions, but also at enough different phase positions to
correctly attribute changes in measured intensity to either at-
tenuation, change in phase of the measured X-ray or scattering
in the object. Normally this is achieved by phase stepping or
scanning of moiré fringes in a specific way, see Section I. We
will use two simple methods for data acquisition that can be
used with a rotating gentry.

1) Sliding Window: In this variation of the standard phase
stepping approach, grating position and angular position of
the scanner are changed at the same time. Conventional
Fourier processing [7] of these interferograms is possible by
interpolating between neighboring views [3] but comes at the
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a b c
Fig. 1. (a) Reference reconstruction of the refractive index decrement using FBP based on 751 projections each with 5 steps. (b) Reconstruction using
sliding-window FBP based 751 projections of 1 step each. (c) Reconstruction of sliding window dataset using intensity-based iterative reconstruction. (b)
shows severe blurring in regions far from the center (see zoomed region). (c) shows no blurring in tangential direction and suppresses light streak artifacts
outside of the tube seen in (a) and (b). All images are shown on the same window.

cost of blurring in tangential direction. As IBSIR does not
require processing of the interferograms, interpolation is not
necessary and should lead to reconstructions without tangential
blurring.

2) Moiré fringes: Through careful misalignment of G1 and
G2 it is possible to create vertically oriented moiré fringes
on the detector. If the sample is now rotated, it will move
through the fringes, thus allowing measurements of almost
every part of the sample at different phase shifts. Only the
parts of the sample close to the rotational axis are always
situated inside of the same fringe. To circumvent this, we
moved the sample by a single pixel after each projection. To
stay inside of the detector field of view, this displacement
was set to zero every few steps, resulting in a sawtooth-
like detector displacement. An equivalent effect can also be
achieved, without any mechanical movements, by a technique
called focal point shift or electronic beam steering [15].

III. EXPERIMENTAL RESULTS

1) Sliding Window: To demonstrate improvements in reso-
lution for sliding window scans the scan of rat intestines
used by [3] was reevaluated. The sample was submerged in a
cylindrical container filled with formalin 10 % solution, which
was in turn put in a water bath to avoid strong refraction
at the container-air interface. Measurements were performed
at the ID19 beamline of the European Synchrotron Radiation
Facility (ESRF) in Grenoble, France. A monochromatic beam
with an energy of 23 keV was produced with a Si(111) double
crystal monochromator. The interferometer was located 150m
from the source. It consisted of a phase grating G1 made
from silicon and an analyzer grating G2 made from gold on
a silicon substrate. G1 had a period of 4.80 μm and a height
of 29.5 μm and G2 had a period of 2.4 μm and a height of
50 μm. The inter-grating distance was 481mm. As detector
a scintillator/lens-coupled CCD camera with 2048× 2048
pixels and an effective pixel size of 7.5 μm was used. Five
interferograms were taken at different grating positions for

751 angular positions evenly spaced over 180 degrees. Each
interferogram had an exposure time of 1.5 seconds.
In Fig. 1a, the phase image of the fully sampled dataset was
reconstructed for reference using FBP (attenuation and scatter
image are omitted as they show very little contrast even for the
full dataset). Then the dataset was sampled down to a single
interferogram per view, going through the grating positions
cyclically. Reconstruction of this dataset using FBP (SW-FBP)
is shown in Fig. 1b and using IBSIR is shown in Fig. 1c.
IBSIR was initialized with a blurred version of the SW-FBP
reconstruction.
The reference scan shows high image quality with clear edges,
but slight streak artifacts are visible outside of the sample. SW-
FBP reconstruction shows overall image quality comparable to
the reference scan, but a slight blurring in tangential direction
that increases with the distance to the tomographic axis, see
the zoomed region in Fig. 1b. Reconstruction of the reduced
dataset with IBSIR shows at least comparable image quality
to the reference and does not feature tangential blurring as
seen in SW-FBP. Additionally, IBSIR does not show the streak
artifacts seen in both FBP and SW-FBP.

2) Moiré fringes: The second method, utilizing vertical moiré
fringes was tested on a phantom of five 6mm rods of PMMA,
POM, Nylon, LDPE, and PS, which were submerged in a
water bath. The measurement was done using a symmetric
Talbot-Lau interferometer with grating distances G0G1 =
G1G2 = 85.7 cm. The three gratings G0, G1, and G2 are
all made of gold on a silicon substrate with periods of 5.4 μm.
The absorption gratings G0 and G2 have a height of 70 μm and
65 μm respectively. The phase grating G1 is designed to give
a phase shift of π at the system design energy of 27 keV.
The source is an ENRAF Nonius FR 591 rotating anode
X-ray tube with a Molybdenum target operated at 40 kVp
and 70mA. The detector used is a single photon counting
PILATUS 100k module with 487× 195 pixels and a pixel size
of 172× 172 μm2. The effective pixel size is 100× 100 μm2.
3600 interferograms evenly spaced over 360 degrees were each
taken with an exposure time of 6 s. After each rotation the
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Fig. 2. Axial (upper row) and coronal (lower row) slices of an IBSIR reconstruction using 3600 projections and constant grating positions. All three image
modalities of PCCT can be reconstructed without artifacts and with high image contrast.

object was shifted by one pixel and after every 20 shifts the
object was returned to its initial position. The moiré fringes
had periods of about 8 to 10 pixels. The IBSIR reconstruction
was initialized with an zero-valued volume.
In Fig. 2 axial and coronal slices of the reconstructed volume
are shown. The images show clear edges and artifact free
reconstructions.

IV. CONCLUSION

In this work we showed that sliding window image acquisition
combined with IBSIR allows for substantial dose reduction
compared to standard phase-stepping PCCT procedures. The
method comes without any loss of resolution or sensitivity, can
access attenuation, phase-contrast, and dark-field information
separately, and does not require any alterations to usual
grating-based setups.
Furthermore, we showed that IBSIR offers a whole new level
of freedom in processing and reconstructing grating-based
PCCT measurements. It neither requires grating movement nor
perfect moiré fringe alignment. This is possible because the
proposed method does not require a separate phase-retrieval
step prior to reconstruction.
IBSIR seems to be ideally suited to process PCCT mea-
surements with a helically rotating gentry as the method
presented in Section III-2 can similarly be used to process
measurements with a moving object holder and fringes aligned
perpendicular to the movement direction. If future studies of
the algorithms behavior for few views, low photon counts,
and phase-wrapping are positiv, IBSIR could be a serious step
towards the introduction of PCCT to clinical applications.
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Abstract—An innovative X-ray technology for laboratory 

studies of polymeric, biologic and medical samples has recently 
become commercially available by the introduction of a desktop 
Talbot-Lau grating interferometer μXCT system. Talbot-Lau 
μXCT increases the imaging capabilities of conventional 
absorption-based contrast (AC) with differential phase contrast 
(DPC) and dark-field contrast (DFC). This paper discusses the 
application of μXCT and Talbot-Lau μXCT in the field of 
dentistry. We investigated different tooth samples using a 
desktop Talbot-Lau μXCT and compare the results to high-
resolution μXCT of the occlusal surface, dental fillings and root 
canal. In addition, a suitable image processing routine for data 
fusion of tooth samples and a custom-made test phantom are 
presented to optimize data quality. 
 

Index Terms—Talbot-Lau μXCT, grating interferometer, 
materials characterization, tooth samples  
 

I. INTRODUCTION 
N 2002, the Talbot-Lau effect has been first utilized for X-
ray imaging using monochromatic synchrotron radiation [1]. 

The additional use of a source grating in 2006 has enabled the 
introduction of this innovative technique to polychromatic and 
laboratory X-ray sources [2]. Since then the method has 
evolved concerning grating design, reconstruction techniques, 
image processing and suitable fields of applications have been 
identified [3-6]. In-vivo dark-field and phase-contrast X-ray 
imaging of small animals as well as a setup towards clinical 
phase-contrast radiography of small joints and mammography 
have been recently demonstrated by showing their benefits for 
diagnostics in clinical routine [7]. First clinical demonstrators 
for radiographic purposes are expected to arrive in near future 
[8-9]. 
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However, the drawback of existing laboratory grating 
interferometer μXCT systems is their limited access, user-
friendliness, long acquisition times and complexity of 
operations. With the introduction of the first commercially 
available desktop Talbot-Lau μXCT system (Bruker SkyScan 
1294) for material science applications in the beginning of 
2015, this imaging method becomes now accessible to a 
broader community [10]. This paper focuses on the 
optimization of dark-field imaging of premolar and molar 
tooth samples in comparison to absorption contrast μXCT 
data. 
 

II. MATERIALS AND METHODS 
In this paper one test phantom and two different tooth 

samples have been studied using the Bruker SkyScan 1294 
Talbot-Lau μXCT desktop device. Results are compared to 
high-resolution and absorption-based laboratory μXCT 
systems. The test phantom is an inverse step cylinder made of 
polyoxymethylene (POM), filled with sugar crystals, 
simulating a porous media due to empty spaces between its 
particles. This phantom has been used for scan parameter 
optimizations. The inner diameters of the phantom are ranging 
from 2 to 12 mm; each step is 2 mm in height. A constant wall 
thickness of 3 mm ensures equal pre-filtration. 

The first tooth sample is an extracted molar tooth from a 
male adult, root treated with dental fillings (plastic and 
metallic) inside. The second tooth sample is a premolar tooth 
of a 13 year old female patient, which had to be extracted 
during an orthodontic treatment due to shortage of space. The 
premolar tooth has been prepared ex-vivo with an artificial 
cavity, followed by the subsequent filling of the cavity with 
different layers of dental material and curing under laboratory 
conditions.  

 

A. High-resolution μXCT 
The high-resolution μXCT scans (in absorption contrast) 

have been performed with two different laboratory μXCT  
devices including (i) a GE Nanotom 180 NF XCT device with 
a 180 kV high nano-focus X-ray tube and a 2304 x 2304 pixel 
Hamamatsu flat panel detector allowing a minimal voxel size 
down to 500 nm and (ii) a RayScan 250 E system with a 225 
kV μ-focus X-ray tube from Viscom and a 2048 x 2048 pixel 
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Perkin Elmer flat panel detector, with a minimal voxel size of 
about 5 μm. The scanning parameters for the Talbot-Lau 
μXCT and high-resolution μXCTs can be found in Table I.   

 

B. Talbot-Lau grating interferometer XCT 
The SkyScan 1294 Talbot-Lau grating interferometer XCT 

setup is consisting of a 60 kV μ-focus X-ray source from 
PANalytical, a detector from Princeton Instruments with 4000 
x 2672 pixels, a source grating G0, acting as an array of line 
sources, ensuring a sufficient transverse coherence length and 
a diffractive grating G1, causing phase modulation of the 
incoming X-rays and resulting in an interference pattern. Since 
fringe pattern cannot be resolved directly with conventional 
X-ray detectors, an absorption grating G2 has been placed in 
front of the detector. Latter two gratings (G1 and G2) are 
forming up the interferometer. The source grating G0 is used 
to scan transversely across the repeated intensity pattern, 
called phase stepping, resulting in a sinusoidal intensity 
modulation at G2. Rotating the sample stepwise in between 
the acquisition of the phase stepping curves allows the 
tomographic operation. A typical Talbot-Lau XCT setup and 
an exemplary phase stepping curve are shown in Fig. 1. 

A precise production of gratings with adequate grating 
properties and a perfect alignment of all three gratings in 
rotation and tilt are mandatory for proper data extraction. The 
absorption grating G2 in front of the camera stays statically. 
The phase grating G1 can be adjusted by rotation and tilting 
for aligning with respect to G2. The diffractive grating G1 can 
be moved in direction along the beam for maximum 
modulation of phase carpet pattern on the surface of grating 
G2. The source grating G0 can be aligned on its rotational 
position in correspondence to G1 and G2. 

AC is formed due to the absorption mechanism of photons 
interacting with matter predominantly in form of photoelectric 
effect and Compton scattering in the low keV range. DPC is 

related to the index of refraction and image contrast is thus 
achieved through the local deflection of the X-ray beam. DFC 
contains the total amount of radiation scattered at small 
angles, caused by surfaces and interfaces between e.g. material 
inhomogeneities and matrix. The placement of a sample 
within optical beam axis will attenuate, refract, and scatter the 
incoming X-ray and thus perturbing the periodic intensity 
modulations. A Fourier analysis of the intensity modulations 
of each detector pixel is used to simultaneously extract co-
registered AC, DPC and DFC. 
 

III. EXPERIMENTAL RESULTS 

A. Test phantom inverse step cylinder 
The thin-walled inverse step cylinder made of POM, filled 

with sugar crystals, has been used for optimizing the visibility 
contrast in dark-field imaging. The purpose of this phantom is 
to vary the energy presets (preset 1 with lowest energy setting, 
preset 5 with highest energy setting), to match the design 
energy of the system and to find maximum visibility contrast 
for varying penetration lengths. It is also of importance to 
correlate these values to the minimum transmission values, 
which is necessary for achieving sufficiently high penetration 
of the material. 

Fig. 2 shows projection images of AC and DFC with 
varying presets as well as diagrams with transmission T and 
visibility values V. The values for visibility contrast in the case 
of dark-field images and for the minimum transmission in the 
case of the absorption images have been calculated for 
particular region of interests (ROI) in air and within the 
central part of the individual steps by the following equations: 
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I
I

V   

100
ROIAC,0,

ROImean,AC,

I
I

T  

 
With increasing effective photon energy the material in the 

AC projection images becomes more transparent, which can 

Fig. 2. Top images showing AC and DFC projection images (preset 1-5) of a
test phantom, diagrams are showing transmission and visibility values
plotted against system presets for the individual steps (step 1: smallest step) 
  

Fig. 1. Sketch of the working principle of a typical Talbot-Lau XCT setup
with X-ray source (S), object (O), detector (D), gratings (G0, G1, G2) and
distances d and L describing system and interferometer characteristics (left),
a phase stepping curve with and without sample (right) 
  

TABLE I 
SCAN PARAMETERS OF USED μXCT DEVICES 

Device Scan 
parameters 

Voxel 
size 

Exposure 
time 

SkyScan 
(preset 2) 

35 kV, 
Al 0.25 mm  

(22.8 μm)³ molar: 512 min, 
premolar: 2x780 min 

SkyScan 
(preset 5) 

50 kV, 
Cu 0.045 mm  

(22.8 μm)³ molar: 616 min, 
premolar: 2x420 min  

RayScan 100 kV, 
no pre-filter 

(12.95 μm)³ premolar: 48 min 

Nanotom  100 kV, 
no pre-filter 

(10.5 μm)³ premolar: 62.5 min 
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also be seen by an increase in minimum transmission values. 
In the case of the dark-field signal there is an opposite trend 
visible for the individual steps by showing a decrease in 
visibility contrast for higher energy presets, since an 
increasing transparency of the grating bars (with increasing 
energy) lowers grating efficiency and visibility contrast. In 
addition, using higher energy presets the disparity between 
design energy of the system and the applied spectra is 
increasing. This is due to the fact that the Talbot distance is 
directly related to the effective wavelength of the X-rays. The 
design energy is a setup dependent value characterizing the 
energy at which maximum visibility is achieved. Furthermore, 
the average energy behind the object is higher due to beam 
hardening, leading to an additional disparity and may also 
shifting the position of maximum visibility. 

The results of the individual steps (step1 smallest diameter, 
step 6 largest diameter) in Fig. 2 indicate different optimal 
values for visibility and transmission values for the individual 
penetration lengths. Depending on the measurement task, most 
probably more than one set of scanning parameters will lead to 
optimal data quality. 

 

B. Molar tooth sample  
Fig. 3 shows axial slice images through the cusps of the 

occlusal surface of an adult molar tooth. The molar tooth has 
been scanned with two different energy presets. Preset 5 (50 
kV, 0.045 mm Cu) leads to less pronounced beam hardening 
artefacts in the case of AC, since additional pre-filtering cuts 
off low energy photons, whereas preset 2 (35 kV, 0.25 mm Al) 
yields a slightly stronger dark-field signal respectively higher 
visibility with less image noise, since this particular energy 
preset fits better to the design energy and grating efficiency of 
the Talbot-Lau μXCT system. 

Both modalities AC and DFC reveal cracks near the 
occlusal surface in the dental enamel phase potentially 
induced by the various treatments (root, dental fillings). 
Larger cracks are visible both in AC and DFC with significant 
contrast advantages in the case of DFC, since smaller cracks 

can only be resolved in the DFC images (indicated by the 
dashed circle). 

A simple image fusion approach has been used to combine 
suitable information from both image modalities. Therefore, a 
combination of high-pass filtered AC and DFC images is 
added to the AC in order to gain a contrast enhancement in 
AC intensity images: 

 
highAC,AChighDFC,ACACfused *mask*mask IIII  

 
The low-pass filtered images are computed by a 2D 

convolution with a Gaussian function. To obtain the high 
frequencies of an image, a low-pass filtered version of this 
image is subtracted. The convolution for the high-pass 
filtering was realized as a multiplication in frequency domain.  

For the fused image, an image mask was generated from 
AC to mask all regions of the DFC image that are air, leaving 
only the tooth regions #1, #2 and #3 visible. Summing up all 
intensities of the AC image and the masked, high-pass filtered 
AC and DFC (inverted) images, leads to the fusion result 
shown in the lower right image in Fig. 3. 

In this fusion method, the physical representation of filling, 
dental enamel and dentin phases regarding their grey values is 
preserved and internal structures such as cracks or air gaps are 
emphasized. Due to the use of a binary mask, no image noise 
is added in areas of air. 

  

C. Premolar tooth sample 
Fig. 4 shows a premolar tooth, which has been scanned with 

the Talbot-Lau μXCT setup with a dual energy approach 
(preset 2 and 5). In addition, high-resolution μXCT scans have 
been used as a reference. The measurement goal for this 
μXCT task includes the quality assessment of the artificial 
dental filling. The dental filling has been prepared using the 
following steps: the creation of the cavity (extracorporeal), 
conditioning of dental enamel and dentin surfaces by 
phosphoric acid, followed by the introduction of a layer of 
wetting material (marked #a in Fig. 4). This layer contains 
pores and higher-dense particles nearly as large as the whole 
wetting layer. One such particle is the source of a crack within 
the dentin phase (region indicated by dotted circle in Fig. 4). 
This crack has not been introduced during the preparation of 
the dental filling, since only two out of three scanning 
modalities (concerning absorption contrast) are showing the 
crack in the corresponding slice images. The sample has been 
first scanned with the RayScan device and there is no crack 
visible in the AC data. The crack has formed most probably 
due to the process of sample handling or drying in between the 
individual scans. 

The next step of the dental filling includes a layer wise 
introduction of a hybrid composite (marked with #b in Fig. 4) 
on top of the wetting layer with several curing steps in 
between. In this hybrid composite phase, there are different 
material inhomogeneities like pores, shrinkage holes and 
cracks clearly visible. One large shrinkage hole is located at 
the interface between the wetting layer and the hybrid 
composite layer, from which a small crack is originating. 
There are some further interface errors visible, which could 

Fig. 3.  Top images showing axial AC (SkyScan, preset 5) and DFC (preset
2) XCT slices, bottom images showing a fused image (insert shows binary
mask) as well as a 3D rendering (AC, top view of the occlusal surface) 
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reduce the integrity of the dental filling. For the premolar 
tooth, DFC is not capable of resolving any small crack-like 
structures or small pores within the dental filling, since the 
density and penetration lengths hinder contrast formation of 
defects in the region of the dental filling. 

An axial DFC image of the root area of the premolar tooth 
(bottom image of Fig. 4), acquired with a voxel size of (22.8 
μm)³, shows morphological information in the sub voxel 
region. This dark-field signal is most probably related to 
dentinal tubules, which are hollow tubes running through the 
dentin. In the DFC images, there is a preferential direction of 
these dentinal tubules indicated, since the dark-field signal is 
direction dependent. In addition, there is also a bright dark-
field signal located within the root channel. This bright signal 
is most probably related to remaining tissue (blood vessels, 
nerves). AC data (Nanotom), acquired with a voxel size of 
(10.5 μm)³, is not capable of resolving the dentinal tubules, 
since these structures are only a few microns in diameter [11]. 
An additional destructive sample preparation step by reducing 
the tooth volume near the root area may be required in order to 
achieve a higher resolution and thus be capable of resolving 
these dentinal tubules also with AC.  

IV. CONCLUSION 
In general, high-resolution μXCT laboratory devices are 

powerful tools for characterizing biological and medical 
samples, thus supporting diagnostics in clinical routine. With 
the introduction of Talbot-Lau μXCT systems new imaging 
modalities such as dark-field imaging have been introduced to 
medical applications allowing to resolve e.g. crack-like 
structures within dental enamel and dentinal tubules within the 
dentin phase. In addition, DFC is also capable of resolving 
structures in the sub-voxel region, which can be even smaller 
than the spatial resolution of comparable high-resolution, 
absorption-based μXCT systems.  

A dual energy approach with the subsequent image fusion 
of AC with high-pass filtered AC and DFC images allows the 
characterization of inner structures and defects close to the 
occlusal surface by emphasizing e.g. cracks due to a strong 
dark-field signal, while the physical representation of dental 
filling, dental enamel, and dentin phase regarding their grey 
values is preserved. 

Nevertheless, there are a few drawbacks concerning Talbot-
Lau μXCT for materials characterization, since conventional 
absorption-based μXCT systems usually offer a much faster 
data acquisition by a factor of 5-10, much higher penetration 
capabilities and at a certain resolution, AC is also capable of 
resolving small structures in the range of microns. 
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Abstract—The x-ray dark-field contrast accessible via grating
interferometry is sensitive to features at length scales well below
what is resolvable by a detector system. It is commonly explained
as arising from small-angle x-ray scattering (SAXS), and can
be implemented both at synchrotron beamlines and with low-
brilliance sources such as x-ray tubes. Here, we demonstrate that
for tube based setups the underlying process of image formation
can be fundamentally different. For detector pixels that comprise
multiple grating periods, we show that dark-field images contain
a strong artificial and system-specific component not arising from
SAXS. Based on experiments carried out with a nanofocus x-ray
tube and the example of an excised rat lung, we demonstrate that
the dark-field contrast observed for porous media transforms into
a differential phase contrast for large geometric magnifications.
Using a photon counting detector with an adjustable point spread
function, we confirm that a dark-field image can indeed be
formed by an intra-pixel differential phase contrast that cannot
be resolved as such due to a dephasing between the periodicities
of the absorption grating and the Talbot carpet. These findings
must not be ignored when measurements are intended to be
reproducible across systems.

I. INTRODUCTION

X-ray grating interferometry is a technology that has been
under intense investigation [3]. In addition to the well-known
absorption images, it also provides the so-called differential
phase and dark-field contrasts. While a differential phase
image quantifies a specimen’s refractive properties, the dark-
field image has been introduced as being related to small-angle
x-ray scattering (SAXS) [7]. The relation between SAXS and
the dark-field contrast has been demonstrated convincingly
since, insofar as the properties of a sample engineered to
provoke SAXS can be extracted from its dark-field image ob-
tained using synchrotron radiation [8]. A proof of the reverse
conclusion, stating that dark-field images are always formed

by SAXS, has so far not been brought forward. Quite the
contrary, a recent study successfully established a link between
sharp edges and the generation of a dark-field signal [12] even
if Fresnel propagation can be neglected. Furthermore, local
wavefront curvature has been established to generate a dark-
field contrast on theoretical grounds [10]. Earlier, also beam
hardening [4] and second-order differential phase contrast [11]
were identified as sources to the dark-field signal. Hence, there
is more to it than conventional SAXS.

II. THE SAMPLING PROCESS

We believe the spatial sampling by the detector is not just
one among many influence factors that determine the value
of the dark-field contrast, but a major source to it when low-
brilliance setups are used. To illustrate our argument, we now
shortly revisit the working principle of a grating interferom-
eter. The vast majority of grating interferometric experiments
employ a phase grating (G1) that imprints a periodic phase
shift onto an x-ray beam. At certain fractional Talbot distances,
this phase shift is turned into an intensity variation, which,
in principle, is resolvable by a detector. However, the small
periods of the gratings employed make it very challenging to
resolve this so-called Talbot carpet. Therefore, an absorption
grating (G2) is usually mounted downstream of the phase
grating at such a fractional Talbot distance, matching its
period. By scanning either of the gratings, a process called
phase stepping, the detector pixels are able to record periodic
intensity oscillations even if they cover many grating periods.

Schematically, such a phase stepping process is illustrated
in figure 1a, showing an unperturbed Talbot carpet, e. g. ob-
tainable without any object present. For a particular phase
stepping position, the Talbot carpet is sampled at a specific
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Fig. 1. Schematic illustration of a phase stepping scan for one pixel. Top of each figure: Sinusoidal Talbot carpets (the exact shape does not matter for our
argument). The colors refer to the intervals that are seen by the openings of the absorption grating at a particular phase stepping position. The vertical dashes
are to guide the eye. Bottom: Phase stepping signals recorded by the corresponding pixel. The colors represent the intensities averaged over the respective
regions of the phase stepping scan. The black lines illustrate the periodic function as extracted by a Fourier analysis. (a) No object present; (b) canonical
interpretation of the dark-field contrast, as arising from small-angle scattering; (c) pseudo-dark-field contrast caused by a pure phase object.

interval, indicated by the different colors. As the period of
the absorption grating is matched to that of the Talbot carpet,
the sampling intervals are in phase. The corresponding pixel,
which spans many periods of the Talbot carpet, consequently
averages over all these intervals, giving rise to a particular
sampling point of the phase stepping curve. The grating is
then moved to the next position, and so forth. After inserting
an object into the beam, the change of the acquired intensity
oscillation is used to extract transmission, differential phase
and dark-field contrasts, the latter of which is sometimes
referred to as normalized visibility.

III. DARK-FIELD VS. PSEUDO-DARK-FIELD

In figure 1b, we show the example of an idealized ”pure”
dark-field object, i.e. with neither absorption nor any phase
shifts present. This represents the canonical interpretation of
the dark-field signal, and corresponds to a case where SAXS
leads to a general reduction in coherence and thus visibility.
In other words, the reduction of the measured visibility can
be directly linked to the visibility of the Talbot carpet. The
measured value deviates from the true one only due to the
finite widths of the absorption grating’s apertures.

In stark contrast to this classical case, figure 1c shows a pure
phase object without any attenuation of the Talbot carpet’s
intensity fluctuations. Yet, refraction by the sample has led
to a continuously varying differential phase shift, observable
when comparing the positions of the carpet’s minima with
the reference markings. If the detector’s pixels used to record
the phase stepping curve were just as small as the intervals
between these markings, this differential phase shift would be
almost perfectly observable. However, if the pixel comprises
many carpet periods – 16 in this case – the sampling by
means of the absorption grating is no longer in phase with
the disturbed periodicity of the Talbot carpet. The resulting
measured visibility is then equal to the classical dark-field
case shown in figure 1b, but the underlying causes are fun-
damentally different. The case shown in figure 1c is visibility

contrast by definition, but it is not a dark-field contrast. We
will refer to it as pseudo-dark-field since, after phase-stepping,
it mimics a signal caused by SAXS.

IV. PSEUDO-DARK-FIELD VS. EFFECTIVE PIXEL SIZE

While it is easy to exchange detectors to vary the pixel size,
this usually implies using very different systems. These may
come with different scintillators, implying varying absorp-
tion efficiencies, photon penetration depths and point spread
functions, which introduces systematic errors. A viable option
would be to use high resolution synchrotron cameras and then
to progressively bin adjacent pixels to form larger areas prior
to performing the Fourier analysis. This, however, comes along
with a reduction in spatial resolution.

We therefore chose a different approach based on using
a spectroscopic, direct-conversion detector. Such detectors
mostly feature at least one adjustable energy threshold that is
usually employed to obtain spectroscopic resolution [1]. Addi-
tionally, a less known property of applying energy thresholds
is a change of the detectors effective pixel size. In summary,
effects such as charge sharing and characteristic x-rays make a
detector pixel become insensitive at its edges and corners, and
the effect becomes more and more pronounced the higher an
energy threshold is chosen. As a consequence, the sensitive
pixel area shrinks while the pixel pitch remains the same.
This manifests as an improvement in the detector’s apparent
presampling modulation transfer function MTFpre [9, 13].
Modern implementations employing inter-pixel communica-
tion are able to eliminate this effect to a large degree [5, 6].
Hence, by using such a detector, it should be possible to
measure different dark-field signals when altering the energy
threshold and turning inter-pixel communication on and off,
provided that our hypothesis is indeed correct.

Changing the energy threshold of course also changes the
part of the energy spectrum recorded, and a change of the
dark-field signal may then be due to a spectral dependence
rather than a varying pixel size. In order to clearly rule this
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Fig. 2. a) Widths of the apparent point spread functions in terms of the standard deviation σ determined for our spectroscopic x-ray detector. b) Values
obtained for the dark-field contrast in a region of interest containing alveolar tissue. Error bars denote 95% confidence intervals.

out, we chose to carry out this experiment at the TopoTomo
beamline of the ANKA synchrotron. There, we made use
of a monochromatic photon energy of 18 keV and employed
a Medipix3RX spectroscopic detector with a 500μm thick
GaAs sensor [5]. It implements inter-pixel communication in
its so-called charge summing mode (CSM), which can be
turned off to operate the chip in single pixel mode (SPM).
Thus, operating this detector in SPM allowed us to vary the
effective pixel size by changing the energy threshold, for
which we selected 7 and 15 keV. If the two values produce
a significantly different dark-field contrast, then there is a
strong indication that its value is determined by the pixel size.
Repeating this measurement in CSM, where the effective pixel
size is almost constant with the energy threshold, allows a
cross-check and to rule out possible other systematic errors
such as a residual polychromatic component in the intended
monochromatic beam. This mode of operation should therefore
show only a weak dependence of the dark-field contrast on the
energy threshold.

For the following experiments, we used the excised lung
of a Sprague Dawley rat. The detector’s spatial resolution
was determined as described earlier [5]. In figure 2a, we first
show the standard deviation σ of the apparent point spread
functions that we modelled as Gaussians and that correspond
to the four operating points of our detector. In this context,
lower values of σ correspond to a smaller effective pixel size.
It can be seen very clearly that in SPM we a have strong
dependence on the energy threshold, while in CSM we find
only a very weak one. Figure 2b quantifies the dark-field
contrast as a function of the energy threshold, obtained in
a region of interest corresponding to lung tissue. This region
generally causes a very pronounced dark-field contrast. If the
chip is operated in CSM, i.e. with a less variable effective pixel
size, the dark-field contrast remains almost constant. However,
turning off this feature shows a substantial reduction of the
dark-field contrast, i. e. higher normalized visibilities. Since
the photon beam was monochromatic, changing the energy
threshold could only alter the effective pixel size. This gives
a direct proof of our hypothesis and demonstrates that we

are dealing with a pseudo-dark-field contrast that is due to a
sampling artifact as illustrated in figure 1c.

V. PSEUDO-DARK-FIELD
VS. GEOMETRIC MAGNIFICATION

If indeed the dark-field contrast represents a highly granular
intra-pixel differential phase contrast, then we should not
be able to acquire a dark-field image at a large geometric
magnification. Instead, the corresponding signal should vanish,
and only the transmission and differential phase contrasts
should remain.

We therefore turn to quantitatively studying this contrast
mechanism using an XWT-225 nanofocus x-ray tube (X-RAY
WorX, Garbsen, Germany). Figure 3a depicts a patch of a
dark-field image aquired at a moderate geometric magnifi-
cation of 1.9. A pronounced dark-field signal can be found
in the lung region, marked by the ellipse. To its right, the
heart produces almost no dark-field signal, with the exception
of a spot indicated by the arrow. Figure 3b shows the same
image region, recorded at a larger geometric magnification of
6.6. Indeed, the dark-field contrast has almost vanished in this
geometry.

Figure 3c then illustrates the differential phase contrast at
this large magnification. The use of the nanofocus source
enables visualizing very fine structures which are particularly
found in the lung tissue, again marked by the red circle
corresponding to the lung alveoli observed before. The heart
shows up as a rather homogeneous region. Comparing this ob-
servation with figure 3a, we find a notable correlation between
the strong dark-field signal obtained at a low magnification,
and the finely structured texture in the differential phase image
pertaining to the large geometric magnification. Once again,
this confirms that the dark-field contrast is formed by an intra-
pixel differential phase contrast under these conditions.

VI. CONCLUSION

We have presented compelling experimental evidence that,
under the conditions we studied, the so-called dark-field
contrast does not originate from a SAXS process and does

The 4th International Conference on Image Formation in X-Ray Computed Tomography

377



Fig. 3. a & b) Dark-field (i.e. normalized visibility) images shown for two geometric magnifications (M); c) differential phase contrast obtained for the large
magnification. The dark-field contrast obtained at low magnification (a) is revealed as a differential phase contrast here.

not show a ”dark field” in the sense the term was originally
introduced in the field of optical microscopy. Instead, it
contains a strong system specific component that is due to
sampling conditions and therefore an artifact. If interpreted
correctly, the images arising from this might be very useful.
However, they are not transferable across systems.

In the past, the normalized visibility, and hence the dark-
field contrast were considered a line integral over an object-
specific function termed the linear diffusion coefficient [2].
Our results clearly show that this is unjustified. The dark-
field contrast obtained with typical low-brilliance setups is not
quantitative, and neither are tomographic reconstructions.

Medical diagnostics and decision making essentially come
down to a classification task, and here very often the precise
numerical value of a contrast is of importance. Since the value
of this pseudo-dark-field contrast can be changed arbitrarily
and substantially by varying the pixel pitch, the focal spot size
and the object position, we believe it features only a reduced
diagnostic value. Particularly, it opens many possibilities for
getting fooled into wrong conclusions by systematic errors.
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E. F., Brönnimann, C., Grünzweig, C. and David, C.
[2008]. Hard-X-ray dark-field imaging using a grating
interferometer, Nat. Mater. 7(2): 134–137.

[8] Strobl, M. [2014]. General solution for quantitative dark-
field contrast imaging with grating interferometers, Sci.
Rep. 4.

[9] Tlustos, L., Ballabriga, R., Campbell, M., Heijne, E.,
Kincade, K., Llopart, X. and Stejskal, P. [2006]. Imaging
properties of the Medipix2 system exploiting single and
dual energy thresholds, IEEE Trans. Nucl. Sci. 53(1-
2): 367–372.

[10] Wolf, J., Sperl, J. I., Schaff, F., Schüttler, M., Yaroshenko,
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Statistically-efficient estimation of Hotelling
observer performance with unknown means

Harald Schöndube and Frédéric Noo

Abstract—Applying model observer approaches are quickly
becoming a method of choice for determining low-contrast
detectability in CT imaging. A promising method that allows
for a determination of exact confidence intervals on AUC has
recently been published by Wunderlich et al. The proposed
framework allows for a substantial reduction of noise realizations
in case the difference of class means is known exactly. When
employing simulated data, this quantity is easily obtained for
linear reconstruction algorithms such as FBP. However, for a
nonlinear algorithm the situation is more complicated due to the
dependence of the reconstruction result from local noise.

In this work, we propose a method for obtaining the difference
of class means in this context. We also present evaluations of our
method by performing tests with a bootstrapping approach and
by comparing it against a reference method.

I. INTRODUCTION

Applying a model observer approach has become widely
accepted as gold standard for objectively evaluating image
quality in CT. In a simple realization, the receiver operating
characteristic curve (ROC) or more directly the area under the
ROC curve (AUC) are estimated as a measure of low-contrast
detectability (LCD) in a signal-know-exactly / background-
known-exactly (SKE/BKE) context. A popular observer is
the channelized Hotelling observer (CHO), often applied in
combination with Gabor channels [1]. In a recent work from
Wunderlich et al. [2] it has been shown that under some
relatively broad conditions, exact confidence intervals on AUC
in such a setup can be determined directly, i.e., without having
to compute the full ROC curve.

When the task at hand is to compare two image recon-
struction algorithms A and B with respect to their LCD
performance, the actual aim is to estimate the difference of
the AUC values from the CHO evaluation of the respective
data sets. To this end, it is common to estimate - via the
Bonferroni inequality - confidence intervals for this difference,
namely for ΔAUC = AUCB − AUCA [3]. If for a given
choice of algorithms A and B (and potentially their respective
dose values), the lower endpoint of the confidence interval for
ΔAUC exceeds a margin for non-inferiority (ΔAUCL > −δ,
with δ > 0), the two methods can be regarded as showing an
equivalent LCD performance. Common parameter choices are
using δ = 0.05 and requiring a 95% confidence interval on
ΔAUC [3], [4], [5].

However, getting the estimates for confidence intervals on
AUC small enough for both algorithms A and B to fulfill these

HS is with Siemens Healthcare GmbH, Siemensstr. 1, 91301 Forchheim,
Germany. FN is with University of Utah, Department of Radiology, 729
Arapeen Drive, Salt Lake City, UT 84108.
Contact: harald.schoendube@siemens.com

requirements may require a lot of images: as to our experience,
the number of independent noise realizations necessary can
easily reach an order of several thousands. Even when employ-
ing simulated data, creating all this data can be a daunting task.
Finding ways for lowering the requirements on the amount of
data while keeping the confidence intervals small is therefore
an attractive goal. In the framework of Wunderlich et al. as
discussed above [2] one approach is to apply to the estimation
process the knowledge of the difference of means Δμ (i.e., the
difference of signal and background, which are presumed to be
both known exactly) [6], [7]. In our experience, this approach
can lower the amount of required noise realizations by about
a factor of five without loss of statistical accuracy.

II. DETERMINATION OF DIFFERENCE OF CLASS MEANS

To apply the framework as suggested in [6] it is necessary
to determine Δμ separately for each reconstruction algorithm
and potentially dose level. In case of a linear reconstruction
algorithm such as FBP this is an easy task when dealing with
simulated data: we can just reconstruct images from the noise-
free CT data and subtract the resulting images from each
other. In case of a non-linear algorithm (such as practically
all commercially available iterative reconstruction algorithms),
however, the situation is less trivial. Due to the dependence of
reconstruction parameters on CT data noise, a simple recon-
struction from noise-free data will not yield the correct result.
The same holds for averaging several reconstructions from
high-dose CT data. We have thus developed and tested another
approach to estimate Δμ when working with simulated data,
which we present in this work.

With simulated data it is computationally most effective
to first generate noise-free CT data and then add noise in
a second step. The added noise should account both for the
(Poisson-distributed) photon noise as well as for the Gaussian
electronics (detector readout) noise. Further details for such
procedures can be found, e.g., in [8] and [9]. For our purposes,
we can exploit this setup in the following way: Start with
the noise-free CT data sets from both signal and background.
Then, in the noise insertion procedure, add identical noise
realizations to both data sets. Apply the reconstruction algo-
rithm at hand and subtract the reconstructed images from each
other, yielding a noiseless estimate of Δμ at the dose level
corresponding to the inserted CT noise. However, even though
being noise-free, the resulting Δμ will still depend somewhat
on the actual noise realization (mostly in terms of the shape of
the reconstructed contour of the lesion). Thus, we repeated the
process 100 times for each dose level and then averaged the
100 resulting realizations of Δμ to obtain an estimate whose
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TABLE I
SIZE AND CONTRAST OF THE LESIONS IN THE CCT189 PHANTOM.

Lesion size contrast

Lesion 1 3mm 14 HU
Lesion 2 5mm 7 HU
Lesion 3 7mm 5 HU
Lesion 4 10mm 3 HU

Fig. 1. Noiseless CT image of the CCT 189 phantom with additional annulus
as used in our experiments.

dependence on the underlying CT data noise realizations can
be neglected. In the following, we will refer to the images
used for determining Δμ as training images or training data,
whereas the images which are actually used as a base for the
AUC evaluation as testing images or testing data

Note that our procedure for obtaining the Δμ estimates
assumes the difference in attenuation between the signal and
background CT data sets to be negligible in terms of influence
on the noise level in the CT signal. However, in typical LCD
study situations both the size and contrast of the lesions are
small compared to size and attenuation level of the phantom,
and thus this assumption can be justified [6].

III. EVALUATION OF OUR APPROACH

To test our approach, we have applied it to simulated CT
data of the PhantomLabs CCT189 phantom (also known as
the MITA Body phantom). The Phantom consists of a PMMA
cylinder of 20 cm diameter with four cylindrical contrast rods
of 40mm length each inserted. The contrast rods are placed
in parallel and at the same radial distance from the center
of the phantom. Each of them has a different diameter and
contrast relative to the phantoms body; see table I for an
overview of the respective specifications and figure 1 for
an image of the phantom. To make the situation somewhat
more challenging, we have added an elliptical annulus to the
(cylindrical) phantom.

As a first approach we compared the AUC values resulting
from our method to a reference which does not require knowl-
edge of Δμ. We have chosen the approach of [2] as reference
method, as it allows to determine confidence intervals on AUC
as well. Due to the lack of a-priori information, the reference
method requires a much larger number of repeated experiments
to arrive at a similar statistical variability (and hence size of
confidence intervals) as it was the case with our approach.
For our evaluation, we used 1750 noise realizations for the

signal CT datasets and 1750 independent realizations for the
background; whereas only 350 noise realizations each were
necessary to arrive at the same statistical variability using our
proposed approach. Thus, in the end we employed a total of
3900 noise realizations in the former approach, compared with
800 (2×750 testing data sets + 100 training data sets) for our
proposed method. We selected various dose (i.e., CT noise)
levels and applied an iterative reconstruction (IR) algorithm.
As further reference, we also performed the same comparison
between using and not using the Δμ for estimating the AUC
confidence intervals for a linear FBP algorithm, albeit at a
higher dose level.

Figure 2 shows the resulting point estimates and the respec-
tive 95% confidence intervals for AUC estimated with each
method for all four lesion locations of the CCT189 phantom
from images reconstructed with IR and FBP, respectively.
Both methods are in good agreement. Furthermore, there is
no striking difference between the results for FBP and for IR.
This point is significant insofar as it suggests that our approach
of estimating Δμ in the non-linear case performs similarly as
the established method of reconstructing images from noise-
free data in the linear case.

For comparison, figure 3 shows the same evaluation, but this
time using for both our proposed and the reference methods
the same number of noise realizations (namely 350 each for
signal and background). The larger span of the confidence
intervals as obtained from the reference method with a smaller
number of noise realizations is clearly recognizable. One may
furthermore notice that there is a difference of the AUC point
estimates in this case, which can be readily explained by
recognizing that point estimates as obtained from the reference
method are positively biased [2] (note, however, that the CIs
are exact with both methods).

As a further means to assess the uncertainty induced to
our results by variability of the Δμ estimates we performed a
bootstrapping analysis of the estimated IR AUC values when
varying the input images of the Δμ determination procedure.
Our primary goal was to assess the AUC uncertainty caused
by variability of the training images relative to the inherent
uncertainty caused by statistical variability of the testing data.
To this end, we performed a bootstrapping experiment with
two nested loops. One loop was generating random sets from
the 100 training images; the other one was looping over the
350 noise realizations of the signal and background testing
data. To be able to easily separate the influence of training
and testing bootstrapping our goal was to generate both AUC
estimates varying with testing for a given (fixed) training
bootstrap set as well as estimates varying with training for
a given testing bootstrap set. Therefore, in this experiment the
bootstrap samples of the two loops were defined independently
from each other; i.e., for each run of the outer loop the
bootstrap sampling of the inner loop was repeated in an
identical manner. We performed this test over 800 runs of
the outer loop with 800 runs of the inner loop each. From
there we computed the variances over the training sets for the
testing set being held fixed and the variances over the testing
sets for the training set being held fixed. The result showed a
far smaller variability of the resulting AUC in dependence of
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Fig. 2. AUC point estimates and confidence intervals obtained (from 350 x 2 noise realizations) with the method according to [6] using our strategy to
estimate Δμ compared to corresponding results (from 1750 x 2 noise realizations) from method [2] (not using knowledge of Δμ). (Best appreciated in PDF
version, which uses color plots.)
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Fig. 3. AUC point estimates and confidence intervals as in figure 2 using the same number of 350 x 2 noise realizations for both methods. (Best appreciated
in PDF version, which uses color plots.)

variation in the training images than in dependence of testing
set variations. In terms of numbers, the estimated variance over
the training sets differed from the one over the testing sets by
at least a factor of 30.

IV. CONCLUSION

As our evaluations show, our proposed method appears to
be a viable approach to determine the difference of class
means Δμ when using non-linear CT image reconstruction.
Used in the context of estimating confidence intervals on
AUC as proposed by Wunderlich et al. [2], [6] this knowledge
allows for a substantial reduction of the number of repeated
experiments while maintaining statistical variability. We have
furthermore performed an evaluation of our method against
non-parametric estimates on confidence intervals on AUC in
a bootstrapping context.

An open question is how our method could be extended
to be used on CT data measured on a real system. One
possible approach would be to still determine the estimates
for Δμ based on simulated data. Due to the properties of the
method as proposed in [6] the confidence intervals on AUC
could then be estimated using these estimates along with only
”background data” (i.e., data of the uniform phantom with no
lesions inserted) required to be obtained from the CT system.
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Scatter Correction for C-Arm CT
Using Primary Modulation

Bastian Bier, Kerstin Müller, Martin Berger, Jang-Hwan Choi, Ludwig Ritschl, Marc Kachelrieß, Rebecca Fahrig
and Andreas Maier

Abstract—Cone-beam computed tomography (CBCT) suffers
from a large amount of scatter, resulting in severe scatter arti-
facts in the reconstructions. Recently, a novel scatter correction
approach was introduced using a primary modulator, which is
inserted between the X-ray source and the object. The method
showed promising results, but was tested on a table-top X-ray
system only. In our work, this method is transferred to a clinical
C-arm CBCT. Extensions are added to compensate for scanner
motion and tube current modulation. We show that scatter
correction using primary modulation is possible on a clinical
CBCT: scatter artifacts in the reconstructions were able to be
removed with the newly extended method. Compared to a slit
scan, our approach showed superior results with an improvement
of the contrast-to-noise ratio.

Index Terms—C-Arm CBCT, Primary Modulator, Reconstruc-
tion, Scatter Correction.

I. INTRODUCTION

S
CATTERED radiation is a major problem in CBCT, re-
sulting from the large irradiated volume and the large area

covered by the detector of such systems. The amount of scatter
measured on the detector often exceeds the measured primary
radiation, causing a high scatter-to-primary ratio (SPR) [1].
This has a severe impact on the reconstructions’ image quality,
where the scatter induces cupping and shadow artifacts as well
as contrast loss [2].

Therefore, scatter correction methods are essential in order
to remove these artifacts. Existing methods can be divided
into hardware-based scatter rejection methods and software-
based scatter correction methods [2]. Approaches among the
first category are the antiscatter grid (ASG) [3], air gaps [4]
and collimation. They are similar in that the geometry and
the hardware of the X-ray system are manipulated to reduce
measured scatter. Software-based techniques are either based
on measurements [5], statistics or deterministic [6]. Hardware
and software-based approaches are often combined in order to
achieve a clinically satisfying image quality.

Another scatter correction method uses a primary mod-
ulator, which is inserted in between the X-ray source and
the object. The modulator consists of semitransparent blocks
alternating with transparent ones. This pattern modulates the
primary radiation and leaves the scattered radiation untouched,
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(a) Imaging geometry of the C-arm
system with a primary modulator.

(b) Primary modulator mounted on
top of the X-ray source.

Fig. 1: Imaging geometry with a primary modulator.

which facilitates scatter estimation either in the frequency
domain [7], [8] or the in the spatial domain [9]. The latter
method was published recently and is called improved Primary
Modulator Scatter Correction (iPMSE). The iPMSE method
showed promising results, but was tested on table-top X-ray
systems only, where the imaging geometry and the X-ray
spectrum is constant for all projections.

In this work, the iPMSE algorithm is extended and trans-
ferred to a clinical C-arm CBCT. The imaging geometry of
our experimental setup is shown in Figure 1a. The X-ray
source and the detector rotate around the object with the
modulator mounted on top of the source, as can be seen in
Figure 1b. The wobble of the C-arm during rotation as well as
the tube current modulation of the system affect the projected
modulator pattern. A solution to these problems is proposed by
approximating the amplitude and the position of the modulator
pattern. In the following, we call this extended algorithm C-
arm iPMSE.

II. MATERIALS AND METHODS

A. Theory

1) The iPMSE algorithm: The iPMSE algorithm requires
two projection images, as can be seen in Figure 2. The
first image is a projection of the primary modulator only,
hereafter referred to as reference modulator pattern M . The
second image is a projection of the object and the primary
modulator cm. The algorithm estimates the scatter image cs
with a gradient-based optimization function [9]. From that, the
scatter-corrected projection cp is obtained:

cp = M−1 · (cm − cs). (1)

In M−1, each element is the inverse of the value in M .
Equation 1 shows that M−1 must have the same amplitude
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(a) Projection of the modulator
M .

(b) Projection of the modulator
and the object cm.

Fig. 2: Projections required for the iPMSE algorithm.
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Fig. 3: The reordered projection stack of a modulator acquisi-
tion shows two motion effects: a total shift and small deviation
in the pattern in adjacent projections.

and position as the modulator pattern in projection cm, oth-
erwise residual modulator patterns persist in the corrected
projection image and the scatter estimate may be incorrect.

2) Motion of the Projected Modulator Pattern: In rotations
over 200◦, the C-arm wobbles and deforms, causing a different
position of the projected modulator pattern for each angle.
The low-frequent deformation between the X-ray source and
the detector is due to the effect of the gravity on the rotating
C-arm and results in a total shift of around 15 pixels in the
projected modulator pattern. This is indicated by the arrow in
the reordered modulator projection stack, shown in Figure 3.
The high-frequent wobble of the C-arm causes a sub-pixel shift
in the pattern in adjacent projections. This effect is visible in
the zoomed-in part in Figure 3, where this motion results in
jagged lines.

3) Amplitude Change in the Projected Modulator Pattern:
Clinical C-arm systems have a tube current modulation system,
which adjusts the exposure parameters (tube voltage, exposure
time and tube current) during the acquisition [10]. The chang-
ing tube voltage results in a varying modulation amplitude due
to the energy-dependent attenuation of the modulator material
for different X-ray source intensities as well as in a changing
amount of emitted photons, which has to be corrected for.

B. Scatter Correction Workflow: C-arm iPMSE

Figure 4 shows the workflow of the new C-arm iPMSE
method. The open-source software framework CONRAD [11]
is used for the processing and reconstruction of the projection
images. The acquired raw images are preprocessed [12] to
obtain the projections in the intensity domain, where the
scatter estimation takes place.

1) Establishment of a Modulator Database: The database
contains reference projections of the modulator pattern ac-
quired at various tube voltages and angles. Each projection is
averaged to reduce noise. This is accomplished by acquiring

three, 3D, rotational modulator acquisitions for each tube
voltage. For each of the 248 angles, the corresponding pro-
jections of the acquisition as well as their direct neighbors are
averaged. We acquired projections at 70 kVp, 90 kVp, 110 kVp
and 120 kVp for the database. The reference modulator pattern
M is then created from these projections.

2) Approximation of the Modulator Amplitude with Linear
Interpolation: For each projection cm, a reference modu-
lator pattern is created, which has the same amplitude as
the modulator in the projection cm itself. This is achieved
through a linear interpolation of two modulator patterns in the
database, which are acquired at the same angle as projection
cm and at voltages next to projection cm. This results in
an approximation for M with a similar amplitude as the
modulator pattern in the projection cm.

3) Block Matching Registration: The reference modulator
pattern M is aligned to the pattern in the projection cm
in a block matching registration step. The algorithm divides
the reference projection image into sub blocks of 15 pixels.
For each block, a translation, which optimizes the correlation
coefficient, is calculated. The sub-pixel accuracy is set to 0.1
pixels and the search radius to 1.5 pixels. All translations
are sorted according to their correlation coefficient, and the
median translation of the translations corresponding to the
highest 10 % is computed. This translation is applied to the
reference modulation pattern. The difficulty in the registration
is that the modulator pattern is hardly visible in projection cm.
The block matching registration shows robust results, since it
uses the information from the entire projection and applies the
translation with the best correlation matches. The search radius
is restricted to a small area, because the initial estimate for M
is already close the correct position, having been created from
projections acquired at the same angle.

4) iPMSE: After the amplitude approximation and the
registration step, the standard iPMSE algorithm as described
in [9] is applied. A part of an iPMSE-corrected projection
without and with the proposed extensions is shown in Fig-
ure 5a and Figure 5b, respectively. A residual modulator
pattern is clearly visible in Figure 5a and is even more apparent
in the difference image shown in Figure 5c. This pattern
disappears with the new extended method.

C. Postprocessing
The negative logarithm is applied to the scatter-corrected

images to obtain projections in the line-integral domain, fol-
lowed by a noise suppression as suggested by Zhu et al. in [1].
This is essential since noise increases in scatter-corrected pro-
jection images [7], [1]. Without a suitable noise suppression,
the benefits of the scatter correction can be lost due to the
high increase of the noise level. Subsequently, a truncation
correction, the standard FDK reconstruction algorithm with
the Shepp-Logan kernel, and a ring artifact correction are
applied [6].

III. EXPERIMENTS AND RESULTS

All acquisitions were conducted with the Siemens zeego
C-arm system (Siemens Healthcare GmbH, Forchheim, Ger-
many). The focal spot size was set to 0.3 mm to reduce the
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Fig. 4: Workflow of the proposed C-arm iPMSE method. Step1: Establishment of a modulator database. Step 2: Approximation
of the modulator amplitude. Step 3: Block matching registration. Step 4: iPMSE algorithm.

(a) iPMSE-corrected. (b) C-arm iPMSE-
corrected.

(c) Difference image.

Fig. 5: Parts of iPMSE-corrected projections without and with
the added extensions. Residual modulator pattern is removed
with the C-arm iPMSE algorithm.

(a) Phantom for Experiment 1. (b) Phantom for Experiment 2.

Fig. 6: Electron density phantom used for the experiments.

penumbra effect. 248 projections with a size of 1240 × 960
pixels were acquired during one rotation covering 200◦. The
material of the modulator was erbium, its thickness 0.0252 mm
and the block size 0.457 mm (as in [9]). The transmission
of the semitransparent blocks at 120 kVp was approximately
80% [13].

Two experiments with different objectives were performed.
In both, the Electron Density Phantom (EDP) was scanned
(CIRS, Norfolk, VA, USA). The phantom for Experiment 1
is shown in Figure 6a. Two torso shaped objects were placed
next to the EDP in order to cause a large amount of scatter
and attenuation. The phantom for Experiment 2 is shown in
Figure 6a. Only the inner part of the EDP was scanned with
an additional water bottle and the plugs from the EDP were
placed next to the phantom. Due to its elliptical shape, the
tube voltage varied in between 90 and 120 kVp in contrast
to the constant tube voltage of 125 kVp in Experiment 1.
Further, Experiment 1 was conducted with and without an
ASG whereas Experiment 2 was only with ASG.

Figure 7 shows the center slices of the corrected and non-
corrected reconstructions of the aforementioned experiments.
The first two rows show the results of Experiment 1 with

TABLE I: Average CNR of the ROIs shown in Figure 8.

Exp. 1 no ASG Exp. 1 with ASG Exp. 2

No Correction 2.39 2.61 2.32
Slit Scan 3.24 2.92 6.51

C-arm iPMSE 5.98 6.01 8.62

and without the ASG. The last row shows the results of
Experiment 2. The first reconstruction in each row is without
a scatter correction. All scatter artifacts are present: shadow
and cupping artifacts as well as contrast loss. The second
column shows reconstructions of a slit scan where the z-
collimator aperture, i.e. the field of view (FOV) in z-direction,
was minimal in order to reduce the irradiated volume. This has
been shown to reduce the amount of scatter and thus should
yield better results. Regardless, the scatter artifacts persisted
in these reconstructions, although the cupping artifact was
slightly suppressed. The last column shows reconstructions
using the newly C-arm iPMSE method. Scatter artifacts were
successfully removed. A small cupping artifact was visible
at the border region of the FOV, which may have also
resulted from object truncation. In Figure 8c, line profiles of
reconstructions from Experiment 1 and 2 are shown. In the line
profiles of the non-corrected and the slit scan reconstruction,
the cupping artifact is given by increasing values towards the
boundary of the FOV. This artifact disappeared, however, upon
using the new method. Further, we computed the contrast-to-
noise ratio (CNR) in the reconstructions for nine region-of-
interests (ROI) shown in Figure 8a and Figure 8b. Table I
shows that the averaged CNR improves in the scatter-corrected
reconstructions towards the scatter-distorted and the slit scan
reconstructions. In regions with dense material, slight streak
artifacts were introduced in the scatter-corrected reconstruc-
tions.

IV. DISCUSSION

Incorporating the iPMSE method into a clinical C-arm CT
showed promising results. Our new method was able to remove
most of the scatter artifacts and could substantially improve the
image quality compared to a slit scan. In particular, the disap-
pearance of the cupping and the shadow artifact improved the
image quality clearly. Currently, streaking artifacts appear in
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(a) No correction. (b) Slit scan. (c) iPMSE-corrected.

(d) No correction. (e) Slit scan. (f) iPMSE-corrected.

(g) No correction. (h) Slit scan. (i) iPMSE-corrected.

Fig. 7: Reconstruction images. First row: Experiment 1 with
ASG. Second Row: Experiment 1 without ASG. Third row:
Experiment 2 with ASG. Window level [-1000HU, 1000 HU].
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(b) ROIs 2. (c) Line profiles.

Fig. 8: ROIs and line profiles of the reconstructions. Top:
Experiment 1 with ASG. Bottom: Experiment 2 with ASG.

regions of dense material. This is due to the photon starvation
effect, which is amplified by the scatter correction when the es-
timated scatter signal is subtracted from these regions. Further,
the combination of the C-arm iPMSE method with the ASG
were investigated in Experiment 1, but its use proved to have
little effect on the reconstruction results. The slit scan with
our clinical scanner proved insufficient as a reference since the
narrowest slit of around 20 mm in the isocenter is too wide.
Also, overall evaluation is affected by the noise suppression,
which is subsequent to the scatter correction. To date, such
experiments have been performed with phantom data only. In

future studies, we endeavor to acquire real clinical data to
further examine the performance of our method, since a lack
of a scatter estimate for reference purposes complicated any
quantitative evaluation of said method. Further, the occurring
streak artifacts have to be investigated in more detail.

V. CONCLUSION

The present work has proposed a novel scatter correction
approach for a clinical C-arm CBCT by extending an existing
method using a primary modulator. The challenges behind
C-arm motion and tube current modulation were overcome
with establishing a modulator database, approximating the
amplitudes and a final registration step. We have shown that
scatter correction using a primary modulator is possible on
a C-arm system, whereby scatter artifacts were able to be
removed from the reconstructions.

ACKNOWLEDGMENT

The authors are grateful for the financial support from
the NIH Shared Instrument Grant S10 RR026714 supporting
the zeego@StanfordLab, the German Research Foundation
(DFG), as part of the Research Training Group 1773 “Het-
erogeneous Image Systems” and DAAD.

REFERENCES

[1] L. Zhu, J. Wang, and L. Xing, “Noise suppression in scatter correction
for cone-beam CT.” Medical physics, vol. 36, no. 2009, pp. 741–752,
2009.
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Abstract—Energy discriminating photon counting detectors, 

which measure the energy of individual photons incident on the 
detector, are promising components for next-generation CT 
scanners. The most common substrate material in research 
prototypes today is CdTe or CdZnTe (CZT), popular for its high 
atomic number and absorption. However, these detectors face 
tradeoffs. Smaller pixels are desirable to enable fast counting 
rates and minimize count rate loss. However, smaller pixels also 
increase the deleterious effects of charge sharing. We explore 
these tradeoffs and compare different pixel sizes against an ideal 
photon counting detector that does not suffer from charge 
sharing.  
 

Index Terms—photon counting detectors, spectral CT, count 
rate loss, CdTe detectors 
 

I. INTRODUCTION 
PECTRAL CT is attractive for its ability to distinguish 
between materials that appear isointense in single energy 

CT scans. While the concept of dual energy was described by 
Hounsfield and investigated shortly after the debut of CT [1], 
dual energy was neglected for several decades until technical 
innovations allowed for the simultaneous acquisition at 
multiple energies. A number of clinical applications have now 
emerged [2], such as the classification of kidney stones [3]. 

Current approaches to dual energy involve tradeoffs. Dual 
source CT can achieve good spectral separation using a tin 
filter, but suffers from cross-scatter. Rapid kVp switching 
sources provide more modest spectral separation, although a 
K-edge filter could mitigate this effect at the expense of flux 
[4]. Dual layer detectors have limited spectral separation but 
provide spectral information on all scans and protocols. It 
should be noted that instead of converging on a single best 
method for dual energy imaging, the commercial vendors have 
developed a plethora of approaches, each with their own 
strengths and weaknesses. 

In this context, photon counting detectors (PCDs) have 
emerged as a technology that could provide all of the benefits 
of spectral imaging with fewer side effects. Most PCDs use a 
semiconductor substrate that converts incident x-ray photons 
into electrons and holes. These charges are collected and 
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packets of charge are processed as individual pulses [5]. In 
addition, the height of these pulses can be used to infer the 
energy of the incident photon. PCDs could replace 
conventional, energy-integrating detectors and have the 
potential to offer much better noise performance. 

However, PCDs suffer from a number of technical 
limitations. The temporal resolution of PCDs implies a limited 
count rate. For PCDs that do not provide energy 
discrimination by pulse height analysis, this leads to count rate 
loss and a reduction in quantum efficiency [6]. For energy 
discriminating PCDs, multiple low energy photons arriving in 
close spatial and temporal proximity could be misinterpreted 
as a single higher energy photon. Also, the charges from an 
incident x-ray may be spread over multiple pixels. This 
phenomenon, known as charge sharing, degrade the accuracy 
of the pulse height analysis process, causing a single photon to 
appear as multiple lower energy events. Mechanisms for 
charge sharing compensation via interpixel communication do 
exist [7] but these methods are still developing and suffer from 
reduced effective count rate. For these reasons, current PCDs 
may not be able to outperform other dual energy technologies 
at present. [8].  

The most common semiconductor substrates for PCDs for 
CT are CdTe or CdZnTe (CZT). Other substrates such as 
silicon have also been studied [9], but are not the focus of this 
work. The introduction of zinc changes the electrical 
properties of the semiconductor but has a minimal effect on its 
x-ray properties. In this work, we concentrate primarily on x-
ray physics and hence will refer to both as simply “CdTe” 
detectors. These materials feature a high atomic number and 
hence attenuation, enabling the fabrication of PCDs of modest 
thickness. Cd and Te both have a high fluorescence yield. 
Characteristic photons will commonly be reemitted from the 
CdTe substrate and may travel hundreds of microns, possibly 
into to a neighboring pixel, where they contribute to charge 
sharing or may exit the sensor. 

A simple design choice to combat the damaging effects of 
charge sharing is to increase the pixel size. This reduces the 
prevalence of charge sharing, as only photons which arrive 
within a small distance (perhaps 200  of another pixel are 
susceptible to charge sharing. However, the trend of PCDs has 
been to make the pixels smaller, not larger. The rationale for 
smaller pixels is to combat pulse pileup and the associated 
count rate loss. By reducing the size of each pixel while 
keeping the count rate of each pixel constant, the effective 
count rate of the PCD as a whole improves. At very high 
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incident count rates, several times larger than the characteristic 
count rate, the detector may paralyze or produce information 
that is essentially useless. One school of thought is to regard 
this as missing information and use data substitution 
techniques. Another possibility is to control the incident x-ray 
flux to avoid this outcome [10-12]. Traditionally, the count 
rate requirements of CT were viewed as being 
overwhelmingly high, and the use of PCDs in clinical work 
was seen as being very difficult [13]. However, in recent years 
new PCDs have emerged with smaller pixels and much faster 
count rates [14]. 

Given these tradeoffs, the purpose of this work is to 
determine an optimal pixel size for a CdTe detector.  

 

II. METHODS 
We use two types of Monte Carlo simulations to estimate 

the performance of PCDs with different pixel sizes. First, we 
use simulations to calculate the energy response function of 
the detector substrate. Second, we use another set of 
simulations to assess the performance of the detector under 
pileup.  

A. Energy response 
The energy response of the CdTe detector was calculated 

using GEANT4 [15] to simulate the transport of x-ray photons 
of different energy through the semiconductor. The transport 
of electrical charges within CdTe was performed using a 
simplified analytic model. We assumed that the charges would 
be distributed in a sphere of radius 60 microns, and then 
assumed that any charges in the territory of a pixel would 
automatically be detected in that pixel. This spherical model is 
a simplification of more complex electrical processes, such as 
attraction towards the source or drain due to the bias voltage 
as well as Coulomb repulsion between charges or random 
diffusion. The sphere radius is a function of the drift time and 
other factors [5], and we expect that newer detectors may 
allow less time for diffusion which would reduce charge 
sharing effects [16]. We neglected recombination, charge 
trapping, and other such effects. Besides charge migration 
from diffusion or repulsion, charges can appear to neighboring 
pixels because of K-escape. The distance of travel of the 
characteristic photons in CdTe can be in the hundreds of 
microns.  

We simulated photons at 5 keV steps. For each pixel size 
and energy, 4000 photons were used to estimate the energy 
response function of the detector. For each photon, we 
sampled the energy recorded in the incident pixel, as well as 
the energy recorded in neighboring pixels. Gaussian noise 
with standard deviation of 5 keV was added to all data to 
simulate electronic noise. 

As a comparison, we also included cases where the energy 
response is ideal and no charge sharing is present. 

 

B. Detector simulation 
We assumed a 120 kVp spectrum was incident on an object 

consisting of 1 cm of cortical bone and a variable thickness of 
water. The brilliance of the spectrum was 700 million photons 
per second per square millimeter, or approximately 300 mA 
for a typical source-to-detector distance. Photons propagate 
through the object, being attenuated according to its 
interaction probabilities. Photons scattering from the object 
are eliminated and subsequently ignored. Photons which reach 
the detector create a pulse whose height depends on the energy 
deposited in the pixel.  

We developed a simple model for the detector response. We 
assumed the pulse shape is a simple (unipolar) triangle, with a 
total width of 200 ns (full width at half max of 100 ns). The 
height of the triangle is directly proportional to the energy 
deposited within the pixel. Multiple photons arriving in close 
proximity will trigger triangles that overlap and sum on top of 
each other. Whenever the signal crosses a predefined 
threshold, the counter for that bin is incremented. 

This detector cannot be characterized as a classic 
paralyzable detector with a simple dead time. Instead, the 
detector paralyzes when its signal consistently rises above the 
highest threshold. However, it is reasonable to consider the 
duration of the triangle response (200 ns) to be analogous to 
the dead time, and hence we consider the characteristic count 
rate of this system to be the inverse of the dead time, or 5 
Mcps (million counts per second) per pixel. This counting 
speed is typical of photon counting detectors of the previous 
generation [5], but newer detectors are become available 
which can count much faster [17]. 

We calculate the variance of the material estimate for a 
single detector pixel only. Besides counts arising from the 
pixel being illuminated, false counts also appear which 
originate from neighboring pixels as a result of charge sharing. 
These counts are also included in the simulation. However, we 
do not study the effects of noise correlations in this work. 
Correlations due to charge sharing may impart frequency 
dependent DQE penalties. 

We assumed the detector used energy binning thresholds of 
30 keV, 45 keV, 65 keV, 85 keV, 105 keV and 125 keV. 
These thresholds were not optimized. Since the maximum 
photon energy was 120 keV in these simulations, the 125 kVp 
threshold functioned as a pileup trigger [18]. 

 

C. Variance calculation 
Converting the counts recorded in each bin into spectral 

information, such as equivalent thicknesses of basis materials, 
requires an estimator. One example estimator is the maximum 
likelihood estimator, which is slow but has good bias and 
variance properties. A fast, efficient, and accurate estimator in 
the presence of non-idealities such as pileup has yet to be 
demonstrated. Therefore, in this work we calculate the 
Cramer-Rao Lower Bound (CRLB) of the variance for the 
measured spectral data. This allows us to compare the 
performance of different PCD architecture without needing an 
estimator. 

Following Reference [19], we calculate the CRLB by 
assuming that the counts in each bin can be modeled with a 
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multivariate Gaussian. We use multiple realizations to 
estimate the mean and covariance matrix of the counts in each 
bin. The CRLB of the variance can then be calculated from 
this data. 

III. RESULTS 

A. Energy response 
Figure 1 shows an example energy response function. The 

pixel where the x-ray photon is directed (denoted in the figure 
as the primary pixel) collects much, but not all, of the charge. 
A clear K-escape peak is seen, where approximately 25 keV of 
energy escapes the pixel in the form of a characteristic x-ray 
and arrives in an adjacent pixel or exits the detector entirely. 
We also show the energy response for the illumination of all 
eight neighboring pixels. This describes the stray or false 
counts detected in a pixel due to charge sharing from 
neighboring pixels. 

 

 

 
Fig. 1. Energy response for an incident 50 keV photon. We show 
both the energy response for the (top) primary pixel, that is, the 
pixel being irradiated, and (bottom) neighboring pixels, which 
receive energy as a consequence of charge sharing. 

B. CRLB comparison 
Figure 2 shows the behavior of the variance of a spectral 

task, the estimation of water material thickness after 
estimating and canceling out the bone material thickness. As 
seen in the top plot of Figure 2, as the object becomes thicker 
and fewer photons arrive at the detector, the variance 
increases. This is the same behavior expected of Poisson 

statistics in energy integrating detectors. However, as the 
object becomes thin, the rate of photons arriving can exceed 
the characteristic count rate of the detector, and count rate loss 
ensues. This causes the curve to bend upwards, creating a 
variance penalty. The 100 um pixel size with ideal energy 
response counts sufficiently fast that this effect is hardly 
visible. 
 

 
 

 
 

Fig. 2. Variance in the measurement of water (bone cancelled) 
thickness for a fixed technique as a function of object thickness. 
“Ideal” detectors have ideal energy response but still suffer from 
pile-up. (Top) Variance over a large range of object sizes. 
(Middle) The same data, but normalized by the 350 um pixel size 
with ideal energy response. Error bars shown pertain to the CRLB 
estimation but not to errors arising from uncertainty of the energy 
response functions.  As this is a semilog plot, plotting standard 
deviation instead of variance would yield the same curve shapes 
but a relabeling of the y-axis. 
 
Compared to the ideal detector with a small (100 um) pixel 

size, the increase in variance for the detectors simulated here 
arise from two sources: pileup (or count rate loss) and charge 
sharing. The 350 um pixel with ideal energy response shows a 
hypothetical detector with pileup but without charge sharing. 
Its variance is about four times less than the other realistic 
detectors considered which have non-ideal energy response. 
Among the designs with non-ideal energy response, the larger 
pixel sizes perform moderately better than the smaller pixel 
sizes except with thin objects, when pileup becomes the 
limiting factor. However, with thin objects such as pediatric 
patients, the mA should be reduced to decrease radiation dose.  
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IV. CONCLUSIONS 
PCDs are a promising detector choice in future CT systems, 

but suffer from several non-idealities, including count rate loss 
and charge sharing. By altering the detector pixel size, we can 
reduce one of these effects at the expense of increasing the 
other. Historically, the mandate has been to reduce count rate 
loss by using very small pixels. However, at this current time, 
using larger pixels such as 350 to 450  offers a modest 
performance improvement in material separation tasks. This 
trend reverses for smaller objects, when pileup is the 
dominating factor. However, when scanning large objects, ray 
paths with little attenuation do exist but may not be the 
dominant contributors to image noise. Even though a penalty 
may be present in rays with short tissue path-lengths, this 
penalty could be outweighed by the improvement in the long 
path-lengths, which have much higher noise. It has long been 
known that improving noise in the photon-starved regions is 
more important for image quality than adding photons were 
they are already abundant. We do not take into consideration 
the resolution differences between these pixel sizes; however, 
any of the pixel pitches investigated here would be a 
substantial improvement over the resolution of existing 
energy-integrating detectors, and at the time of this writing, 
the resolution of the system would be in any case limited by 
the focal spot. 

The conclusions reached here will change with improving 
technology. Faster pulse shaping will tilt the balance in favor 
of larger pixels; reduction of charge sharing from smaller drift 
times will do the reverse. However, charge sharing from K-
escape will be difficult to avoid. An anti-scatter grid could 
limit the flux along pixel boundaries, reducing charge sharing. 
Nonetheless, the potential for improvement in photon counting 
detectors is large. In the present simulations, the disparity 
between perfect energy response and the simulated energy 
response was always a variance penalty of at least three. 
Charge sharing compensation mechanisms could be used to 
diminish this gap, but may place greater pressure on the 
electronics and complexity and would diminish the effective 
count rate capability. 
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Abstract—Recent advances in total variation (TV) technology 
enable accurate CT image reconstruction from highly 
undersampled and noisy projection measurements. Standard 
iterative reconstruction algorithms, which work well in 
conventional CT imaging, fail to perform as expected in cone beam 
CT (CBCT) application. The major reason is that non-ideal 
physics issues, including scatter contamination and beam 
hardening, are more severe in CBCT images and result in large 
area of shading artifacts. The ideal mathematical assumptions (e.g., 
piecewise constant property of the reconstructed image) of TV are 
thus destroyed. To overcome this obstacle, we incorporate shading 
correction scheme into iterative reconstruction and propose an 
accurate, fast and stable iterative reconstruction method referred 
to as shading correction assisted iterative reconstruction (SCAIR). 
In the proposed method, we modify the TV regularization term by 
adding a shading correction image to the reconstructed image to 
compensate for the shading artifacts while maintaining the data 
fidelity term intact. The new scheme satisfies the piecewise 
constant mathematical assumption using TV regularization and 
achieves simultaneous reconstruction and shading correction. To 
minimize the proposed objective, in each iteration, we update the 
compensation image using segmentation and low-pass filtering 
techniques. When compensation image is updated, the objective 
function is minimized using gradient projection with an adaptive 
Barzilai–Borwein method to find the optimal solution. The 
proposed method is evaluated using CBCT projections of the 
Catphan©600 phantom and a pelvis patient. Compared with 
conventional iterative reconstruction, the proposed method 
reduces the overall CT number error from over 200 HU to be less 
than 30 HU and increases the spatial uniformity by a factor of 1.6 
using the same number of projections in the reconstruction. The 
overall iteration number is decreased by around 40% and the low-
contrast objects are faithfully retained after the proposed 
reconstruction. The proposed SCAIR method is thus practical and 
attractive as a general solution to CBCT iterative reconstruction.

Index Terms—Iterative Reconstruction, Shading Correction, 
Conebeam CT.
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I. INTRODUCTION

ecent advances in cone-beam CT (CBCT) enable its 
tremendous applications in image guided radiation therapy, 
including treatment setup, calculation of dose distribution 

and tumor delineation for adaptive radiation therapy. In these 
applications, high ionizing exposure of CBCT from repeated 
scans in the fractionated treatment process is the major concern 
for patient healthcare. To decrease the excessive exposure, low-
dose CT protocols are applied in clinic including fewer 
projection data acquisition and/or lower x-ray tube current.  
Traditional analytical algorithm is unlikely to reconstruct 
accurate images using low-dose protocols due to the increased 
view-aliasing artifacts and statistical noise. As a result, iterative 
algorithms are proposed to reconstruct faithful CT images since 
iterative methods readily incorporate the physical constraints 
and image features into the reconstruction [1]–[3]. Standard 
low-dose CT reconstruction methods usually model the CT 
imaging process as the data fidelity term regularized by 
mathematical assumptions on the image property. For example, 
total variation (TV) is defined as the L1 norm of the spatial 
gradient image and enforces the reconstructed CT image to be 
piecewise constant. CBCT system applies the large-area flat-
panel detector to acquire the volumetric image projections in 
the scan. Non-ideal physics issues, including scatter 
contamination and beam hardening are more severe in CBCT 
data acquisition than those in conventional CT scanner and 
result in severe shading artifacts. The standard low-dose 
reconstruction algorithms, which work well in conventional CT 
imaging, fail to perform as expected in CBCT imaging since the 
ideal mathematical assumptions (e.g., piecewise constant 
property) in the formulation cannot be satisfied.
To improve CBCT image quality, many algorithms are 
proposed to correct for the shading artifacts in CBCT image as 
an independent step, and numerous publications are found in 
the literature. These methods can be categorized as specific and 
general correction schemes. Specific correction methods 
perform correction for artifacts generated from one single 
physical factor including scatter contamination, beam 
hardening or photo starvation effects. General correction 
methods treat the low-frequency shading artifacts as if they 
come from the same error source. They extract the error mask 
in either the image or projection domain using image processing 
technique [4].
Independent operation of shading correction fails to incorporate 
the correlation of mathematical assumption and physics 
property in iterative reconstruction process. The reconstruction 
is thus slow and vulnerable to the non-ideal physics fluctuations. 
Some researchers include the image processing technique into 
the iterative process and propose the joint iterative processing 
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scheme. For example, Niu et al propose to include the statistical 
noise suppression into the iterative dual-energy material 
decomposition utilizing the noise correlation properties in the 
decomposition [5]. These joint schemes outperform their 
independent counterparts due to the full utilization of the 
information in the imaging process. 
In this work, we incorporate shading correction into the 
iterative CBCT reconstruction and propose an accurate, fast and 
stable reconstruction method referred to as the shading 
correction assisted iterative reconstruction (SCAIR) method. 
This new strategy performs a fast and stable iterative 
reconstruction while simultaneously eliminating shading 
artifacts effectively. We progressively perform shading 
correction in each iteration by estimating a compensation image 
which accounts for the shading artifacts in the image. The 
mathematical assumption (e.g., piecewise constant property) on 
the regularization term is thus better satisfied. The proposed 
method is evaluated in the Catphan©600 phantom and a pelvis 
patient studies. The proposed method does not rely on prior 
knowledge of the object, and is attractive and practical for 
clinical applications.

II. METHOD

A. SCAIR Framework Formulation
To reduce the view-aliasing artifacts from limited data 
measurements, total variation (TV) is applied as the 
regularization term to pick up the CT image whose intensity 
distribution follows the piecewise constant property while the 
data fidelity is best satisfied. A standard TV regularized 
iterative reconstruction is written as following:

where the vector with a length of (i.e., the number of 
detector voxels) represents the line integral measurements, 
is the system projection matrix modeling the forward projection 
operation, is the vectorized CBCT image to be reconstructed 
with a length of (i.e., number of image voxels). indicates 
the solution. calculates the L2 norm and is the TV 
term defined as the L1 norm of the spatial gradient image.
In CBCT reconstruction, the piecewise constant property is 
usually deteriorated by the severe shading artifacts. The 
mathematical optimization process is thus slow and unstable 
due to the inconsistent aims of data fidelity and TV 
regularization term. To overcome this problem, we construct a 
compensation image to account for the severe shading artifacts. 
The optimization formula is rewritten as:

The modified term takes into account the shading 
compensation image and approaches to the piecewise constant 
property required by the TV regularization. The inconsistency 
between the minimization of TV and the maintenance of data 
fidelity is greatly suppressed. 

B. Updating Scheme
Eq. (2) is solved using a sequential scheme since two variables 
are included. In each iteration, we update the compensation 
image based on the assumption that CT number 

distribution of one tissue component is relatively uniform. The 
objective function is then minimized using gradient method to 
find the optimal reconstructed image under the condition that 
the compensation image is fixed. 
B. I.   Compensation Image
In CBCT imaging, data acquisition errors destroy the 
uniformity of the area composed of the same tissue. To enforce 
the image uniformity, an ideal template image is generated 
using image segmentation technique and each structure in the 
template is filled with the CT number of that specific tissue. 
Low-pass filtration is applied to the difference image between 
the ideal template and original CBCT image to extract the low-
frequency shading compensation image. The compensation 
image thus mainly corrects for the shading artifacts while 
maintaining the anatomical structures in the CBCT image. This 
progress can be illustrated with the following equation:

where the subscript indicates the current iteration while 
indicates the previous one, SF is the segmentation and 

intensity filling operator and is a scaling factor no more than 
one to achieve a stable compensation. LF indicates the low-pass 
SG filtration operation. Segmentation is performed using 
thresholding and region-based level-set algorithms [4]. 
An accurate segmentation is not trivial due to the severe 
shading artifacts. The scaling factor t is applied to prevent the 
reconstructed image from biased towards an inaccurate 
template image. is linearly increased from 0 to 1 in our 
implementation and is shown as following: 

where is the iteration number, and is the number of 
iterations after which is fixed as when the optimization is 
stable. A template image is produced by filling the standard CT 
number of one tissue into the segmented area.
B. I.   Minimization of objective function
When the compensation image is updated and fixed, the 
optimization objective function of Eq. (2) is rewritten as:

In this work, Eq. (5) is solved using gradient projection (GP) 
method with adaptive BB step size selection scheme as 
proposed in our previous work [3].  
The GP algorithm finds the optimal decreasing direction by 
projecting the negative gradient of objective onto the feasible 
set. The updating scheme of this algorithm is shown in the 
following:

, where is the step size of the iteration. The projected 
gradient is denoted as which is calculated in Eq. (7):

, where is the voxel index, is the gradient of objective 
function.
Major steps in our algorithm include the calculation of the 
gradient of the objective function ( ) and the step size ( ) in 
each iteration. Gradient of the objective function (Eq. (5)) is 
derived as shown in Eq. (8):
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where is the transpose operator and is the gradient operator.
An effective adaptive Barzilai-Borwein (BB) method is applied 
to analytically estimate the step size in each iteration. Being 
different from the conventional gradient calculation using the 
gradient of current iteration, BB method estimates the step size 
based on both the previous and current gradients using a scalar 
approximation to the secant equations. Calculation details can 
be found in our previous work [3]. 

C. Implementation details
Shading artifacts are severe in the CBCT image of large volume 
(e.g. the pelvis image) and tissue segmentation is difficult or 
even impossible. An initial compensation image to guarantee a 
reliable segmentation is preferred to start the iteration. In this 
work, pelvis patient data using a half-fan bowtie filter presents 
severe shaded ring artifact around the periphery of the image. 
The artifact is caused by the scatter signal from modulated 
primary beam and thus appears as a unique ring pattern in image 
domain. Due to the correlation between the bowtie modulator 
and the ring pattern, we extract the artifacts using the modulated 
air-scan data as if acquired from a flat-field exposure 
penetrating the bowtie modulator. Details of the algorithm is 
included in our recent publication [4]. The extracted ring
pattern shading artifacts are then used as the initial 
compensation image in Eq. (3).
To decrease the computation burden, we perform the image 
segmentation after several iterations instead of in each iteration. 
The rationale of this operation lies in the fact that reconstruction 
is a slow and stable process. The difference between 
reconstructed images from adjacent iterations is relatively small 
to bring about segmentation improvement.
The stopping criteria used in our proposed method is the cosine 
of the data fidelity and regularization gradient angles as 
proposed in Prof. Pan’s work [2]. 

D. Evaluation
The proposed method is evaluated using CBCT projections 
acquired from the Catphan©600 phantom and a pelvis patient.
The CT number error is calculated using the square root of the 
mean square error (RMSE). To demonstrate that our method 
has maintained the piecewise constant property of the CBCT 
image, the spatial uniformity is used as a quality metric, as 
defined in Eq. (9).

, where is the segmented tissue of the same material and 
calculates the number of voxels in the segmented area. 

SU is unity in an ideal piecewise constant CT image. 

III. RESULT

A. Catphan©600 phantom study
Figure 1 shows the CBCT images reconstructed using full 
projection data (655 projections) and analytical algorithm 
without (Figure 1(a)) and with (Figure 1(b)) shading correction, 
sparse projection data (92 projections) using conventional 
iterative reconstruction (Figure 1(c)) and the proposed SCAIR 
method (Figure 1(d)). Iterative algorithm successfully 
reconstructs accurate CBCT images from sparse projections 
without loss of image quality. Severe low-frequency cupping 

artifacts observed in Figure 1(c) is greatly suppressed by the 
proposed method as shown in Figure 1(d). After SCAIR 
reconstruction, the overall image quality of Figure 1(d) is 
comparable to that in the reference image in Figure 1(b). For 
quantitative evaluation, six ROIs indicated by black rectangles 
in the reference image (Figure 1(b)) are selected to calculate the 
RMSE of CT number. SU is calculated as an indicator for the 
evaluation of global uniformity of these CBCT images. 
Comparing CBCT image reconstructed using SCAIR method 
with the one using the conventional iterative reconstruction, the 
CT number error is reduced from 225 HU to 6 HU and SU is 
substantially increased from 49.7% to 64.9%. 

Figure 1. CBCT images of the Catphan©600 phantom: (a) reconstructed using 
standard FBP algorithm and 655 projections, (b) after MDCT based shading 
correction using 655 projections (reference image), (c) reconstructed using 
conventional iterative method and 92 projections (no shading compensation), 
and (d) reconstructed using the proposed SCAIR method with 92 projections. 
The final template and compensation image (n=160) are shown in (f) and (e), 
respectively. Display window: [-250 250] HU.

B. Pelvis Patient study
Figure 2 shows the CBCT images using analytical 
reconstruction with 655 projections (Figure 2(a)), using 
analytical reconstruction with 162 projections (Figure 2(b)), 
using conventional iterative reconstruction with 162 projections 
(Figure 2(c)) and using the proposed SCAIR method with 162 
projections (Figure 2(d)). Using sparse projections, 
conventional iterative reconstruction suppresses the streaking 
artifacts due to view aliasing in the images from analytical 
reconstruction. The proposed SCAIR method (Figure 2(d)) 
successfully removes the shading artifacts in the CT images 
using conventional iterative reconstruction (Figure 2(c)). Using 
the proposed SCAIR method, the CT number error is decreased 
from 221 HU to 24 HU, the average contrast is increased from 
60 to 79 HU and the SU is increased from 33% to 55%. 

C. Convergence Behavior and Parameter Sensitivity
The overall iteration number using the proposed SCAIR 
method is reduced by 40% as compared with that using the 
conventional iterative scheme. The major reason is that we 
incorporate the compensation image into the regularization 
term of the objective function to approach the piecewise 
constant property which is preferred by the TV regularization 
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while maintaining data fidelity with shading contamination 
intact. Therefore, the minimization of TV and data fidelity is 
consistent and the strength of mathematical optimization is 
fully utilized. 
To demonstrate the convergence performance, the stopping 
criteria ( ) at each iteration is plotted in Figure 4(a). The 
stopping criteria of the proposed SCAIR method converges 
faster and more stable than that of the conventional iterative 
reconstruction method. For example, around iteration number 
80, stopping criteria of SCAIR method reaches -0.85 and almost 
stays there with a little vibration. The stopping criteria of the 
conventional method is still around -0.5 and vibrates 
dramatically.
TV term is plotted in Figure 4(b). Since the shading artifacts are 
suppressed, the overall TV of the CT image using the SCAIR 
method is smaller than that of the conventionally reconstructed 
image. The oscillation of the TV is also less intensive using our 
proposed method than that using conventional reconstruction. 

Figure 2. CBCT images of the pelvis patient data. (a) Analytical 
reconstruction using 655 projections, (b) analytical reconstruction using 162 
projections, (c) conventional iterative reconstruction using 162 projections, (d) 
the proposed SCAIR method using 162 projections, (e) the final compensation 
image, and (f) the final template image. Display window: [-250 250] HU.

Our proposed SCAIR method introduces a new parameter 
compared with conventional iterative reconstruction method. 
That is, the span size of SG filter which is illustrated in Eq. (3). 
To analyze the sensitivity, we plot the span size of SG filter (in 
pixels) with respect to the CT number error (RMSE) of the final 
reconstructed image, as is shown in Figure 3. This figure 
indicates that our result is not very sensitive to parameter 
selection. 

Figure 3. CT number error (RMSE) of the final reconstructed image vs. span 
size of the SG filter (in pixels). 

IV. CONCLUSION

An effective shading correction assisted iterative reconstruction 
(SCAIR) method is proposed. Being different from existing 
algorithm, our reconstruction method incorporates the 
compensation image into the optimization framework, and 
achieves an accurate, stable and efficient optimization progress 
as compared with the conventional iterative method. The 
proposed method is evaluated on a Catphan©600 phantom and 
a pelvis patient. Compared with images from traditional 
iterative reconstruction algorithm, our method achieves less 
shading artifacts (<3%), less number of iteration (<40%) and 
higher spatial uniformity (>60%). Therefore, the proposed 
correction method is practical and attractive as a general 
solution to clinical applications. 

Figure 4. (a) Stopping criteria, (b) TV and (c) objective function with respect to 
the iteration number for the proposed SCAIR and the conventional iterative 
reconstruction method. Y axis in (b) and (c) is in logarithmic format. 
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Denoising-Based Accelerated Statistical Iterative
Reconstruction for X-ray CT

Sathish Ramani, Xin Wang, Lin Fu, and Michael Lexa
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Abstract—Model-based image reconstruction (MBIR) is attrac-
tive for X-ray CT as it can provide improved image-quality
over filtered backprojection (FBP). MBIR entails minimizing a
cost criterion involving a data-fidelity term and an image-prior
term. Recent advances in MBIR have focussed on using patch-
based (e.g., non-local means—NLM and dictionary learning—
DL) image-priors that are capable of providing better quality
than pixel-difference-based priors. In this work, we propose
an MBIR-framework with general-denoising-based image-priors
where we minimize a data-fidelity term subject to constraints
that force the reconstructed image to be “close” to (several)
denoised versions of itself. We treat denoising as a black-box
operation, so the proposed framework can handle arbitrary
denoisers thus subsuming some of the existing advanced-MBIR
methods (e.g., NLM- and DL-based MBIR). We derive iterative
reconstruction algorithms for the proposed framework and show
how to accommodate momentum-techniques for accelerating
reconstruction. Using simulated and real CT datasets, we present
numerical results demonstrating the efficacy of one of the
proposed algorithms.

Keywords—X-ray CT, model-based image reconstruction, image
denoising, non-local means, dictionary learning.

I. INTRODUCTION

Model-based image reconstruction (MBIR) can provide bet-
ter image-quality than filtered backprojection (FBP), especially
for low-dose and sparse-view scans in X-ray CT [1], [2].
In MBIR, the reconstructed image is usually obtained by
minimizing a cost function that is a sum of a statistical
data-fidelity term and one or more image-prior terms [1],
[2]. Edge-preserving pixel-differences-based image-priors [1],
[2], [3] are popular, while recent advances include the use
of patch-based image-priors such as non-local means (NLM)
[4] and dictionary learning (DL) [5]. These advanced image-
priors are capable of providing better image-quality than pixel-
based ones [4], [5]. In any case, the above minimization
entails the use of (non-linear) iterative algorithms [1], [2] that
can be computationally expensive. Recently, Kim et al. [3]
demonstrated that ordered subsets (OS) [6] and momentum-
techniques (MOM) [7], [8] can be used for acceleration of
simple gradient-descent (GD) type methods for MBIR with
pixel-difference-based priors.

This work is supported by Department of Homeland Security, Science
and Technology Directorate, Explosives Division, BAA 13-05, Contract #
HSHQDC-14-C-B0048. The authors thank Walter Garms, Morpho Detection
Inc., for providing real CT datasets, Dr. D. -J. Kroon, University of Twente,
The Netherlands, for providing Matlab code for Non-Local Means denoising,
and Dr. Bruno De Man, GE Global Research, Niskayuna, NY, USA, for helpful
discussions.

Inspired by [4], [5], we consider a general-denoising-based
MBIR-framework where we minimize a statistically weighted
least-squares (WLS) data-fidelity criterion subject to con-
straints that force the reconstructed image to be “close” to
(several) denoised versions of itself. We treat denoising as a
(non-linear) black-box operation, so the proposed framework
accommodates a variety of (non-linear) denoisers thus subsum-
ing existing NLM- and DL-based MBIR methods [4], [5].

Due to the black-box assumption, the proposed constrained
optimization is complicated. So we approximate each denoiser
by its corresponding denoised-estimate at any given itera-
tion: such a strategy is similar to the one-step late [4] and
alternating minimization [5] approaches. This approximation
together with the separable-quadratic-surrogate (SQS) scheme
[6] simplifies optimization leading to a denoising-based SQS
(DSQS) algorithm that (approximately) solves the original
constrained problem. We also derive a variant of DSQS, called
gradient-descent-denoising (GDD) that is similar in spirit to
iterative shrinkage/thresholding (IST) [9]. Both DSQS and
GDD can accommodate arbitrary denoisers. Similar to [3], we
also combine OS [6] and MOM methods [7], [8] with DSQS
and GDD for algorithmic acceleration and derive DSQS-OS-
MOM and GDD-OS-MOM algorithms. For conciseness, we
demonstrate the working of GDD-OS-MOM in this paper via
numerical experiments with simulated and real CT scanner
datasets.

II. PROPOSED MBIR FRAMEWORK

We consider the following optimization problem

x̂
def
= argmin

x∈Ω

1

2
‖y −Ax‖2W s.t. ‖x− f

(l)
θl

(x)‖22 ≤ ε2l , (1)

l = 1, . . . , L, where εl ≥ 0, x̂ ∈ Rn is the reconstructed
result, Ω is a constraint set (e.g., non-negativity constraint),
A : Rn → Rm is the CT system matrix, W is a diagonal
matrix with statistical weights, y ∈ Rm is the measured data,
and f

(l)
θl

: Rn → Rn, l = 1, . . . , L are vector-functions
representing L different (non-linear) denoisers with respective
denoising-parameter-vectors {θl}Ll=1.

This formulation encourages the reconstructed image to be
nearly consistent with the measured data y while being “close”
to denoised versions of itself, as prescribed by the denoisers
{f (l)

θl
}Ll=1. We treat {f (l)

θl
}Ll=1 as black-boxes, i.e., we do

not require knowledge of the functional form of {f (l)
θl
}Ll=1.

This provides flexibility in using a variety of denoisers that
reduce both noise (at a voxel-level) and also other CT-related
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artifacts (e.g., streaks). We assume that {f (l)
θl
}Ll=1 are proper

and monotone [10, Defs. 1-2], i.e., {f (l)
θl
}Ll=1 decrease noise

(and artifacts) such that the root mean-squared error of the
denoised-estimates decrease monotonically with noise (and
artifact) level.

III. DENOISING-BASED SQS

Due to the black-box nature (and associated non-linearity)
of the denoisers {f (l)

θl
}Ll=1, (1) is a complicated optimization

problem to solve that invariably requires iterative treatment.
As a first simplification step, we approximate f

(l)
θl

(x) with
a corresponding denoised estimate, i.e., at a given iteration i
with an image-update x(i), we set

f
(l)
θl

(x) ≈ d
(i)
l

def
= f

(l)
θl

(x(i)), l = 1, . . . , L. (2)

Using (2), we end up with the following sequence of iterations:

x(i+1) def
= argmin

x∈Ω

1

2
‖y −Ax‖2W s.t. ‖x− d

(i)
l ‖22 ≤ ε2l , (3)

l = 1, . . . , L. The iteration in (3) is similar to one-step late [4]
and alternating minimization [5] approaches. The accuracy of
(2) depends on how well {f (l)

θl
}Ll=1 remove noise and artifacts,

while driving the reconstruction close to the true solution in
(1). This in turn depends on proper choice of the denoisers’
parameter-vectors {θl}Ll=1.

While (3) is a quadratic problem with an analytic solution,
such a solution is hard to implement in practice due to the
large sizes of y and x. So we resort to the separable-quadratic-
surrogate (SQS) approach [6] that majorizes the data-fidelity
term in (3) leading to

x(i+1) def
= argmin

x∈Ω
x′A′W (Ax(i) − y) +

1

2
‖x− x(i)‖2D

s.t. ‖x− d
(i)
l ‖22 ≤ ε2l , l = 1, . . . , L, (4)

where D
def
= diag{A′WA1n} is a diagonal matrix that

satisfies D � A′WA [6] and 1n is n×1 vector of ones. Due
to D, (4) can be easily solved and implemented in practice
leading to the following algorithm.

Algorithm 1: Denoising-based SQS (DSQS)

1) Initial estimate: x(0); d(0)
l = f

(l)
θl

(x(0)), l = 1, . . . , L.
2) Repeat Steps 3-5 for i = 0, 1, . . .
3) Gradient-descent-type update:

u(i) def
= x(i) −D−1A′W (Ax(i) − y). (5)

4) Image-update:

x(i+1) = PΩ

{
(In + βD−1)−1u(i)+

(D + βIn)
−1
∑L

l=1 λl(εl)d
(i)
l

}
, (6)

where In is the identity matrix of size n, PΩ de-
notes orthogonal projection onto Ω, β def

=
∑L

l=1 λl(εl),
{λl(εl) ≥ 0}Ll=1 are Lagrange multipliers such that
λl(εl)→∞ as εl → 0, l = 1, . . . , L.

5) Denoised-updates: d(i+1)
l = f

(l)
θl

(x(i+1)), l = 1, . . . , L.

In practice, it is usually simpler to directly specify meaning-
ful values for λl rather than derive them for given {εl}Ll=1. For
L = 1, the above algorithm is similar to the ones in [4], [5],
with (ignoring the index l) fθ ≡ NLM or DL, respectively.

IV. GRADIENT-DESCENT-DENOISING (GDD)

In the case of a single denoiser (L = 1, ignoring the index
l), instead of evaluating fθ at x(i) in (2), evaluating it at u(i)

(5) and setting λ → ∞ in (6), we obtain a simple iterative
gradient-descent-denoising (GDD) algorithm.

Algorithm 2: Gradient-descent-denoising (GDD)

1) Initial estimate: x(0).
2) x(i+1) = PΩ

{
fθ

(
x(i) −D−1A′W [Ax(i) − y]

)}
,

i = 0, 1, 2, . . .

GDD is similar in form to IST algorithms in image-
processing literature [9], but can accommodate a variety of
denoisers fθ . Both DSQS and GDD need a proper selection
of θ, but unlike DSQS, GDD does not require selection of λ.

V. ACCELERATION

Similar to Kim et al. [3], we combine OS [6] and MOM
[7], [11] methods for acceleration of DSQS and GDD above.
Specifically, we use the MOM-version in [11, Alg. FGM2]
that is simpler than [7, Eq. (3.11)] to obtain the following OS-
MOM-version of DSQS. In the sequel, we omit writing εl in
λl(εl). Let S denote the total number of subsets and As, Ws

and ys correspond to the sth subset.

Algorithm 3: DSQS with OS-MOM (DSQS-OS-MOM)

1) Initial estimate: x(0); Set a(0) = z(0) = x(0); t(0) = 1;
d
(0)
l = f

(l)
θl

(x(0)), l = 1, . . . , L.

2) Repeat Steps 3-10 for i = 0, 1, . . .
3) For each i repeat Steps 4-10 for s = 0, . . . , S − 1.

4) j
def
= i+ s/S; k

def
= j + 1/S.

5) g(j) def
= SA′

sWs(Asa
(j)−ys)+

∑L
l=1 λl(x

(j)−d(j)).

6) x(k) = PΩ

{
x(j) − (D + βIn)

−1g(j)
}
.

7) z(k) = PΩ

{
z(j) − t(j)(D + βIn)

−1g(j)
}
.

8) t(k) = (1 +
√

1 + 4[t(j)]2)/2.

9) a(k) = (t(k) − 1)/t(k)x(k) + z(k)/t(k).

10) d
(k)
l = f

(l)
θl

(a(k)), l = 1, . . . , L.

The above version of DSQS-OS-MOM requires only one
gradient evaluation of the data-fidelity term (inside g(·)) and
one evaluation of all denoisers per subset iteration. Given g(·)

and the denoised-estimates d
(·)
l , the updates of x(·) and the

auxiliary variable z(·) are computationally trivial. For GDD in
Sec. IV, we arrive at the following GDD-OS-MOM algorithm
based on [8, Alg. 1].
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Algorithm 4: GDD with OS-MOM (GDD-OS-MOM)

1) Initial estimate: x(0); Set a(0) = z(0) = x(0); t(0) = 1.
2) Repeat Steps 3-9 for i = 0, 1, . . .
3) For each i repeat Steps 4-9 for s = 0, . . . , S − 1.
4) j

def
= i+ s/S; k

def
= j + 1/S.

5) g(j) def
= SA′

sWs(Asa
(j) − ys).

6) x(k) = PΩ

{
fθ

(
x(j) −D−1g(j)

)}
.

7) z(k) = PΩ

{
fθ

(
z(j) − t(j)D−1g(j)

)}
.

8) t(k) = (1 +
√
1 + 4[t(j)]2)/2.

9) a(k) = (t(k) − 1)/t(k)x(k) + z(k)/t(k).
GDD-OS-MOM also requires only one gradient evaluation,

g(·), of the data-fidelity term, but unlike DSQS-OS-MOM,
GDD-OS-MOM needs two evaluations of the denoiser fθ .

VI. PRACTICAL IMPLEMENTATION

If the denoisers are computation-intensive (e.g., NLM or
DL), obtaining d

(·)
l in Step 11 of DSQS-OS-MOM or x(·)

and z(·) in Steps 7-8 of GDD-OS-MOM for every subset
can increase compute time. To mitigate this, we can use the
following approximation-strategy:

(a) in DSQS-OS-MOM, computation-intensive denoisers
(e.g., NLM, DL) can update corresponding d(k) when k
is an integer (i.e., every outer i-iteration), while simple
denoisers (e.g., wavelet-thresholding) can still update
corresponding d(k) ∀ k,

(b) in GDD-OS-MOM, we can use a simple denoiser f (1)
θ1

(e.g., wavelet-thresholding) ∀ k (every subset iteration),
and update a(k) ← f

(2)
θ2

(a(k)) after Step 9 using a
computation-intensive denoiser f

(2)
θ2

whenever k is an
integer (every outer i iteration).

These strategies ensure that x(k) and z(k) in both DSQS-
OS-MOM and GDD-OS-MOM still use a contribution from
simple-denoisers at every k, thus improving image-quality at
every subset iteration.

Combining OS with MOM can lead to an unstable behav-
ior of DSQS-OS-MOM and GDD-OS-MOM similar to that
reported in [3]. One can adapt the relaxation strategies in
[3, Sec. V-B] or dynamically adjust the number of subsets
with iterations to circumvent this problem. Here, we use the
simpler strategy of resetting t(·) ← 1 and z(·) ← x(·) whenever
t(·) > tthresh.

VII. EXPERIMENTAL RESULTS

For conciseness, we present results only for GDD-based
algorithms. We implemented GDD (Algorithm 2), GDD-OS
(GDD with OS only), GDD-MOM (GDD with MOM only),
and GDD-OS-MOM (Algorithm 4) in Matlab. We set tthresh =
30 for OS-MOM-resetting discussed in Sec. VI. We used FBP
reconstruction as x(0) and ran our experiments on a computer
with 6-core Intel Xeon X5650 2.67 GHz processor and 24 GB
RAM.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 1: Mid-slice of the reconstructed volumes on [0, 0.03]
mm−1 display-window from experiment with CatSim data.
GDD-based algorithms were run for a total of 600 and 1200
seconds. Corresponding iteration numbers are indicated. (a)
Noise-free ground-truth at 90 keV; (b) FBP; (c-d) GDD after
44 and 88 iterations; (e-f) GDD-OS after 15 and 30 iterations;
(g-h) GDD-MOM after 39 and 78 iterations; (i-j) GDD-OS-
MOM after 10 and 20 iterations.

A. CatSim Data

First, we compare GDD, GDD-OS, GDD-MOM, and GDD-
OS-MOM by running them for a fixed CPU-run-time and rank
image-quality of the respective results. Using CatSim [12], we
simulated axial noisy data (910 columns × 16 rows × 900
views) corresponding to a 45× 21× 50 cm3 analytic phantom
(containing different materials) at 90 keV (monochromatic
source) and 100 mA tube-current. We used 14 subsets for
the OS-based methods and set f1

θ1
≡ soft-thresholding of the

coefficients of one level of the 2D Haar frame applied on the
axial, sagittal and coronal slices as the denoiser (with fixed
threshold-strength θ1) and reconstructed image-volumes (of
size 512× 512× 26) using each GDD-version above.

Reconstruction results in Fig. 1 indicate that GDD-OS-
MOM is able to reduce noise and streaks earlier than any of its
other variations. For instance, GDD-OS-MOM at 600 seconds
(Fig. 1i) has lesser streaks compared to GDD, GDD-OS and
GDD-MOM at 1200 seconds (Figs. 1d, 1f, 1h, respectively).
These results are indicative of the acceleration provided by
combining OS-MOM with GDD.
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(a) (b)

(c) (d)

Fig. 2: Reconstruction results on [0, 0.025] mm−1 display-
window for real CT scanner data. Only a part of the field-of-
view is shown. (a) FBP result from 10× downsampled-views;
(b) FBP result from all views; (c) GDD-OS-MOM with Haar-
denoiser (20 iterations; 68 seconds); (d) GDD-OS-MOM with
Haar- and NLM-denoisers (20 iterations; 498 seconds).

B. Real Scanner Data
Here, we compare two versions of GDD-OS-MOM: one that

uses only the Haar-denoiser above and another that uses both
Haar- and NLM-denoisers (using the strategy in Sec. VI). For
this, we considered a 2D dataset obtained using a Morpho
Detection Inc. CTX 5500 scanner and reconstructed images
(of size 512 × 512) from a retrospectively reduced set of
views (10× reduction) by running 20 iterations (with 8 subset-
iterations each) of GDD-OS-MOM with Haar-denoiser and
GDD-OS-MOM with Haar- and NLM-denoisers. We used the
Matlab implementation of NLM provided by Kroon [13].

Fig. 2 compares reconstruction results for this experiment.
Both versions of GDD-OS-MOM (Figs. 2c-2d) provide im-
provement over FBP obtained from reduced set of views
(Fig. 2a). The GDD-OS-MOM images are not only comparable
to, but also provide a slight resolution boost (e.g., around the
circular region and along the boundary of the box) over FBP
from the full set of acquired views (Fig. 2b). Although GDD-
OS-MOM with Haar- and NLM-denoisers (Fig. 2d) takes
more algorithm-run time, it provides a further reduction in
streaks compared to GDD-OS-MOM with only Haar-denoiser
(Fig. 2c) indicating the potential of NLM [4].

VIII. DISCUSSION

In this paper, we proposed an MBIR-framework that sub-
sumes existing NLM- and DL-based MBIR approaches [4], [5]
for X-ray CT reconstruction by using general-denoising-based
image-priors. We derived two iterative algorithms (DSQS in
Sec. III and GDD in Sec. IV) that (approximately) solve
the proposed denoised-based MBIR problem in (1). We also

presented schemes for accelerating DSQS and GDD by com-
bining them with ordered subsets (OS) and momentum (MOM)
techniques [3] leading to DSQS-OS-MOM and GDD-OS-
MOM versions. The proposed algorithms can handle arbitrary
denoisers and are thus attractive for low-dose and sparse-
view reconstructions, which can benefit from sophisticated
denoisers. Using numerical experiments, we demonstrated the
working of GDD-OS-MOM with Haar-frame- and NLM-based
denoisers.

We are currently investigating the (empirical) convergence
behaviors of DSQS and GDD in terms of solving (1) or
arriving at a fixed-point solution. We are also focusing on
making their OS-MOM versions stable (e.g., by means of
relaxation [3] or by using a conservative MOM-step-size
parameter t(·)) for obtaining practically viable reconstruction
quality. Acceleration of the proposed methods using optimal
gradients [11] and combining them with message-passing-type
schemes [10] are also interesting directions for future research.
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Modeling Mixed Poisson-Gaussian Noise in
Statistical Image Reconstruction for X-Ray CT

Qiaoqiao Ding, Yong Long, Xiaoqun Zhang and Jeffrey A. Fessler

Abstract—Statistical image reconstruction (SIR) methods for
X-ray CT improve the ability to produce high-quality and
accurate images, while greatly reducing patient exposure to
radiation. The challenge with further dose reduction to an ultra-
low level by lowering the X-ray tube current is photon starvation
and electronic noise starts to dominate. This introduces negative
or zero values into the raw data and consequently causes artifacts
in the reconstructed CT images with current SIR methods based
on log data. At ultra-low photon counts, the CT detector signal
deviates significantly from Poisson or shifted Poisson statistics
for the pre-log data and from Gaussian statistics for post-log
data. This paper proposes a novel SIR method called MPG
(mixed Poisson-Gaussian). It models the raw noisy measurements
using a mixed Poisson-Gaussian distribution that accounts for
the electronic noise. The MPG method is able to directly use
the negative and zero values in the raw data without any
pre-processing. We adopt the reweighted least square method
to develop a tractable likelihood function that can be easily
incorporated into SIR reconstruction framework. To minimize
the MPG cost function containing the likelihood function and
an edge-preserving regularization term, we use an Alternating
Direction Method of Multipliers (ADMM) that divides the o-
riginal optimization problem into several sub-problems that are
easier to solve. Our results on 3D simulated cone-beam data set
indicate that the proposed MPG method reduces noise in the
reconstructed images comparing with the conventional FBP and
statistical penalized weighted least-square (PWLS) method for
ultra-low dose CT (ULDCT) imaging.

I. INTRODUCTION

X-Ray Computed Tomography (CT) provides high-
resolution images of anatomical structures for diagnosis and
management of human diseases and disorders. For example,
CT has had a tremendous impact on cancer. Studies have
suggested that current CT usage may be responsible for 1.5%-
2% of all cancers in the U.S. [1]. Significantly lowering
radiation dosages from CT has become a growing concern
both in the public and professional societies. Ultra-low dose
CT (ULDCT) scans that still provide suitable image quality
could shift CT scans further to the benefit side and open up
numerous entirely new clinical applications.

CT image reconstruction method improvements that could
realistically and significantly reduce patient radiation expo-
sure while maintaining high image quality is an important

Q. Ding (e-mail: dingqiaoqiao@sjtu.edu.cn) and X. Zhang (e-mail:
xqzhang@sjtu.edu.cn) are with School of Mathematical Sciences and Institute
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area of research to achieve low dose CT imaging. Statistical
image reconstruction (SIR) methods [2] improve the ability
to produce high-quality and accurate images, while greatly
reducing patient exposure to radiation. The challenge with
further dose reduction to an ultra-low level by reducing the
number of projection views is the aliasing artifacts due to
under-sampled sinograms when the number of views is too
small [3]. An alternative approach is to lower the X-ray tube
current, but this causes photon starvation and electronic noise
starts to denominate [4]. This approach introduces negative or
zero values into the raw data and consequently causes artifacts
in the reconstructed CT images with current data processing
methods [5] based on log sinogram data.

The measurement statistical models in most SIR methods
assume standard or shifted Poisson statistics for the pre-log
data or Gaussian distributions for the post-log data. At ultra-
low photon counts, the CT measurements deviate significantly
from Poisson or Gaussian statistics. For ULDCT imaging the
logarithm simply cannot be used because the raw data have
negative or zero values due to the electronic noise in the
data acquisition systems (DAS). In [6], the authors substituted
the non-positive measurements with a small positive value.
Poisson distribution models the number of events which should
be non-negative. The shifted Poisson model adds a positive
value associated with the variance of electronic noise to the
raw data, but the shifted raw data may still be negative or zero
for ULDCT imaging. Compound Poisson (CP) distribution [7],
[8] that accounts for the polyenergetic X-rays and Poisson light
statistics in the scintillator of energy-integrating detector has
the potential to accurately model the measurement statistics
in ULDCT imaging. However, CP model has a complicated
likelihood that impedes direct use in SIR methods and elec-
tronic readout noise leads to a distribution that is even more
complicated than a CP model.

This paper proposes a new SIR method with a data-
fit term associated with the mixed Poisson-Gaussian (MPG)
distribution model for CT measurements [9], [10] and the
edge-preserving hyperbola regularization. The proposed MPG
method is able to directly process negative or zero val-
ued raw data that contain (some, albeit limited) information
about the scanned object. We solve the MPG optimation
problem using Alternating Direction Method of Multipliers
(ADMM, also known as split Bregman method [11]) and its
unconstrained subproblems using Conjugate Gradient (CG),
Broyden-Fletcher-Goldfarb-Shanno (BFGS).

This paper is organized as follows. Section II mathematical-
ly formulates the MPG method for X-ray CT reconstruction
as a Penalized-Likelihood (PL) cost function and solves it
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using ADMM. Section III presents numerical experiments and
results. Finally, we draw our conclusions in Section IV.

II. METHODS

A. Measurement Model

Let yi denote the number of X-ray photons incident on
detector for the ith ray where i = 1, · · · , Nd, and Nd is the
number of rays. For a monoenergetic source, we model the
number of X-ray photons as :

ȳi = ȳi(x) � Ii exp(−[Ax]i) + ri (1)

where x denotes the attenuation map, and its jth element
xj is the average linear attenuation coefficient in the jth
voxel for j = 1, · · · , Np, where Np denotes the number of
voxels. A is the Nd × Np system matrix with entries aij ,
and [Ax]i =

∑Np

j=1 aijxj denotes the line integral of the
attenuation map x along the ith X-ray. We treat each Ii and
ri as known nonnegative quantities, where ri is ensemble
mean of background signals such as Compton, scatter and dark
current, and Ii is the incident X-ray intensity incorporating
X-ray source illumination and the detector gain. Although
the measurement model in (1) ignores beam-hardening effects
[12], [13], polyenergetic measurement models that account for
the source spectrum and energy-dependent attenuation will be
employed in our future work.

For the case of normal clinical exposures, the X-ray CT
measurements zi are often modeled as the sum of a Poisson
distribution representing photon-counting statistics (1) and
an independent Gaussian distribution representing additive
electronic noise:

zi = kyi + ye (2)

where yi ∼ Poisson(ȳi(x)) and ye ∼ N(0, σ2), k is a scalar
factor modeling the conversion gain from X-ray photons to
electrons and σ denotes the standard deviation of electronic
noise.

B. Penalized Weighted Least Square for Poisson-Gaussian
Mixed Noise

We adopt the reweighted least square method [10] to de-
velop a tractable likelihood function for the mixed Poisson-
Gaussian measurement statistical model. Given ȳi, Assuming
yi and ye are independent, we have

E[zi] = kE[yi] = kȳi

and
Var[zi] = k2Var[yi] + Var[ye] = k2ȳi + σ2

We approximate zi with normal distribution, i.e., zi ∼
N(kȳi, k

2ȳi+σ2), i.e., the Probability Density Function (PDF)
of zi is

P (zi;x) =
1√

2π(k2ȳi(x) + σ2)
e
− (zi−kȳi(x))2

2(k2ȳi(x)+σ2) (3)

The corresponding approximate negative log-likelihood for
independent measurements zi has the form

L̄(x) = −
Nd∑
i=1

log(P (zi;x)) ≡
1

2
‖z − kȳ(x)‖2W (x)

+
1

2
〈log (k2ȳ(x)+ σ2),1〉, (4)

where ≡ means “equal to within irrelevant constants indepen-
dent of x”, the diagonal weight matrix W (x) is

W (x) = diag

{
1

k2ȳi(x) + σ2

}
, (5)

z ∈ RNd and ȳ(x) ∈ RNd have elements of zi and ȳi(x)
respectively, σ2 ∈ RNd and 1 ∈ RNdhave every element equal
to σ2 and 1 respectively, and 〈·, ·〉 is inner product. log(·)
is pointwise operation. We estimate the attenuation map x
from the noisy measurements z by minimizing a Penalized-
Likelihood (PL) cost function as follows:

x̂ = argmin
x

Ψ(x) (6)

Ψ(x) � L̄(x) +R(x). (7)

The regularization term R(x) is

R(x) = λ

Nr∑
i=1

βrψr([Cx]r), (8)

where the regularization parameter λ controls the noise and
resolution tradeoff, βr is the spatial weighting, ψr(·) is a
potential function, C � {Crj} ∈ RNr×Np is a sparsifying
matrix finite-differencing matrix and [Cx]r =

∑Np

j=1 Crjxj .
We focus on edge-preserving hyperbola regularization, i.e,
ψr(t) = δ2(

√
( tδ )

2 + 1 − 1). The regularization term R(x)

can be written as R(x) = λδ2(
√
(Cx

δ )2 + 1− 1).

C. Optimization Method

1) Equivalent Optimization Model: Because (6) is hard to
solve directly, we introduce auxiliary variables u ∈ RNd ,v ∈
RNr . Then, we rewrite our problem as the following equivalent
constrained problem:

arg min
x,u,v

1

2
‖ z − kIe−u

√
k2Ie−u + σ2

‖22

+
1

2
〈log (k2Ie−u + σ2),1〉+ λδ2(

√
(
v

δ
)2 + 1− 1)

s.t. u = Ax,v = Cx. (9)

In this paper, e(·), log(·),
√
· and division are all pointwise

operation. We rewrite (9) as

argminx,s f(s)

s.t. s := Px (10)

where s � (u,v)T , P � (A,C)T .
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2) Alternating Direction Method of Multipliers: To solve
the optimzation problem in (10), we use Alternating Direction
Method of Multipliers (ADMM). Given x(0), s(0) and b(0)

ADMM updates the sequence (x(j), s(j), b(j)) by

x(j+1) =argmin
x
〈b(j),Px− sj〉+ μ

2
‖Px− sj‖22, (11)

s(j+1) =argmin
s

f(s) + 〈b(j),Px(j+1) − s〉

+
μ

2
‖Px(j+1) − s‖22, (12)

b(j+1) =b(j) + μ(Px(j+1) − s(j+1)). (13)

where μ > 0 is the penalty parameter and b = (b1, b2)
T , b1 ∈

RNd , b2 ∈ RNr have the same size as Ax,Cx respectively.
Note that we can also select a vector μ = (μ1, μ2) for the two
quadratic penalty constraints.

3) Algorithm: Firstly, we solve (11) to obtain x(j+1). Since
(11) is quadratic and differentiable on x, so we solve it
analytically, i.e.,

x(j+1)∗ = G−1
[
μ1A

�(u(j) − b
(j)
1 ) + μ2C

�(v(j) − b
(j)
2 )
]

(14)

where x(j+1)∗ represents the exact solution and G =
μ1A

�A + μ2C
�C is nonsingular because because A�A

and C�C have disjoint null space [14]. Although (14) is an
exact analytical solution, it is impractical to store and invert
it exactly due to its huge size for CT reconstruction. This
step (14) can be solved by CG method and we obtain an
approximate update x(j+1).

Due to the structure of f(s) and P , (12) can be solved
separately for u,v as follows:

u(j+1) =argmin
u

1

2
‖ z − kIe−u

√
k2Ie−u + σ2

‖22

+
1

2
〈log(k2Ie−u + σ2),1〉+ 〈b(j)1 , Ax(j+1) − u〉

+
μ1

2
‖Ax(j+1) − u‖22, (15)

v(j+1) =argmin
v

λδ2(

√
(
v

δ
)2 + 1− 1) + 〈b(j)2 ,Cx(j+1) − v〉

+
μ2

2
‖Cx(j+1) − v‖22. (16)

We can see that u,v can be solved separately and in parallel.
Subproblem (15) is smooth, differentiable nonconvex and
separable. We apply BFGS to solve the subproblem (15).

Minimization with respect to v in (16) is the proximal
operator of the edge-preserving hyperbola function, and we
can update vj separately. The dual variables is updated s-
traightforwardly as (13). Figure 1 summarizes the optimization
algorithm of the proposed MPG method.

III. RESULTS

In this section, we present numerical results for 3-D cone-
beam CT reconstruction using simulated Shepp-logan phantom
data. We used filtered back projection (FBP) reconstruction
that initialized the proposed MPG method and penalized

1. Select x(0), λ, μ and set j = 0
2. Set u(0) = Ax(0),v(0) = Cx(0) and
b(0) = (b

(0)
1 , b

(0)
2 ) = 0

Repeat:
3. Obtain x(j+1) by applying CG iterations to (14)
4. Computer u(j+1) by applying BFGS iterations to (15)
5. Computer v(j+1) by (16)
6. Compute b

(j+1)
1 and b

(j+1)
2 using (13)

7. Set j = j + 1
Until stop criterion is met.

Fig. 1: ADMM for the proposed MPG reconstruction method

weighted-least square (PWLS) reconstruction with the edge-
preserving hyperbola function [15], and compared perfor-
mance of these three methods.

We used a 512 × 512 × 64 Shepp-logan phantom and
numerically generated a 888 × 64 × 984 noisy sinogram
with GE LightSpeed cone-beam geometry corresponding to a
monoenergetic source with 104 incident photons per ray and
no background events, i.e, ri = 0, i = 1, · · ·Nd. We chose
1000 for the scalar factor k [16] modeling the conversion gain
from X-ray photons to electrons in (2) and 3302 for σ2 [17],
the variance of electronic noise. Some elements of the mea-
surements z are negative due to the small value of Ii = 104

simulating ULDCT imaging. The proposed MPG method can
directly use these data in the reconstruction without any pre-
processing. FBP and PWLS are post-log methods that need to
take logarithm of the measurements z. To obtain line integrals
Ax for FBP and PWLS reconstruction [18], we substituted
the non-positive measurement elements with a small positive
value, i.e.,

log(
kIi

max(zi − yN , ε)
). (17)

For the weight in PWLS [18], we also set non-positive
measurement elements with a small positive value, i.e.,

wi =
max(zi − yN , ε)2

max(zi − yN , ε) + σ2
. (18)

Here, in (17) and (18), ε is a small positive value and
yN ∼ N(0, σ2). The matrix C in (8) was set as the gra-
dient operator along three directions for 3D CT images, the
regularization parameter λ was set as 2 × 105 to balance the
noise and resolution, and the iteration number was 100 to
reconstruct the image. Figure 2 shows the true image and
the reconstructions by FBP, PWLS and the proposed MPG
method. PWLS method decreases noise and removes artifacts
from the FBP initialization as expected, while the proposed
MPG method further improves image quality.

IV. DISCUSSION AND CONCLUSION

We proposed a novel SIR method, called MPG (mixed
Poisson-Gaussian) for ULDCT imaging. MPG method models
the noisy measurements using mixed Poisson-Gaussian distri-
bution which accounts for the electronic noise that dominates
when the X-ray dose is at an ultra-low level. We used the
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RMS 32.6% 22.3% 15.2%
(a) Ground truth (b) FBP (c) PWLS (d) MPG

Fig. 2: Shepp-Logan phantom reconstructed by FBP, PWLS and the proposed MPG method. (a) Noisefree Shepp-Logan
phantom, (b) FBP, (c) PWLS, and (d) Proposed MPG. Images in (b)-(d) have been displayed using the same color scale [as
that of (a)]. The second row is the normalized root mean square (RMS) error of the images reconstructed by different method.

reweighted least square method to develop a tractable likeli-
hood function that can be incorporated into SIR reconstruction
framework. The proposed MPG method can accommodate
edge-preserving hyperbola regularization that preserves edges
and can be useful for under-sampled data by reducing the
number of views for further dose reduction. We minimize the
MPG cost function using ADMM which divides the original
optimization problem into several sub-problems that are easier
to solve. The proposed MPG method is able to directly use
negative and zero values in the raw data without any pre-
processing. Preliminary reconstruction results on 3D simulated
data set indicate that the proposed MPG method outperforms
the conventional FBP and statistical PWLS method.

In future work, we will investigate efficient methods for op-
timizing subproblem (15) and (16). These two subproblems are
a set of 1-D Separable problems that can be solved efficiently
by parallel methods. In CT, a nonnegativity constraint is often
imposed to model the positivity of the attenuation coefficient
that is being reconstructed. We can easily incorporate the
nonnegativity constraint in the model (6).
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Auto-tuned Path-based Iterative Reconstruction
(aPBIR) for X-ray Computed Tomography

Meng Wu, Andreas Maier, Yan Xia, and Rebecca Fahrig

Abstract—Model-based iterative reconstruction (MBIR) tech-
niques have demonstrated many advantages in X-ray CT image
reconstruction. The tuning parameter value in MBIR that regu-
lates the strength of the penalty function is critical for achieving
good reconstruction results but difficult to choose. The path-based
iterative reconstruction (PBIR) method empowered by the path
seeking algorithm is capable of efficiently generating a series of
MBIR images with different strengths of the penalty function.
In this paper, we present an approach to automatically select
the tuning parameter value by finding the maximal separation
between the noise reduction and the smoothing effects. Simula-
tions shows that the proposed auto-tuned PBIR method produces
images that are comparable to the hypothetically ”best” MBIR
image.

Index Terms—CT, MBIR, Path seeking, PBIR

I. INTRODUCTION

The model-based iterative reconstruction (MBIR) method
for 3D computed tomography (CT) has shown potential to im-
prove image quality and reduce radiation dose [1]. The MBIR
method is usually formulated in the Bayesian framework as
a maximum a posteriori or maximum likelihood problem.
However, the prior distribution of the object is unknown,
and the maximum likelihood estimator is often ill-posed.
A common solution is to add a constraint/regularization to
the maximum likelihood model to formulate the penalized
maximum likelihood problem. Over last two decades, exten-
sive research has been conducted regarding the most suitable
statistical model, penalty function, and acceleration techniques
[2]–[4]. Moreover, choosing an appropriate strength of the
penalty function, also as known as tuning parameter value,
remains as one of the major difficulties of the MBIR method.

In this study, we consider the penalized weighted least-
squares (PWLS) algorithm [2]

μ = argmin
μ≥0

1

2

∑
i

wi([Pμ]i − li)
2 + βh(μ) (1)

where P denotes the system matrix for the data acquisition
geometry, li denotes the logged normalized projection of the
ith ray, and w is the least-squares weight to account for
the noise level in the X-ray projection data. Function h(μ)
is the penalty function (also known as regularization), μ is
the reconstruction image, and β is the tuning parameter that
regulates the strength of the penalty function. In this paper,

M. Wu, and R. Fahrig are with the Department of Radiology, Stanford
University, USA e-mail:mengwu@stanford.edu.

A. Maier and Y. Xia are with Pattern Recognition Lab, Friedrich-Alexander
University of Erlangen-Nuremberg, Germany.

we used the penalized least-squares notation for simplicity

minimize
1

2
‖Aμ− y‖22 + βh(μ) = g(μ) + βh(μ)

subject to μ ≥ 0,
(2)

where A = W 1/2P , y = W 1/2l, and g(μ) denotes the least-
squares part. W is the diagonal matrix containing wi. It is
well known that the value of the tuning parameter is critical
to the reconstruction results [5], [6]. For example, if β is
too small, the regularization is not strong enough to suppress
noise and artifacts; if β is too big, the image is over blurred
and even exhibits patchy behavior. In fact, the values of the
tuning parameter (β) produce a series of reconstruction images
indexed by β value.

To the best of our knowledge, there is no perfect way
to choose the tuning parameter value that would lead to
the reconstruction with maximum clinical utility. Instead of
focusing on a single optimal tuning parameters, the path-based
iteration reconstruction (PBIR) method utilizes path seeking
algorithms to efficiently compute the entire reconstruction path
that covers all possible tuning parameter values [7], [8]. The
PBIR method can provide complete information for a given
reconstruction model, but still does not complete the task
of finding the optimal tuning parameter. In this paper, we
proposed a novel method to automatically select the tuning
parameter that maximally separates the denoising and the
smoothing effects.

II. METHODS

A. Direction-of-gradient path seeking

We first present a path seeking algorithm that uses the
direction of one gradient function to constrain the optimization
problem thereby encouraging the image to change in the
desired direction. For example, if we want to seek the path
of increasing strength of the penalty function h(μ), then we
would like to encourage the optimization updates (i.e. gradient
descent) to go in the same direction as the ∇h(μ). Let us
consider adding a linear inequality constraint to the penalized
least-squares problem as

minimize g(μ) + β1h(μ)

subject to μ ≥ 0

(μj − μ̂j) · ∇jh(μ̂) ≤ 0 ∀j,
(3)

where
μ̂ = argmin

μ≥0
g(μ) + β1h(μ). (4)
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TABLE I: Pseudo code for the path seeking algorithm.

Set β = β1

Reconstruct an image x = xβ1

For k = 1, 2, 3, ...
1) s(k+1) = ρAT (Aμ(k) − y) + (1− ρ)v(k).
2) If recently increase β, use a) otherwise use b).

a) Direction-of-gradient path seeking

μ(k+1) = argminβh(μ) +
ρ

2t
‖μ− μ(k) + s(k+1)‖22

subject to μ ≥ 0

(μj − μ
(k)
j ) · ∇jh(μ

(k)) ≤ 0 ∀j
b) Standard ADMM step

μ(k+1) = argminβh(μ) +
ρ

2t
‖μ− μ(k) + s(k+1)‖22

subject to μ ≥ 0

3) v(k+1) = ρ
ρ+1A

T (Aμ(k+1) − y) + 1
ρ+1v

(k)

4) If ‖x − xβ1‖ is not increasing, then record x and
increase β.

Until β = β2.

The second linear inequality constraint in Eqn. (3) is inactive
because the μ̂ is already optimal for the nonnegative con-
strained penalized least-squares problem.

If we slightly increase β1 to β2 in the direction-of-gradient
constrained penalized least-squares problem (3) as

minimize g(μ) + β2h(μ)

subject to μ ≥ 0

(μj − μ̂j) · ∇jh(μ̂) ≤ 0 ∀j
(5)

and keep the μ̂ same as in Eqn. (4), the new solution will
be suboptimal for the penalized least-squares problem (2)
with β2. But the solution of the problem (3) is still close to
the solution of the reconstruction problem because increasing
the strength of h(μ) and the direction-of-gradient constraint
have very similar effects. To solve the direction-of-gradient
constrained problem (3), we can simply apply a projection
onto convex sets (POCS) step [3]. The POCS step will encour-
age updates of the image that favor minimizing h(μ), which
increases the path seeking efficiency within the optimization
framework.

It is not computationally efficient to compute the direction-
of-gradient constrained problem (5), which only gives an
approximation to the path image at each new β. We can merge
the direction-of-gradient step into an efficient optimization
solver such as the alternating direction method of multiplier
(ADMM) [4]. To adapt the direction-of-gradient optimization,
we can add the POCS in the denoising step of the ADMM
algorithm. Additional ordinary ADMM steps can be used to
improve the accuracy of the path seeking. The direction-of-
gradient based path seeking algorithm is summarized in Table
I.

For the direction-of-gradient based method, the path seeking
is inside the framework of the constrained optimization prob-
lem that is more robust to ordered subset errors than the fixed

(a) Reconstruction path

(b) Differences between two consecutive frames

Fig. 1: (a) Twenty eight path images of a 5 cm × 5 cm region-
of-interest in the PWLS reconstruction path. The display
window is [-50 150] HU. (b) Difference images between each
two consecutive path images. The display window is [-10 10]
HU.

step size update [9]. A suitable number of ordered subsets
for the direction-of-gradient path seeking method is between
10 and 20. In order to execute alternatively between the
normal and modified ADMM optimization steps, the additional
optimization steps need to have the same number of ordered
subsets [4], [9].

B. Automatic tuning

The path seeking algorithm can efficiently compute the
reconstruction path, but the task of selecting the optimal
tuning parameter value is not completed. Because the entire
reconstruction path is already available, one way to choose the
appropriate tuning parameter is to apply a numeric metric to
those path images and select the frame (or tuning parameter)
with the highest score. However, the numeric metric has to
be suitable for the clinical task, which is an open research
question. In this paper, we present a generic way of selecting
the tuning parameter that has maximal separation of noise
reduction and smoothing.

Figure 1 (a) shows an example of 28 frames in the MBIR re-
construction path using the path seeking method. The sequence
of images changes from noisy to over smoothed. Figure 1
(b) shows the corresponding difference images between each
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Fig. 2: (a) Correlation coefficients between two consecutive
difference images. (b) RMSE and MAE between each path
image and ground truth.

two consecutive path images in Figure 1(a). The effects of
changing the penalty function strength are now presented in
the difference images. When the tuning parameter is small,
increasing the strength of the penalty function mainly reduces
the noise in the reconstructions. In the first row of difference
images, the changes are uniform throughout the region-of-
interest (ROI), and there is no clear structure of the phantom.
As the noise level in the reconstructions becomes low (end of
the second row), the penalty function starts to influence the
shape and value of the soft tissue patterns.

As shown in Figure 1(b), the changes in the first half of
the reconstruction path correspond to the noise reduction, and
the changes in the second half of the reconstruction path
correspond to the smoothing. If we compute the correlation
coefficients between each two consecutive difference images,
there are high correlations inside the first and second halves
as shown in Figure 2(a). At the 18th frame, the correlation
coefficient drops because the changes caused by the noise
is independent to the structure. Therefore, the corresponding
frame implies the maximal separation between the noise
reduction and the smoothing effects. Figure 2 (b) shows
the root-mean-square-error (RMSE) and the mean-absolute-
error (MAE) between each path image and ground truth. The
RMSE and MAE both have minimum values around the 18th
frame, which validate our assumption. Then, we can apply
the same approach to each small regions of the entire image

(a) (b)

Fig. 3: (a) Selected ROI frame indices used for optimal tuning
parameter selection;. (b) Example of resulting aPBIR image.

to adaptively select optimal tuning parameters (Figure 3). The
final auto-tuned PBIR (aPBIR) image is produced by stitching
the regions with selected frame from the reconstruction path.
In our experiments, we found a region size of 32×32 pixels
(2.5 cm×2.5 cm) provides a good trade-off between noise and
local structure.

III. SIMULATIONS

A typical 64-slice diagnostic CT geometry was used in
the simulations. A full circular rotation scan was performed
over 360 degrees, containing 984 projections with the size of
888×64 pixels. The reconstructed image size 512×512×30
with in-plane spacing of 0.8×0.8 mm2, and the slice thickness
is 1 mm.

An abdomen XCAT phantom with added soft tissue patterns
was used in this work. The phantom spacing of the XCAT
phantom is 0.6 mm isotropic. The projection data were sim-
ulated in an axial scanning mode using a 120 kVp polychro-
matic spectrum. Simulated projections of the XCAT phantom
were generated assuming an exposure of approximately 100
mAs and 50 mAs.

The simulated projection data are reconstructed using the
penalized weighted least-squares (PWLS) method. We used
the convex edge-preserving Huber function as the penalty
function for image roughness. The transition value from
quadratic to linear regions is set to 1, 5, and, 10 Hounsfield
units (HU), respectively. The proposed path seeking methods
were used to generate path images of the PWLS reconstruction
with 30 β values. The range of tuning parameters produces
reconstructions ranging from very noisy to over smoothed.

IV. RESULTS

Figure 4 shows aPBIR reconstructions with different the
Huber function (different transition values) at two different
dose levels. With the automatically tuned parameter, the re-
constructions show a good balance between noise reduction
and smoothing. There is no visible white noise in the images.
The images with the 1 HU Huber function (similar to total
variation) exhibit some patchy behavior, and the soft tissue
patterns are distorted. When using the 10 HU Huber function,
the soft tissue background has more high frequency structures.
The shapes of soft tissue contrast patterns in the liver are
better preserved by the 10 HU Huber function. There is no
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Fig. 4: Reconstruction results of the proposed aPBIR method. The first row uses 100 mAs data, the second row uses 50 mAs
data. The columns from left to right correspond to the Huber function with transition values of 1, 5, and, 10 HU, respectively.
The display window is [-50 150] HU.

TABLE II: RMSE and MAE measurements of the proposed
aPBIR reconstructions in Figure 4 against the ground truth.
The measurements for MBIR reconstructions used the image
of on the reconstruction with the smallest values.

Dose level (mAs) 100 100 100 50 50 50

Huber parameter (HU) 1 5 10 1 5 10

aPBIR RMSE (HU) 28.2 28.2 28.4 29.0 29.2 29.3
MBIR RMSE (HU) 28.3 28.3 28.4 29.2 29.2 29.4
aPBIR MAE (HU) 8.24 8.59 9.04 8.51 8.93 9.46
MBIR MAE (HU) 8.19 8.41 8.63 8.51 8.79 9.05

obvious visual difference between 100 mAs and 50 mAs
reconstructions, although 50 mAs reconstructions have more
pepper noise, and the soft tissue patterns are more likely to
be distorted.

Table II shows the comparison of RMSE and MAE mea-
surements between the proposed aPBIR method and the ”best”
MBIR reconstructions. With the path seeking algorithm, we
are able to obtain the reconstruction path of MBIR, and
then compute the smallest RMSE and MAE values along
the path. Therefore, the error measurements of the MBIR
are the smallest values for the given reconstruction model.
Note that, those values are unknown in practice because there
is not ground truth. The aPBIR images have even slightly
smaller RMSE than the ”best” MBIR, because the tuning
parameters are adaptively selected for different regions. The
MAE measurements for aPBIR method are slightly larger than
the ”best” MBIR. Our simulation included beam hardening
and partial volume effects, so the error measurements will
not go down to zero. In addition, the path seeking algorithm
not only permits efficient calculation of reconstructions for
monotonically changing tuning parameter, but can also be used
to investigate the impact of changing parameters in the penalty
function itself.

V. CONCLUSION

In this paper, we present an approach to automatically select
the tuning parameter in iterative reconstruction by finding the
maximum separation between noise reduction and smoothing
effects. Simulation results show the proposed auto-tuned PBIR
produces images that are comparable to the hypothetically
”best” MBIR images. Future work will comprise validation
of the algorithm in the clinical datasets. The present paper,
however, indicates the feasibility of automatically selecting the
tuning parameter using the aPBIR method.
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Abstract — A task-driven imaging framework for 
prospective fluence field modulation (FFM) is developed in 
this paper. The design approach uses a system model that 
includes a parameterized FFM acquisition and model-based 
iterative reconstruction (MBIR) for image formation. Using 
prior anatomical knowledge (e.g. from a low-dose 3D scout 
image), accurate predictions of spatial resolution and noise 
as a function of FFM are integrated into a task-based 
objective function. Specifically, detectability index (d’), a 
common metric for task-based image quality assessment, is 
computed for a specific formulation of the imaging task. To 
optimize imaging performance in across an image volume, 
a maximin objective function was adopted to maximize the 
minimum detectability index for many locations sampled 
throughout the volume. To reduce the dimensionality, FFM 
patterns were represented using wavelet bases, the 
coefficients of which were optimized using the covariance 
matrix adaptation evolutionary strategy (CMA-ES) 
algorithm. The optimization was performed for a mid-
frequency discrimination task involving a cluster of micro-
calcifications in an abdomen phantom. The task-driven 
design yielded FFM patterns that were significantly 
different from traditional strategies proposed for FBP 
reconstruction. In addition to a higher minimum d’ 
consistent with the objective function, the task-driven 
approach also improved d’ to a greater extent over a larger 
area of the phantom. Results from this work suggests that 
FFM strategies suitable for FBP reconstruction need to be 
reevaluated in the context of MBIR and that a task-driven 
imaging framework provides a promising approach for 
such optimization. 
 Index Terms—Task-based optimization, detectability 
index, model-based reconstruction, fluence field 
modulation, CT 

I. INTRODUCTION 
Computed tomography plays an invaluable role in diagnostic 

imaging, yet increased usage and public concern about risk 
associated with ionizing radiation has motivated a large body of 
research in dose reduction techniques. [1] Among such efforts, 
there has been increased interest in integrating fluence field 
modulation (FFM) devices with diagnostic CT. [2]–[4] 
Compared to automatic exposure control on current scanners, 
FFM permits much greater freedom in shaping the dose 
distribution in the patient as well as satisfying more flexible 
(e.g., spatially-varying or uniform) image quality requirements 
in the reconstructed image. While previous work has 

concentrated largely on FFM designs for filtered-
backprojection (FBP) reconstruction, this work extends such 
investigation to model-based iterative reconstruction (MBIR).  

It is widely acknowledged that dose reduction techniques 
must be coupled with image quality needs [5] and that image 
performance metrics need to be defined based on the imaging 
task [6]. Towards this end, in this work, we present a task-
driven imaging approach to prospectively optimize FFM based 
on prior specification of the imaging task (e.g., based on disease 
prevalence, anatomical target, etc.) and the patient anatomy 
(e.g., from a very low dose 3D scout acquisition). This 
framework is developed for MBIR using predictors of noise and 
resolution properties that may be integrated into an expression 
for task-based detectability. We compare conventional FFM 
strategies (typically designed based on FBP reconstruction) and 
the task-driven FFM approach using a penalized-likelihood 
reconstruction.  

II. THEORETICAL METHODS 

A. Task-Driven Imaging Framework 
Task-driven frameworks have previously been used in the 

context of regularization optimization [7], tube current 
modulation [8], source-detector trajectory [9]. Figure 1 presents 
a general task-driven imaging framework. Central to the 
framework is an optimization loop to identify acquisition 
parameters ( ) and reconstruction parameters ( ) of interest 
that maximizes an objective function based on a task-based 
image quality metric - detectability index (d’).  

The mathematical form of d’ is given in Eq.1, corresponding 
to a non-pre-whitening observer model: 

     (1) 

where  and  respectively represents the local modulation 
transfer function (MTF) and noise power spectrum (NPS) in the 
reconstructed image and can be predicted by the system model. 
The MTF and NPS carry dependence on both  and the 
patient-specific measurements computed from the anatomical 
model provided by a low-dose 3D scout. In diagnostic imaging, 
the imaging task can be predefined based on suspected 
abnormalities and disease prevalence in the anatomical site to 
be imaged.  

 In these initial investigations, binary classification tasks 
were considered, where the task function, , corresponds 
to the difference between the Fourier transform of two possible 
outcomes (e.g., one signal vs. another, or signal-present vs. 
signal absent which simplifies to a detection task). 

Grace J. Gang, Jeffrey H. Siewerdsen, and J. Webster Stayman 

Task-Based Design of Fluence Field Modulation 
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Fig.1. Framework for task-driven imaging. 

B. Quadratic Penalized Likelihood Reconstruction 
The MBIR method investigated in this work adopts a 

penalized-likelihood (PL) objective whose solution is given by: 
      ,    (2) 

where  is the likelihood term,  is a roughness 
penalty, and  controls the tradeoff between the two. The 
measurements, , are assumed to be independent and Poisson-
distributed, with means given by the following forward model: 

            (3) 
where  is the number of bare-beam photons per detector pixel 
and  is the forward projection operator. We adopt a traditional 
quadratic roughness penalty with first-order neighborhood. 

C. System Model for Fast Prediction for Noise and 
Resolution  

The noise and resolution predictors for PL reconstruction are 
based on previous derivations in Refs [10], [11], [12]. Both the 
spatial resolution and noise are spatially varying in a PL 
reconstruction. Thus, the MTF, NPS, and d’ are only 
meaningful in a local context. [7] A Fourier approximation of 
the MTF and NPS is given by: 

              4(a) 

              4(b) 

where subscript j denotes voxel location and  is the j-th unit 
vector. The operator D{∙} converts its vector argument to a 
diagonal matrix and R is the Hessian matrix of the quadratic 
penalty that is independent of or .  

Since a large number of evaluations of Eq.4 and Eq.1 are 
required for optimization, several techniques were adopted to 
speed up computation.  First, using i to denote projection 
number,  is precomputed and stored for each 
projection. This expression is scaled by the appropriate  
according to a specific FFM (which determines y) and is 
summed over all projections to get . Second, 

was assumed to be independent of voxel location j, 
i.e., only one set of needs to be stored for d’ 
calculation in multiple locations. Such an assumption is 
reasonable for good angular sampling and voxel locations in the 
central plane. Lastly, instead of using the full image volume 
support for ,  is only computed and stored for a 
49×49×49 voxel VOI centered at j. The VOI size is chosen to 
be bigger than the correlation length between voxels. Since R 
is independent of or ,   only needs to be 
precomputed once and stored.   These techniques allows fast 
computation of the MTF, NPS and d’ – e.g., evaluating d’ for 
50 voxel locations requires 0.06 s.  

D. Low Dimensional Parameterization of Fluence Field  
An arbitrary fluence field could potentially be specified for 

each horizontal detector element (denoted as u) and each 
projection number (denoted as p).  Thus, a modulated fluence 
field pattern is a 2D function on  To reduce the 
dimensionality of the optimization, and to enforce smoothness 
constraints, we parameterize the fluence field (FF) using 
coefficents for a set of 2D wavelet bases, such that 

       (5) 
 This permits low-dimensional estimation of the coefficient 

vector,   Practical FFM systems are 
likely to be smoothly-varying in both u and p. That is, x-ray 
beam profiles are spatially smooth and do not change abruptly 
from angle to angle. For this reason, the basis functions, , 
were chosen to be 2D Gaussian wavelets on . In addition, 
projections traversing the same voxel that are 180o apart are 
assumed to have the same fluence to enforce a symmetric 
design in 360o rotations. An example set of wavelet functions 
are illustrated in Fig.2 with coarse sampling along both 
directions. For the actual optimization, the Gaussians are 
centered at 17 locations in u and 6 locations in p, giving a total 
of 17×6=102 coefficients.    

 
Fig.2. Wavelet bases for low dimensional parameterization of fluence field. 

E. Objective Function and Optimizer 
To optimize FFM, d’ values over multiple locations within 

the reconstruction need to be considered. There are many ways 
to formulate an objective function, e.g., maximize the mean d’, 
equalizing d’, etc. In this work, a maximin objective is used to 
maximize the minimum d’, i.e.: 

    s.t.  (6) 

where  is the coordinate vector for the 3D reconstructed image 
and represent a set of discrete points within the object over 
which d’ is evaluated. By maximizing the minimum d’, one 
guarantees a specific level of detectability in the volume. The 
optimization is subjected to a total exposure constraint (the sum 
of the barebeam fluence over all projections and detector 
locations behind the object, denoted ). Due to the non-linear, 
non-convex nature of the problem, a stochastic and derivative-
free optimizer - Covariance Matrix Adaptation Evolution 
Strategy (CMA-ES) [13] is used to solve this objective.  

III. EXPERIMENTAL METHODS 

A. Phantom and Imaging Task 
The CT scan of a cadaver abdomen was used as a digital 

phantom. The central plane is illustrated in Fig.3(a) with a large 
number of stimuli shown in Fig.3(b) inserted at locations 
randomly perturbed around a 11×16 grid. The imaging task is 
the “detection” of a calcification cluster constructed of three 
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Gaussian stimuli (width=0.8 mm) evenly distributed along the 
perimeter of a 4mm diameter circle. Specifically the task is to 
discriminate the three calcification cluster from a monolithic 
stimulus – a Gaussian with width equal to 4 mm. We enforce a 
task definition where all rotational orientations are equally 
likely (e.g. a symmetric task function). Specifically, the task 
function is equal to the Hankel transform of the Fourier 
transform of the stimulus minus the Fourier transform of the 
larger Gaussian, the result of which is plotted in Fig.3(c). 

 

 
Fig.3. (a) The abdomen phantom is based on a diagnostic CT scan of a cadaver. 
(b) The stimulus consisting of three narrow Gaussians simulating a cluster of 
micro-calcifications. (c) The Fourier domain task function corresponding to the 
discrimination of (b) from a larger Gaussian stimulus. Rotational symmetry is 
introduced to account for other orientations of the cluster.  

B. Image Simulation and Reconstruction 
A bare beam fluence of 2.5×104 to 4.5×104 photons/mm2 was 

used to simulate projection images. We considered a system 
geometry with an 80 cm source-to-axis distance and a 120 cm 
source-to-detector distance. The detector pixel size was 
1.3×1.3 mm and reconstruction voxel size was 
0.87×0.87×0.87 mm. A GPU-implemented linear projector was 
used. Penalized-likelihood reconstruction was performed using 
80 iterations of paraboloidal surrogate updates with 20 ordered-
subsets in the first 40 iterations and 1 subset in the last 40 to 
encourage convergence. 

C. Comparison with Other Strategies 
The task-driven fluence field design was compared with three 

other strategies. All strategies were subjected to the same total 
fluence constraint in Eq.6.  
(1) Unmodulated: Constant bare-beam fluence with no 
modulation as a function of either u or p. 
(2) Flat fluence on the detector (denoted as “Flat”): Extending 
the parameterization developed by Gies et al. from tube current 
modulation to FFM, the fluence field can be expressed as a 
function of the line integral, , and a scalar, , as:  

.         (7) 

When  the fluence behind the object incident on the 
detector becomes flat. This modulation pattern is attractive 
because the reconstructed image would have isotropic and 
uniform noise and resolution (hence d’) throughout the image.  
(3) Extension of the Minimum variance solution in FBP 
(denoted as “ ”): Gies et al. derived that when , 
the tube current modulation simplified from Eq.7 by tracing the 
detector elements corresponding to one voxel location achieves 
minimum variance in that particular voxel in an FBP 
reconstruction. Rather than setting a single tube current value 
per projection angle, we extend this approach to FFM by 
applying the same strategy to compute a beam shape. The third 
FFM is calculated from Eq.7 when . 

D. Image Quality Assessment 
Detectability index was computed for locations on a 11×16 

grid within the phantom (including skin line) and interpolated 
using radial basis functions to obtain a detectability map, d’(x, 
y). Reconstructions using FFM from all four strategies were 
presented for the four ROIs illustrated in Fig.3(a) for visual 
assessment.  

IV. RESULTS 
The fluence field for all three strategies are shown in Fig.4. 

The  field peaks at projections at 90º and 270º degrees 
which traverse the lateral direction of the phantom. The 

 strategy follows the same trend, but the modulation is 
smaller. Interestingly, the task-driven fluence field is the 
opposite of the previous two, with peak fluence around 0o, 180o, 
and 360o. 

This trend can be explained by the local MTF and NPS plots 
in Fig.5. (Only one location at the center of the image is shown 
for brevity.) Both the MTF and NPS are anisotropic according 
to the stastical weighting in each view and applying FFM can, 
to a certain degree, control the noise-resolution tradeoff with 
respect to an imaging task. Quadratic PL penalizes noisy data 
more heavily, resulting in MTF and NPS with almost 
complementary shapes, i.e., radial directions corresponding to 
low noise projection data has intrinsically higher resolution and 
vice versa. The task-driven approach takes advantage of this 
behavior and further enhances spatial resolution along the fx 
direction by increasing fluence in anterior-posterior views, thus 
boosting signal power [numerator of d’ in Eq.1]. Although 
noise is increased along the fy direction, the intrinsic smoothing 
of PL alleviates this effect and d’ is improved overall. 

The detectability map, d’(x, y), for the Unmodulated, Flat, 
, and Task-Driven strategies are shown in Fig.6 with the 

minimum d’ value superimposed. As expected, d’(x, y) for the 

 
Fig.4. Fluence field modulation patterns for the Flat, , and Task-Driven strategies. 
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Unmodulated strategy is the lowest at the center (minimum 
d’=0.92) and gradually increases towards the edge of the 
phantom. In comparison, the Flat field results in uniform d’ 
throughout, therefore improving d’ at the center but decrease d’ 
at the edge, with a minimum (uniform) d’ of 1.25. The  
field has a d’ map that falls between the previous two cases with 
a minimum d’ of 1.06. Relative to the unmodulated case, d’ is 
improved for a larger area over the phantom but to a lesser 
degree compared to the “Flat” field. The task-driven approach 
achieved higher minimum d’ (=1.36) than other strategies. This 
is consistent with the maximin objective, according to which 
the rank order follows Task-driven > Flat >  > 
Unmodulated. The task-driven d’(x, y) is almost uniform within 
the ribcage where the optimization was performed, suggesting 
that there is more than one solution that can achieve uniform d’. 
In addition to a higher minimum d’, the task-driven case also 
achieved a higher d’ at every location compared to the Flat field, 
and improved d’ in a large area around the center of the 
phantom compared to the Unmodulated and  strategies.  

 

 
Fig.5. The local MTF (top row) and NPS (bottom row) at the center of the 
reconstruction for the four FFM strategies. 
 

Trends in d’ are generally supported by the reconstructions 
shown Fig.7 using the four FFM strategies (columns) for the 
four ROIs (rows) in Fig.3(a). In both the Unmodulated and 

reconstructions, the imaging task (i.e., distinguish the three 
separate dots) is visibly easier to perform at the edge of the 
phantom (left side of ROI 1, upper right corner of ROI 3) than 
the center (ROIs 2 and 4). The Flat and Task-driven FFM, on 
the other hand, achieve relative uniform performance across all 
four ROIs. Comparing across strategies, on the edge of the 
phantom, the imaging task is the easiest to perform in the 
unmodulated strategy compared to all others. An example 
stimulus is marked by the yellow arrow in ROI 1. As one moves 
towards the right of ROI 1 (i.e., towards the center of the 
phantom), the Unmodulated reconstruction starts to deteriorate 
and the task-driven strategy starts showing greater performance 
as seen by the stimulus indicated by the red arrow. At the center 
of the phantom (ROIs 2 and 4), the task-driven strategy 

outperforms the rest, followed closely by the Flat field. Both the 
unmodulated and  strategies fall short in these regions. 
Example stimuli are indicated in ROIs 2 and 4.  

 
Fig.7. Reconstructions using fluence field modulation from the four imagine 
strategies (columns) in four ROIs (rows) in the abdomen phantom illustrated in 
Fig.3(a). 

V. DISCUSSION AND CONCLUSIONS 
This work presented FFM optimization for MBIR within a 

task-driven imaging framework. For the mid-frequency task in 
this investigation, the task-driven approach outperformed 
conventional strategies originally proposed for FBP 
reconstruction and yielded unconventional modulation patterns.  
This suggests that imaging strategies suitable for FBP needs to 
be reevaluated in the context of MBIR and the task-driven 
imaging framework provides a promising approach in 
optimizing imaging performance.  
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Abstract— X-ray computed laminography (CL) is widely used 

in nondestructive testing (NDT) for laterally extended flat objects. 
In this study, we have developed a benchtop system for computed 
laminography which can accommodate various scanning 
trajectories: single-arc, double-arc, oblique, and spherical 
sinusoidal scanning methods for example. We have particularly 
investigated oblique vs. spherical sinusoidal scanning in this work 
in the sparse sampling context to reduce radiation damage to the 
imaged object. We scanned a RAM card at only 20 views, and 
reconstructed CL images by using a constrained TV-minimization 
iterative algorithm. The reconstructed images on the in-planes 
showed comparable image quality. However, the images along the 
depth direction showed considerable differences.   
 

I. INTRODUCTION 
ONDESTRUCTIVE testing (NDT) including x-ray imaging is 
becoming more important in modern industry along with 

high density integration of electronic circuits or with 
volumetric structuring of micro-components. Classical 2D 
x-ray inspection would find limited applications in such fields 
because of the confounding effects of the constituent objects on 
the projection images, and thus 3D information would be 
desirable.  Computed tomography (CT) indeed is in active use 
for various industrial NDT. For the laterally extended objects, 
conventional CT may not be useful because of the poor 
penetration power of x-rays along the lateral direction. 
Therefore, accurate tomographic image reconstruction of such 
object is challenging. X-ray computed laminography (CL) 
provides high resolution in-plane images with depth images of 
limited quality for the laterally extended objects [1-3]. CL takes 
projections only within an accessible range of penetration and 
produces quasi-3D image information. 

Devices in the electronic industry, such as microchips for 
cell phones, are going through miniaturization and high-density 
packaging [4]. During inspection, undesirably long x-ray 
exposure and high radiation dose may lead to damages or 
failure to the devices [5]. Therefore the reduction of radiation 
dose is becoming important in x-ray CL for such applications 
[6]. One way to reduce radiation dose to the object is to limit 
scanning angle. However, the image quality with limited angle 
scan was shown to be inferior to the ones with conventional CL 
that completes a full circular scan [7]. 
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In our previous work [10], we proposed a new scanning 
scheme namely a spherical-sinusoidal scan for the NDT of 
radio-sensitive flat objects, and performed a simulation study to 
compare four scanning configurations: single-arc, double-arc, 
oblique, and spherical- sinusoidal. The schematic illustrations 
of the scanning configurations are shown in figure 1. An 
oblique CT, i.e., a conventional CL configuration, is heavily 
used for scanning of laterally extended objects in the industrial 
inspection area. Spherical-sinusoidal scan trajectory is similar 
to the oblique scan except that the source to the rotation axis 
distance keeps rocking in a sinusoidal pattern with respect to 
the source rotation angle. The proposed scanning scheme 

Computed Laminography System with Various 
Scanning Configurations for Nondestructive Testing 

Miran Park, Ho Kyung Kim, and Seungryong Cho 

N 
 

 

Fig. 1: Four scanning schemes performed using laminography benchtop 
system : (a) arc (b) double are (c) oblique  (d) spherical sinusoidal. 

 
 

Fig. 2: Laminography benchtop system. This consists of an X-ray source, a tilt 
motor, a rotation stage, and a detector. 
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demonstrated its outperformance to the conventional CL 
scanning schemes in terms of image contrast and accuracy in 
the context of sparse sampling for low-dose scan. 

In this work, we focus on our fabrication of a CL benchtop 
system which can perform various scan trajectories, especially 
oblique and spherical sinusoidal scan schemes.  We 
implemented a total-variation minimization algorithm for 
image reconstruction from only 20 projections. Image quality 
comparison was made in a qualitative way in this work.  

 

II. MATERIALS AND METHODS 

A. Imaging System and Data collection 
The laminography benchtop system consists of an x-ray 

source, a detector, a tilt motor, and a rotation stage. The rotation 
stage is held by the tilt motor, and can tilt in a certain angle; the 
maximum tilt angle in our system is 30 degree. In scanning 
system, the source and detector are stationary while the object 
is tilting or rotating in a way that can produce such a scanning 
geometry in the object-fixed coordinates. The source position 
always faces normal to the detector surface.  

The detector was placed 439 mm away, and has 2352 2944 
pixels which binned by a factor of 2 into 1176 1472 in this 
study. The binned pixel size is 0.99 0.99 . The x-ray tube 
voltage and current were set to 70 kVp and 0.3 mA. 

In this study, we acquired the data using oblique and 
spherical sinusoidal scan scheme. For two oblique scans, the tilt 
angles were set in 30 degree and 20 degree, respectively. For 
sinusoidal scan, the maximum tilt angle and minimum tilt angle 
were 30 and 10 respectively, and it had 5 cycles. 

A stacked set of random-access memory (RAM) cards was 
scanned using our system. The object was placed 189 mm away 
from the x-ray source. The 20 projection-views are all 
uniformly distributed over the angular range. The 
step-and-shoot rotation mode was used to acquire projections.  

 

B. Reconstruction Methods 
For image reconstruction, CS-inspired adaptive-steepest 

-descent projection-onto convex-sets (ASD- POCS) algorithm 
[8][9] was implemented and we will refer that to total- variation 
(TV) minimization algorithm. In this work, it needs to be noted 
that TV was not used as a denoising regularization, but was 
used to seek an optimum image solution among the set of 
possible images which satisfy the data consistency constraint. 

To do so the TV minimization algorithm minimizes the  − 
norm of magnitude of image derivative and finds the solution to 
the following: 

 
where is the solution of the optimization problem 

constrained by data fidelity. Data fidelity term insures that the 
difference between calculated projection data  and 
measured projection data  should be less than δ. The value of 
δ can be found empirically.  

The TV minimization algorithm is composed of two steps. 
First step is projection-onto convex-sets which respects the data 
fidelity and image pixel positivity condition. The second step is 
adaptive-steepest-decent operation to find the minimum-TV 
image. The optimization algorithm that was utilized for 
minimizing the image TV is gradient decent method. In an 
attempt to move toward the minimum image TV value, in each 
TV step gradient decent method calculates the gradient vector 
by taking the derivative of the image TV. 

 

III. RESULT 
In figure 4 and 5, there are the reconstructed images, which 

are along the in-plane and depth direction respectively, with 
oblique and spherical sinusoidal scan using 20 view-projections. 
Also line profile graphs are shown in figure 6 and 7. The image 
resolution and contrast are visually comparable in all the 
in-plane slice images and line profiles with different scanning 
configuration. It can be also noticed that the images 
reconstructed from the data at only 20 views by all the scanning 
schemes are in a good agreement. The solder balls and small 
components of RAM card have confined structures in figure 4. 

The images along the depth direction in figure 5 do not show 
clear structure of solder balls. Even if the solder balls can be 
detected, their shapes are elongated and distorted. 

However the spherical sinusoidal scan, or our proposed 
scheme, produced slightly higher contrast of the solder balls. 
Higher contrast of the image is observed in the line-profile of 
spherical sinusoidal scan. The graph of figure 6 is the line 
profile of horizontal red dotted line of figure 5. The background 
value of spherical sinusoidal is lower than other scan schemes. 
And the graphs of figure 7 which is the line profile of vertical 
red dotted line of figure 5 show the spherical sinusoidal scan 
(black solid line) has higher contrast.  

 

     
 

Fig. 3: The scanned object for laminography scanning test. A stacked 
set of RAM cards was used. 

 

Fig. 4:  In-plane slice image through reconstructed image. (from left to right) 
spherical sinusoidal, oblique tilted  with 30 degree, and oblique tilted  with 20 
degree 
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IV. DISCUSSION 
We focus on the contrast of reconstructed images along 

depth direction. Overall image qualities are comparable 
between oblique and spherical sinusoidal scan scheme. As 
previous simulation study has demonstrated [10], spherical 
sinusoidal scan is supposed to provides higher data incoherence 
[11]. Therefore it is considered to provide higher contrast than 
oblique scans along the object depth direction. 

Besides, a certain pattern can be seen in images from oblique 
scan scheme in figure 5. The streak formed an angle which 
identical with the tilt angle and those artifacts may interrupt the 
inspection of objects. However, during data acquisition using 
spherical sinusoidal scan, the tilt angle of rotation stage is 
varying in order to change the distance between the source and 
rotation axis. Repetitive tilt angle adjustments may cause a 
geometrical error. The effect of system instability will be 
investigated in our future study using a calibration phantom.  

 

V. CONCLUSION 

In this study, we have developed a benchtop system for 
computed laminography which can provide various scanning 
trajectories: the single-arc, the double-arc, the oblique, and the 
spherical sinusoidal scanning methods. We scanned a RAM 

card with oblique and spherical sinusoidal scans. The images 
were reconstructed from only 20 views using constrained  
TV-minimization algorithm. The reconstructed images along 
the in-plane direction with different scanning methods showed 
comparable image quality. However, none of the images along 
the depth direction indicated defined structures because of 
incomplete data set. In conclusion, our benchtop system can 
provide a low-dose computed laminography with various scan 
trajectories. Moreover, the spherical sinusoidal scan produce 
higher contrast image than other scans. Further investigations 
will focus on improving depth resolution of reconstructed 
images.  
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Fig. 7: The line profiles of vertical red dotted line of figure 5 which indicate depth direction. The spherical sinusoidal (black solid line) has higher contrast than
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Fig. 5: Depth slice image through reconstructed image. (a) spherical 
sinusoidal scan (b) oblique scan tilted  at 30 degree (c) oblique scan tilted at 
20 degree scan 
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Fig. 6: The line profiles of horizontal red dotted line of figure 5.
(a) Spherical sinusoidal scan (b) oblique scan tilted  at 30 degree (c) oblique 
scan tilted at  20 degree scan 
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Optimization-based Reconstruction from
Megavoltage Cone-beam CT Data in Image Guided
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Abstract—The megavoltage (MV) beam of the linear acceler-
ator (LINAC) for treatment purpose in radiation therapy can
also be used to perform cone-beam CT (CBCT) imaging for
possibly yielding online information of the tumor under radiation
treatment. MV-CT images generally pose relatively low contrast-
to-noise ratio (CNR), and most importantly, MV-CT dose to
the patient remains a concern. In this work, we investigated
optimization-based reconstruction for potentially improving MV-
CT-image quality in terms of CNR and for potentially lowering
MV-CT imaging dose through the collection of data at views con-
siderably sparser than those in current CT imaging applications.
We have carried out the investigation by use of data acquired
from a Catphan phantom under various imaging conditions of
practical implication. Results of our investigation indicate image-
quality improvement in terms of noise reduction and contrast
enhancement without sacrificing the spatial resolution compared
to the conventional FDK reconstruction, suggesting that it may
be possible to obtain images of practical utility in terms of
tumor localization and delineation from low-dose MV-CT images
reconstructed from sparse-view data by use of optimization-based
reconstruction.

I. INTRODUCTION

The on-board kilo-voltage (KV) cone-beam computed to-
mography (CBCT) imager has been demonstrated to be some
utility in image guided radiation therapy (IGRT). Interest exists
in exploiting, in addition to on-board KV-CBCT imager, the
treatment megavoltage (MV) beam of the linear accelerator
(LINAC) to perform CT imaging for possibly yielding online
information about the tumor under radiation treatment [1].
The MV-CT imaging approach is attractive because it is easy
to implement with minimum hardware modification to the
LINAC. MV-CT images generally pose relatively low contrast-
to-noise ration (CNR) [2]. Most importantly, with the current
scanning configuration, the MV beams at a large number
of views may deliver significant amount of radiation dose
in addition to the treatment dose, and thus MV-CT dose to
the patient remains a concern. In this work, we investigated
optimization-based reconstruction for potentially improving
MV-CT-image quality in terms of CNR and for potentially
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Department of Radiology, The University of Chicago, Chicago, IL 60637,
USA.
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lowering MV-CT imaging dose through the collection of data
at views considerably sparser than those in current CT imaging
applications. We have carried out the investigation using an
optimization-based reconstruction method from data acquired
in real-data studies with a Catphan phantom under various
imaging conditions of practical implication. Specifically, in
the study, we have tailored the adaptive-steepest-descent-
projection-onto-convex-sets (ASD-POCS) algorithm [3], [4] to
reconstruct MV-CT images from data collected. Our previous
work has demonstrated that the ASD-POCS algorithm may
yield images with reduced noise, improved soft-tissue-contrast,
and enhanced spatial resolution from on-board KV CBCT data,
as compared to the clinical FDK reconstructions [5]. Results of
our investigation indicate image-quality improvement in terms
of noise reduction and contrast enhancement without sacrific-
ing the spatial resolution compared to the conventional FDK
reconstruction, suggesting that it may be possible to obtain
images of practical utility in terms of tumor localization and
delineation from low-dose MV-CT images reconstructed from
sparse-view data by use of optimization-based reconstruction.

II. MATERIALS AND METHODS

A. Data acquisition

In this work, we collected data with a Varian TrueBeam
system, equipped with an MV flat-panel detector consisting
of 1280 x 1280 pixels and a pixel size of 0.336 x 0.336 mm.
The MV imager uses a GOS scintillator material. The system
was set up to deliver a 6 MV photon beam (6xFFF). The
beam generation was manually adapted to deliver a pulse rate
matching the MV imager frame rate of 15 fps, leading to a
dose per frame of the order of 0.05 MU (monitor units). In
this study, a Catphan phantom, which includes two modules
for contrast and spatial resolution test, was used to evaluate
the MV CBCT imaging. A circular short-scan was conducted
and 201 views projections, distributed over an angular range
of ∼200 degrees, were acquired. The total dose of the scan
represented ca. 10 MU.

B. Optimization-based image reconstruction

A discrete-to-discrete linear system is used as the imaging
model of the MV-CBCT imager:

g = Hf ,
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where vectors g and f denote the discrete data and image, and
the system matrixH describes the cone-beam X-ray transform.
The 3D image reconstruction is formulated as a constraint total
variation (TV)-minimization program [3],

f∗ = argmin||f ||TV s.t. D(f) ≤ ε and f ≥ 0, (1)

where ||f ||TV denotes the image TV and D(f) is Euclidean
data divergence between the measured data g and model data
Hf . Parameter ε > 0 is used to control the inconsistency
between the measured data and model data. Note that any
physical factors that are not modeled into the system matrix
H contribute to the inconsistencies.

The adaptive-steepest-descent-projection-onto-convex-sets
(ASD-POCS) algorithm [3] is implemented for numerically
achieving the solution specified by the optimization program
in Eq. (1). In this study, the size of image voxel is selected
to be 0.27 mm, which is close to the size of the detector bin
at isocenter. For comparison, the ASD-POCS reconstruction
was converted to rectangular-cuboid-shaped voxel of size 1.0
x 1.0 x 2.0, which is used in clinical FDK reconstructions.
In an attempt to streamline the reconstruction process, algo-
rithm parameters, such as step sizes of the POCS and TV-
minimization steps have been pre-selected for all the data sets,
and all reconstructions are terminated after 30 iteration.

III. RESULTS

We have performed image reconstruction by use of the
ASD-POCS algorithm from the 201-view data set, and the re-
constructed images within one sagittal slice and one transverse
slice with several different inserts are displayed in Fig. 1. As
a reference, clinical FDK reconstructions are also displayed in
the first row of Fig. 1.

Based upon the visual inspection, it can be observed that im-
age distortions in the FDK sagittal slice due to the combination
of the cone-beam artifacts and the short-scan is substantially
reduced in the ASD-POCS reconstruction. The noise in the
ASD-POCS reconstructions in both sagittal and transverse
slices is lower significantly than that in the clinical FDK recon-
structions. With the reduction of the noise, the fine structures
are easy to detect in a relative clean background, as the arrows
indicate in the sagittal slice. The boundaries between different
objects in ASD-POCS reconstructions appear to be sharper
and more clear, which may be potentially useful for accurate
tumor localization and delineation.

In attempt to evaluate the performance of ASD-POCS
reconstruction for less data, we have also carried out a recon-
struction from a 101-view data set, which is extracted from the
201-view data set and uniformly distributed over 200 degrees.
The reconstructed images are shown in the third row of Fig.
1. It can be observed that the ASD-POCS reconstruction from
the 101-view data set, slightly inferior to the ASD-POCS
reconstruction from the 201-view data, appears to be superior
to the clinical FDK reconstruction in term of noise reduction
and contrast improvement.

In order to quantitatively evaluate the reconstruction con-
trast, we have calculated the contrast to noise ratio:

(a)

(b)

(c)

Figure 1. Reconstructed images within a sagittal slice (left column) and a
transverse slice (right column) obtained by use of the clinical FDK algorithm
(a) and by use of the ASD-POCS algorithm from the 201-view data set (b)
and the 101-view data set (c). The display window is [-100, 200] HU.

CNR =
|f̄s − f̄b|√
σ2
s + σ2

b

,

where f̄s and σs denote the mean and standard deviation
within a region of interest (ROI), and f̄b and σb denote the
mean and standard deviation within a selected background
region. We have selected seven (ROIs) containing different
inserts and the corresponding background regions, as shown
in Fig. 2a. The CNR values obtained from the images recon-
structed with the ASD-POCS algorithm from the 201-view
and 101-view data sets are shown in Fig. 2b. Again the CNR
values obtained from the FDK reconstruction are shown in
Fig. 2b as a reference.

The CNR values obtained with ASD-POCS algorithm from
both the 201-view and 101-view data sets are in general
larger than those obtained with the FDK algorithm, which
suggests that ASD-POCS reconstructions are able to preserve
the contrast while suppressing noise, yielding a relative high
utility for a task of localizing and/or delineating the low-
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(a)

(b)

Figure 2. (a) Selected seven ROIs enclosed by the red solid circles and
the corresponding background regions enclosed by the red dash circles. (b)
CNR values obtained from the images obtained by use of the clinical FDK
algorithm (’◦’), the ASD-POCS algorithm from the 201-view data set (’�’),
the ASD-POCS algorithm from the 101-view data set (’	’).

contrast object. Moreover, the CNR values obtained from the
101-view data set is slightly smaller to those obtained from
201-view data set although the mount of data is reduced
by half. These quantitative results are consistent with our
observation made for the images shown in Fig. 1.

In order to evaluate the performance of the ASD-POCS
algorithm for the MV CBCT imaging in terms of spatial reso-
lution, the reconstructions within the transverse slice with bar
patterns are displayed in Fig. 3. For the sake of examination
of details, ROI images enclosed in the white box of the left
column, are displayed in the right column of Fig. 3. It can be
observed that the image obtained with ASD-POCS algorithm
from the 201-view data set is visually comparable to that
obtained with the clinical FDK algorithm in terms of spatial
resolution, and the image reconstructed from the 101-view data
set is slightly worse.

We also investigated the evolution of reconstruction as a
function of the iteration number. We show in Fig. 4 the
reconstructed images within a sagittal slice obtained by use
of the ASD-POCS algorithm from the 201-view data set at
iterations 5, 10, 20, and 30. It can be observed that the
reconstruction at early iterations, e.g., iterations 5 and 10,
shows the structures with high noise level. Some cone-beam

(a)

(b)

(c)

Figure 3. Full images (left column) and ROI images (right column) with bar
patterns obtained by use of the clinical FDK algorithm (a) and by use of the
ASD-POCS algorithm from the 201-view data set (b) and the 101-view data
set (c). The display window is [-100, 800] HU.

artifacts, such as dark streaks on the top of the phantom,
can also be observed in the early iterations. As the iterations
progress, the noise is suppressed due to the TV constraint,
the boundary becomes clear, and the cone-beam artifacts are
reduced, as indicated by the red arrows.

IV. CONCLUSIONS

In this work, we have investigated the use of optimization-
based reconstruction algorithm, ASD-POCS algorithm, for
image reconstructions from MV CBCT data in IGRT. The
reconstructions were carried out from the 201-view and the
101-view data sets. The results indicate possible image-quality
improvement in terms of noise reduction and contrast enhance-
ment without sacrificing the spatial resolution as compared
to the conventional FDK reconstruction. The work may have
implication for the development of MV-CBCT imaging of
possible practical utility for tumor localization and delineation
tasks, enabled by optimization-based reconstruction algorithms
tailored to the tasks.
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Figure 4. Images within a coronal slice in the reconstruction obtained by use
of the ASD-POCS algorithm at different iterations. The iteration number is
indicated in each panel. The display window is [-100, 200] HU.
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X-Ray Tomography Based on 3D Radon Transform Compatible with

Anisotropic Sources
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X-ray tomography based on two-dimensional Radon transform is a well-established technique used to map out the three dimensional
structure of extended objects in a non-destructive manner. Towards nanoscale resolution with two-dimensional Radon transform
based tomography, high brilliance sources are required which are not available in the laboratory. We have recently proposed a new
tomography method based on the three-dimensional Radon transform [1] which allows a relaxation of the high brilliance condition
within one of the two source dimensions. Here, we review this approach and present additional information on the underlying
mathematics. We could show that the so-obtained experimental scheme allows us to record three-dimensional data with isotropic
resolution at an anisotropic laboratory source.

I. INTRODUCTION

Recently, we have proposed a new x-ray tomography
method based on three-dimensional (3D) Radon transform
compatible with anisotropic sources [1]. Here we review this
work and present additional information on the underlying
mathematics along with more details on the experimental
implementation.

Computed tomography (CT) with hard x-rays [2]–[6] offers
a unique capability to non-destructively map out the 3D struc-
ture within the interior of a body or material, owing to a unique
penetration power and a quantitatively accountable contrast
formation. A persistent challenge for tomography applications
with high resolution and/or phase contrast is the required
brilliance of the radiation source, impeding applications to be
carried out with readily available laboratory sources.

We showed that by suitable generalization of the tomo-
graphic measurement geometry as well as the corresponding
framework of object reconstruction, some of the present limita-
tions can be lifted. In particular, one can significantly relax the
brilliance or source size in one of the two source dimensions.
To this end, we replace the conventional framework of the
2D Radon transform (2DRT), which to date is the common
basis for analytical x-ray CT, including micro- and nano-CT,
with the 3DRT. By proper extension of the data recording
scheme, and within controlled geometrical approximations
with quantitative error bounds (L. M. Lohse, M. Vassholz,
T. Salditt, unpublished), the area integrals required for the
3DRT can be realized experimentally. Thereby, the measure-
ment and reconstruction are made compatible with source
properties which can be relaxed along one dimension (the
’low-resolution direction’), while the beam properties along
the ’high-resolution direction’ determine the resolution and
contrast of the entire 3D object reconstruction.

For illustration of the 3DRT measurement and reconstruc-
tion, consider the geometry with anisotropic source as sketched
in Fig. 1(a). In essence, the 3DRT requires area integrals over
a set of parallel planes through the object, and yields one-
dimensional (1d) curves gθ,φ(s) along the normal of the planes
s. Normal vectors n̂θ,φ have to be sampled on the unit sphere,

*mvassho@gwdg.de
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Fig. 1. Schematic of a particular realization of a generalized tomography
geometry based on the 3DRT. (a) The tomographic rotation axis is successively
tilted by an angle θ with respect to the laboratory y axis, while the object
is rotated around this axis by an angle φ. Two-dimensional (2D) projection
data is acquired and integrated along x, i.e. along the direction suffering
from poor resolution and coherence. (b) Illustration of the 1d signal gθ,φ(s),
corresponding to an integral over parallel planes through the object. (c) Sketch
of the coordinate system r = (x1, x2, x3) in 3, to which we will refer as
the sample coordinate system. The unit vector n̂φ lies in the x1-x2 plane.
The direction of n̂φ is given by the angle φ between the x2-axis and n̂φ.
The unit vector n̂θ,φ lies in the x3-n̂φ plane. Its direction is given by the
angles φ and θ, corresponding to the angles of spherical coordinates. Further,
we define a second coordinate system (x, y) rotating with the angle φ such
that the x-axis is parallel to n̂φ and the y-axis stays parallel to the x3-axis.
To this coordinate system we will refer as detector coordinate system.
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as described by the 3DRT operating on the object function
f(r), r ∈ 3

gθ,φ(s) = (Rf)(n̂θ,φ, s) :=

∫
3

d3xf(r)δ(r · n̂θ,φ − s), (1)

where R denotes the operator of the Radon transform. Hence,
the 3DRT is based on integrals over planes rather than integrals
over lines, as the 2DRT. A simple approach how to obtain an
area integral gθ,φ(s) from a projection image is to integrate
the measured 2D image along the low-resolution direction of
the source.

II. DATA ACQUISITION

To obtain 3DRT data from x-ray projections, the 3DRT is
synthesized by two consecutive 2D Radon transforms. In this
section we will refer to the coordinate system as defined in
Fig. 1(c). As in conventional 2DRT-based tomography, the first
2DRT is performed by the x-ray projection of the sample f(r)
for different angles φ, yielding a set of projections f̄φ(x, y).
A consecutive 2DRT of the x-ray projections f̄φ for a set of
angles θ results in the 3DRT f̂θ,φ(s). Formally, the 2DRT of
the x-ray projection f̄φ is given by

(R2Df̄φ)(s, θ)

=

∫
dx
∫

dy f̄φ(x, y) δ(s− x sin θ − y cos θ)

=

∫
dx1

∫
dx2

∫
dx
∫

dy f(x1, x2, y)

· δ(x− x1 sinφ− x2 cosφ) · δ(s− x sin θ − y cos θ).

By rearrangement of the integrals, the latter equation yields
the 3DRT f̂(s, φ, θ) of f(r):

(R2Df̄φ)(s, θ)

=

∫
dx1

∫
dx2

∫
dy f(x1, x2, y)

·
∫

dx δ(x− x1 sinφ− x3 cosφ)

· δ(s− x sin θ − y cos θ)

=

∫
dx1

∫
dx2

∫
dy f(x1, x2, y)

· δ(s− (x1 sinφ+ x3 cosφ) sin θ − y cos θ)

=f̂(s, φ, θ).

Thus the 3DRT of a sample can be experimentally obtained
by the x-ray projection of the sample and a consecutive 2DRT
in the detection plane. A similar derivation was used by A. V.
Bronnikov to derive a phase reconstruction scheme for 2DRT-
based tomography [7], [8], and in electron tomography for
angular refinement [9].

The acquisition scheme for 3DRT data from x-ray experi-
ments is sketched in Fig. 2. In order to make the tomography
scheme robust to anisotropic imaging conditions, the sample
is rotated by θ (cf. Fig. 1(a)) and the consecutive 2DRT in the
detection plane is only performed within a small intervall Δθ
of angles around the high resolution direction, as depicted in
Fig. 4(a).
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Fig. 2. From data acquisition to the reconstructed volume: a set of x-ray
projections is acquired for a discrete set of angles {(θi, φi)}. The acquired
intensity distributions are flat-field corrected and logarithmized, yielding a
set of projected absorption images (a). Each of this absorption distribution is
summed along the low-resolution direction of the imaging system, x in this
case, yielding the discrete 3DRT of the absorption. (b) shows the sinogram
equivalent for 3DRT data with the spatial coordinate y along the vertical and
the projection index i along the horizontal. The corresponding angles θi and
φi are shown below the sinogram. (c) by 3DRT filtered back projection, the
sample volume is reconstructed.

III. RECONSTRUCTION SCHEME

For the reconstruction of the 3DRT data the filtered back
projection (FBP) is used. In 3D the FBP is formally described
by

f(r) = −1

2
(2π)−2

(
R#

3D∂
2
s (R3Df)

)
(r), (2)

where R3D denotes the 3DRT and R#
3D the 3D back projection

operator [10]. Thus, the reconstruction scheme consists of
the following steps: (1) filter the 3DRT data by its second
derivative and (2) back project the filtered signal in 3D. The
back projection in 3D is implemented by two consecutive
2D back projections, analogously to the data acquisition. The
reconstruction scheme is sketched in Fig. 3 for discrete data.

IV. EXPERIMENTAL DATA

To test the compatibillity of the method with anisotropic
source conditions, we chose a setup based on a sealed tube
(DX-Mo10x1-P, GE-SEIFERT, Germany) with Molybdenum
target and a pixelated detector with 55 μm pixel size (Timepix
Hexa H05-W0154, X-RAY IMAGING EUROPE, Germany), po-
sitioned at a distance of z01+z12 = 253.7 cm from the source.
The x-ray beam of the sealed tube with a source spot size of
1mm × 1mm was further confined by slits with an opening
of 5mm × 0.1mm (h×v) to emulate an anisotropic source
spot. A peeled hazelnut was chosen as object, positioned at
z01 = 173 cm behind the source, fitting to a field of view of
450 × 450 detector pixels. The data set consists of 8001 x-
ray projections for different pairs of (θ, φ), chosen to evenly
sample the unit sphere [11]. Fig. 4(a, b) show 2D projections
of the hazelnut for θ = 90◦ (a) and θ = 0◦ (b), while keeping φ
constant. In (a) the side walls of the nut, and in (b) the top and
bottom walls are imaged with sharp edges, corresponding to
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Fig. 3. Filtered back projection for 3DRT data: Starting from the sinogram
(a), each line profile (b) is filtered and afterwards back projected in a 2D
plane for the corresponding angle θi (c). In a last step, the so-obtained 2D
image is back projected in 3D space using a stacked 2D back projection for
the angle φi (d). By superposition of the back projections of each line profile,
the volume is reconstructed.
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Fig. 4. Experiment: isotropic ’filling’ of the 3D Fourier space by the 3DRT.
Projection images of the hazelnut are shown for θ = 90◦ (a) and θ = 0◦
(b), but constant φ. In (a) sharp edges are transferred at the side walls of
the hazelnut, corresponding to the high-resolution direction of the source,
while the top and the bottom walls are blurred, while (b) shows opposite
behavior. Application of the 3DRT-FBP reconstruction on the anisotropically
blurred projection images yields isotropic resolution, see the re-projection
of the reconstructed volume (c) (for the same φ as (a, b)). The PSDs (d-
f) corresponding to (a-c) quantify this effect. While in (d, e) the signal
extends over a large range in the vertical direction but decays rapidly along
the horizontal direction, the signal is isotropically distributed up to high
Fourier components in (f). In (a) the vectors n̂⊥θ indicate the direction of
projection for the consecutive 2DRT. According to the Fourier slice theorem
these projections correspond to the central slices in the Fourier space indicated
by the dashed lines in (f). Scale bars: 3 mm in (a-c), 3mm−1 in (d-f). (image
reference [1])

the respective high-resolution direction. Correspondingly, (a)
shows blurred top and bottom edges, and (b) shows blurred
side walls, proving the anisotropic source imaging conditions.
A re-projection of the reconstructed volume is shown in (c)
for the same angle φ as in (a, b). The reconstruction shows

0 1 2

a) b)

c) d)

3d
RT

3d
RT

2d
RT

2d
RT

Fig. 5. Slices through an horizontal and a vertical plane of the reconstructed
hazelnut volume, shown for the 3DRT-FBP (a, c), and the conventional
2DRT reconstruction (b, d). While the 3DRT is compatible with the source
anisotropy, the image quality of the 2DRT reconstruction is severely affected
by the anisotropic source. In (a), even the fine details of the wood stick used
to mount the hazelnut are well represented (see arrow). Scale bar: 3 mm.

isotropic resolution. The PSDs (d-f) corresponding to the
projections (a-c) quantify the isotropic resolution gain. For the
3DRT reconstruction, from each of the 8001 anisotropically
blurred projection images, 81 1d data sets were computed
by evaluating the 2DRT in a sector of ±10° along the high
resolution direction, as indicated by the arrows n̂θ in Fig. 4(a).
Fig. 5 shows orthogonal slices through the reconstructed object
for the 3DRT (a, c) and the 2DRT (b, d) reconstruction of
the hazelnut. The comparison clearly shows that the 3DRT
provides superior image quality with high resolution in all
planes.

V. CONCLUSION

As published in [1], we have shown that the novel data
recording and reconstruction scheme presented here can ac-
commodate anisotropic sources, translating the properties of
the high-resolution direction (small source size, high partial
coherence) isotropically to the full 3d data set. To this end,
the object has to be rotated around two axes with a continuous
sampling of the unit sphere, which can be obtained in different
geometric ways. By geometric means, one can thus escape the
flux dilemma for nanoscale tomography at laboratory sources.
Apart from spatial resolution, the concept helps to meet a
second challenge in analytical x-ray tomography, namely the
requirement of sufficiently high spatial coherence to achieve
phase contrast.

Finally, we want to mention an entirely different motivation
for using 3dRT-based tomography instead of the conventional
2dRT tomography. It can be shown mathematically, that the
3dRT has local properties in the sense that the reconstruction
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depends only on the local values s of the Radon transformed
object function (Rf)(s) (and its derivatives), significantly
facilitating local (ROI) tomography by avoiding the artifacts
induced by object components outside the reconstruction vol-
ume moving in and out of projections, as commonly observed
in 2dRT tomography. While the mathematics of this important
difference has been pointed out before [12], it was previously
believed that by the nature of the x-ray projection images,
only the 2dRT case is experimentally relevant. Here we have
shown by a proof-of-concept experiment, that the assumptions
and geometrical conditions for area integrals can actually be
reached at relevant conditions for analytical x-ray tomography.

ACKNOWLEDGMENT

We thank the German Research Foundation (DFG) through
SFB 755/C1 for funding.

REFERENCES

[1] M. Vassholz, B. Koberstein-Schwarz, A. Ruhlandt, M. Krenkel, and T.
Salditt Phys. Rev. Lett. 116, 088101 (2016).

[2] A. C. Kak and M. Slaney, Principles of computerized tomographic imag-
ing (IEEE, New York, 1988).

[3] T. Buzug, Computed Tomography : From Photon Statistics to Modern
Cone-Beam CT (Springer-Verlag, Berlin Heidelberg, 2008).

[4] P. Cloetens et al. PNAS 103, 14626 (2006).
[5] F. Pfeiffer, C. Kottler, O. Bunk, and C. David Phys. Rev. Lett. 98, 108105

(2007).
[6] M. Stampanoni, R. Mokso, F. Marone, J. Vila-Comamala, S. Gorelick, P.

Trtik, K. Jefimovs, and C. David, Phys. Rev. B 81, 140105 (2010).
[7] A. Bronnikov J. Opt. Soc. Am. A 19, 472 (2002).
[8] A. Bronnikov Opt. Commun. 171, 2394 (1999).
[9] M. Radermacher Ultramicroscopy 53.2, 121-136 (1994).
[10] F. Natterer, The mathematics of computerized tomography (SIAM,

Philadelphia, 2001).
[11] E. A. Rakhmanov, E. B. Saff, and Y. M. Zhou Math. Res. Lett. 1, 647

(1994).
[12] A. G. Ramm and A. I. Katsevich, The Radon Transform and Local

Tomography (CRC Press, Boca Raton, 1996), p. 31.

The 4th International Conference on Image Formation in X-Ray Computed Tomography

422



Design and Evaluation of a Parallel and
Multi-Platform Cone-Beam X-Ray Simulation

Framework
Estefania Serrano∗, Javier Garcia Blas∗, Ines Garcia†‡,Claudia Molina†‡,Jesus Carretero∗, Manuel Desco†‡

and Monica Abella†‡
∗Computer Architecture and Technology Area, University Carlos III, Madrid, Spain

Email: esserran@inf.uc3m.es
†Bioengineering and Aerospace Engineering Department, University Carlos III, Madrid, Spain

‡ Instituto de Investigacion Sanitaria Gregorio Marañon, Madrid, Spain

Abstract—The development of new flexible X-Ray systems and
the exploration of new reconstruction algorithms benefits from
the use of computer simulations due to the elimination of the
high cost of implementing new acquisition protocols in the actual
physical systems. We present a Cone-Beam X-Ray Simulation
Framework created with the objective of being flexible and
fast, maintaining the compatibility with existing GPUs (CUDA
and OpenCL). An optimized execution in different systems is
achieved by a modularized implementation by means of a layered
architecture and the parallel implementation of the algorithms.
We provide a general description of each of the layers, from
the algorithm layer at the bottom, with the basic kernels, to
the architecture layer at the top, with the different systems
configurations that can be executed by the user. We describe the
optimizations carry out at each layer in terms of computation and
memory management. Finally, we present performance results for
different system configurations and hardware platforms.

Index Terms—Backprojection, GPU, parallel processing, pro-
jection, simulation, tomography, X-ray

I. INTRODUCTION

THE AVAILABILITY of digital X-Ray detectors and
new flexible geometrical configurations open the door to

obtain tomographic images in new clinical contexts using new
system configurations, different from the standard CT systems.
The exploration of new protocols can benefit from computer
simulations due to the reduction of the high cost of the study
using real systems.

Several simulators accelerated with GPGPUs (General Pur-
pose Graphical Processing Units) have already been presented.
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IACI CT Simulator [1] and CT Sim [2] are CT simulators
targeted to teaching purposes. These examples do not allow
flexible geometry configurations and are limited by the type
of studies that can be simulated. X-Ray Sim [3] offers similar
features as our work, also accelerated by GPU. However, it
is based on the projection of digital CAD (Computer Aided
Design) models, not on real acquired images, and does not
include reconstruction algorithms. Another example is the
toolkit ASTRA [4], which provides a solution that can be used
to develop advanced reconstruction algorithms, but it is limited
to datasets that fit completely in the memory space of a GPU.
Furthermore, it lacks of options for standard configurations
like helical CT or tomosynthesis.

CUDA and OpenCL programming models have already
been used in previous works for the reconstruction of 3D
medical imaging. Examples are the works presented in [5] and
[6]. In the last one, Siegl et al. studied the usage of OpenCL
for high- performance medical image reconstruction by using
RabbitCT [7] as a bench-marking platform for CT reconstruc-
tion algorithms implemented in OpenCL. They proved that the
use of the standard programming model available for different
platforms does not penalize the performance excessively, being
able to run on different architectures with a loss of around 10

In this work, we present a simulator framework optimized
through the use of GPUs, built around different layers. This
layer-based architecture permits the fast construction of new
X-Ray configurations as well as new flexible reconstruction
methods. Another feature is its compatibility with differ-
ent system setups. We detail the parallelization techniques
employed for the framework acceleration and we present
an evaluation comparing different system setups over three
programming models.

II. SIMULATION FRAMEWORK

The Simulation Framework includes several abstraction
layers that allow the creation of new configurations based on
basic kernels. The general structure of this framework is shown
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in Figure 1. We distinguish four main layers, explained in the
following subsections.

Simulator Overview
Configuration Layer

Common API
Backprojection Projection Platform management
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Fig. 1. Overview of the Simulator tool and all its layers.

A. Algorithms layer

This layer contains the minimal execution units, based
on the conventional algorithms for data interpolation: ray
driven and distance driven for projection and voxel driven and
distance driven for backprojection. These algorithms, based
on the Cone-Beam geometry (as shown in Figure 2) are
the most time consuming parts. For this reason, this layer
is were most of the optimizations were made, including the
source code parallelization and its implementation in different
programming models.

1) Ray Driven and Voxel Driven parallelism: For CUDA
and OpenCL implementations, the minimal execution unit
that is executed in parallel is the iteration over the v axis.
Each of the parallell executions are identified then by the
other coordinates: u and z, in the case of the voxel driven
algorithm, and s and z in the ray driven algorithm. The
parallelism resides in the data independence of each execution,
consisting in the voxel or pixel values. This approach has been
taken previously in other works for similar applications with
good results [8]. The output is stored in the global memory
space of the GPU, meanwhile the input data (projections or
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Fig. 2. Basic projection and backprojection configuration. Source, volume,
and detector are aligned. Rotation is done around Z axis.

volume) is stored inside the texture memory of the GPU, which
provides automatic interpolation. In the CPU implementation,
this interpolation is done using standard 2D and 3D bilinear
interpolation equations, implemented inside the algorithms.

2) Distance Driven parallelism: In the case of Distance
Driven method, both for Projection and Backprojection op-
erators, the minimal unit of execution is the iteration over
the y axis. However, in the distance driven algorithm [9] an
additional step is needed, the computation of the boundaries,
either on the volume or in the detector. These boundaries
are the limits of the voxels and pixels projected in each
uz plane. For the computation of these limits, we add four
more operations in each iteration. Although independent,
these boundaries share the information of the same plane
augmenting the locality of the data. However, this boundary
computation increases the computational complexity.

B. Kernel layer

The kernel layer has different modules, which represent the
execution core of the simulator, namely the kernels. These
kernels will be the main building blocks for the upper layers:

• Backprojection: based on Voxel Driven and Distance
Driven interpolation methods. The kernel receives config-
uration parameters such as source and detector position
and object size among others. It implements a basic Cone-
Beam backprojector operator.

• Projection: following two approaches: Ray Driven and
Distance Driven algorithms. Both based on the computa-
tion of the integral of the ray and the interpolation of the
contribution to the final pixel.

• Filter: it includes the application of the rampfilter method.
To be implemented in GPU, we employed already im-
plemented functions for the Fourier Transform to operate
over the Fourier domain on the projections. This is all ex-
ecuted on the GPU with the help of the cuFFT library1 on
CUDA and the clFFT library2 when employing OpenCL.

• Platform management: it includes several kernels in
charge of managing the devices. One of their main func-
tions is memory management. Due to the lack of memory
of many of the current GPU devices, it is necessary to
include an strategy of partitioning for the simulation of
big studies. In our case we have included two levels
of partitioning: division of the volume in chunks that
are processed separately and division of the projections
in groups. With the creation of chunks, we avoid the
storage of the whole volume in the device memory (or
main memory in some cases) and the projections can fit.
When partitioning the projections, we avoid the repetition
of previous operations over these projections (such as
filtering) and at the same time we avoid the memory
transfers between host and GPU.

1https://developer.nvidia.com/cuFFT
2http://clmathlibraries.github.io/clFFT
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C. Architecture layer

In this layer, the device architecture is abstracted. Thus, the
simulator can run over several platforms including GPU and
CPU-only configurations. The objective is the optimization of
the algorithms implemented for the different architectures. The
three main architectures supported are: x86 CPUs, GPUs, and
ARM processors. The programming models that support these
architectures are CUDA (for NVidia’s GPUs), OpenCL (for
GPUs and ARM architectures), and OpenMP (for multi-core
CPUs). Through the use of these parallel programming models
is possible to increase the performance by parallelizing its
execution.

D. Configurations layer

The Configurations layer includes the routines that can be
directly executed by the user and implements the different sim-
ulation configurations. In this layer, most of the computation
consists on the calculation of derived parameters, therefore, it
is totally implemented in CPU. This layer is divided in the
following parts, as shown in Figure 3:

• Projection and backprojection based on cone-beam: it is
the simplest configuration, which directly makes usage
of the projection and backprojection kernels without
further parameter computation. Thus, there is no need
of modification of the standard kernels parameters.

• FDK Reconstruction: it includes the filter kernel execu-
tion previous to the basic backprojection kernel.

• Flexible Cone-Beam Projection and Reconstruction with
different trajectories. These trajectories are the same as in
the basic geometry. In this case, both source and detector
can be in any position and orientation. For example, the
detector can be tilted or rotated with respect to axis.

• Projection and backprojection based on tomosynthesis:
similarly to Wide FOV, it makes use of the projection and
backprojection operators. Since for each acquisition it is
necessary to modify the kernel parameters, an external
loop is required to obtain or process each of the pro-
jections. This configuration is available in two forms: 1)
the source and detector are moved in opposite directions
(Figure 5a); 2) only the source is moved, rotating over
the volume with the detector in a fixed position (Figure
5d).

• Wide FOV (Field Of View) acquisition: the main part of
this configuration is the projection operator. Depending
on the requirements, this increased FOV can be obtained
with a displacement of the source and detector along the
selected axis (Figure 5c), or with the tilting of the source
(Figure 5d).

• Projection and backprojection with helical trajectory: the
source and detector are moved through the z axis at the
same time that they rotate around the volume (Figure 5e).
It makes use of the standard projector and backprojector
kernel and includes the simulation of the displacement of
the source and detector outside of the algorithm.

TABLE I
DESCRIPTION OF THE STUDIES EMPLOYED IN THE EVALUATION.

Study name Scapula DigImouse
Detector pixel Size
(mm) 0.14x0.14 0.2992x0.2992

Detector matrix
(pixels) 512x512 1024x832

Volume voxel size
(mm) 0.087x0.087x0.087 0.1x0.1x0.1

VOI
(voxels) 512x512x512 1520x720x832

Number of
projections (Cone Beam) 360 360

Number of projections
(Tomosynthesis) 11 11

Arc range
(degrees) 10 10

Displacement
(mm) 125 150

TABLE II
RESULTS IN GIGAUPDATES PER SECOND FOR THE SCAPULA STUDY USING
THE DIFFERENT AVAILABLE PROGRAMMING MODELS AND FOR DIFFERENT

SYSTEM CONFIGURATIONS.

Kernel execution Overall execution

scapula CUDA OpenCL CPU CUDA OpenCL CPU

CB projection 19.184 3.957 0.039 7.844 2.780 0.039
CB backprojection 3.556 3.647 0.019 2.631 2.625 0.019
projection
heli 19.122 4.241 0.040 7.795 3.190 0.049

tomo acq 22.249 10.826 0.034 0.128 0.104 0.030
tomo arc 23.070 12.320 0.038 0.105 0.105 0.032

III. EVALUATION

The evaluation was done in a computer with a Windows
10 Operating System. The system’s hardware consisted on a
Intel Core i5-760 with four cores at 2.8 GHz and 16 GiB
of RAM. For the GPU results we used a NVidia 760 GPU,
CUDA version 6.5, and OpenCL version 1.2. Regarding CPU
evaluation, we used an Intel Core i5-3520 at 3.20 GHz with
16 GiB of RAM.

We used a real acquisition of a cocodrile scapula and a large
version of the Digimouse digital phantom which does not fit
into commodity GPU memories. The parameters considered
for each of the configurations are summarized in Table I. The
pitch in the helical acquisition experiment was of 10 mm in
the study of the scapula and 25 mm for the mouse study.

The configurations tested were: CB projection, a simple
Cone-Beam acquisition with 360 projection with a step angle
of 1 degree CB projection; cone-beam backprojection with 360
projections with step angle of 1 degree CB backprojection;
acquisition with helical trajectory over 360 degrees projection
heli; acquisition using tomosynthesis linear configuration tomo
acq; acquisition using tomosinthesis arc configuration tomo
arc. All of them were executed in Ray driven/Voxel driven
interpolation mode.

In Tables II and III we show the results for a scapula and a
Digimouse studies, respectively. The results are expressed in
GigaUpdates per second, measured only with the execution of
the kernel (first group of columns) and taking into account the
whole execution time of the application including input/output
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Fig. 3. Graphical representation of the implemented geometries.

TABLE III
RESULTS IN GIGAUPDATES PER SECOND FOR THE DIGIMOUSE STUDY
USING THE DIFFERENT AVAILABLE PROGRAMMING MODELS AND FOR

DIFFERENT SYSTEM CONFIGURATIONS.

Kernel execution Overall execution

Digimouse CUDA OpenCL CPU CUDA OpenCL CPU

CB projection 1.487 1.942 0.039 1.044 1.096 0.039
CB backprojection 3.191 3.370 0.018 0.920 2.116 0.018
projection
heli 1.477 1.931 0.039 1.059 1.114 0.039

tomo acq 4.419 3.982 0.034 0.107 0.110 0.030
tomo arc 0.110 3.682 0.034 0.108 0.110 0.031

operations (second group of columns). In both of them, we
obtain the worst performance on the CPU even with the par-
allelization of the core algorithms using OpenMP. The results
for the GPU programming models are very different depending
on whether we use OpenCL or CUDA programming models
in spite of employing the same acceleration device. For most
of the system configurations, OpenCL offers worst results than
CUDA when the VOI is small. However, the performance in
the Digimouse study is almost the same for both cases. This
is due to the better exploitation of the hardware when using
CUDA, that is solved when there is enough load to obtain the
maximum computational capacity of the card.

IV. DISCUSSION AND CONCLUSION

We have shown a flexible X-Ray simulation framework that
is able to simulate different geometries and system config-
urations, based on the cone-beam geometry. The proposed
simulator architecture is layered to facilitate the introduction
of future kernels and configurations. Additionally the solution
offers compatibility with the majority of hardware platforms
(CUDA and OpenCL for GPUs and standard workstations
through OpenMP). The simulator easily allows its execution
through the command line. These features facilitates its inte-
gration with other existing tools. The algorithms implemented
are optimized in terms of performance and memory. The
obtained results demonstrated that the CUDA programming

model performs better for small studies while OpenCL slightly
outperforms CUDA for large size studies.

The porting to other interesting parallel architectures such
as Intel Xeon Phi would need major changes. This later
possibility would imply a bigger transformation due to the
programming model. It is important to note that currently Intel
Xeon Phi lacks of support for OpenCL 1.2 full profile. This
means that there is no support for textures processing and
advanced features, preventing the porting of our simulator.
As a future work we plan to provide automatic partitioning.
This feature will improve the overall performance in case of
heterogeneous devices.
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Abstract—Interventional imaging with C-arm Cone-Beam
Computed Tomography (CBCT) lacks low-contrast resolution.
The use of bow-tie filters is common in diagnostic Computed
Tomography (CT), as they reduce both patient dose and the
dynamic range of the signal at the detector. Without a bow-
tie filter, a single-rotation acquisition results either in under-
exposed areas where the object is thick, or in over-exposed
areas where the object is thin. Here, we propose to acquire
two rotations in order to compensate for the absence of a bow-
tie filter: an un-truncated acquisition at low exposure and a
truncated acquisition at higher exposure. We allow the rotations
not to be acquired at the exact same positions, and introduce a
reconstruction strategy to make full use of our redundant data
and reconstruct the full field-of-view. The method is extended to
volume-of-interest tomography. Results on a quality assurance
phantom show that an angularly finely sampled acquisition of
truncated intensity projections increases low-contrast resolution
of C-arm CBCT, when combined with a (sub)set of un-truncated,
low-intensity projections. Depending on the angular sampling of
the un-truncated data, improvement is observed either over the
entire field-of-view or over the truncated field-of-view.

Index Terms—C-arm, cone-beam, tomography, iterative recon-
struction, low-contrast, bow-tie filter

I. INTRODUCTION

C-arm Cone Beam Computed Tomography (CBCT) plays
a growing role in interventional neuroradiology. Intra-arterial
injection of iodinated contrast allows the reconstruction of
blood vessels with high spatial resolution. On the contrary,
imaging soft tissues in the brain is particularly challenging due
to design constraints: C-arm systems allow patient imaging at
a large range of angulations over three axes of rotations while
a lift can vary the distance between the X-ray source and the
detector. This flexibility does not allow for efficient scatter
rejection with respect to the fixed geometry of diagnostic Com-
puted Tomography (CT) scanners. In addition, CT scanners
make use of bow-tie filters to reduce dose to the patient and the
dynamic range of the signal at the detector. However, the small
number of C-arm CBCT acquisitions that need to be performed
per day does not warrant the expensive integration of a bow-
tie filter dedicated to brain imaging. Therefore, the dynamic
range of the signal that reaches the detector is higher with a
C-arm and the low noise level required for low-contrast (LC)

Corresponding author: aymeric.reshef@ge.com. This work was supported
by the CIFRE grant No. 873/2014 from the French Association Nationale de
la Recherche et de la Technologie (ANRT).

detection leads to over-exposure of the periphery of the head,
to the extent of saturating the detector. A dual-gain readout
prevents saturation [1], [2], yet this mode is not supported by
all detectors and does not address over-exposure.

Here, we look at collimation to increase the X-ray intensity
for the central densest part of the anatomy. Since the resulting
acquisition is truncated, we consider a double acquisition:
one rotation without truncation optimized for the thickness
of the peripheral anatomy, and one truncated acquisition to
increase exposure for the central thickest areas. Previous works
using double acquisitions, e.g. [3], [4], [5], [6] targets volume-
of-interest (VOI) reconstruction or increased VOI resolution.
A standard analytical algorithm, in our context FDK [7],
is applied to a synthetized projection set computed from
both acquisitions. This implies accurate knowledge of the
exposure ratio and either interpolation or identical acquisition
geometries. Our approach is intended to be less restrictive.
First, we do not assume to know the exposure ratio because
truncated data do not contain a reference air measurement
of the incoming X-ray beam; second, we do not assume the
geometry to be the same for each acquisition. This implies de-
veloping a dedicated reconstruction to handle data redundancy,
truncation and absence of reference measurement.

The paper is organized as follows. Section II-A briefly de-
scribes the acquisition strategy and why standard analytical re-
construction is not applicable when acquisition geometries are
different. Section II-B introduces the minimization problem
solved by iterative reconstruction. The method is then extended
to the case where the truncated field-of-view (FOV) must be
reconstructed only. A highly sub-sampled un-truncated data
set is used in this case, with the hypothesis that the low-
frequencies it contains will be sufficient to correct for the
artefacts that degrade volume-of-interest reconstruction from
truncated data. Results on the Catphan� phantom LC detection
module are presented in Sec. III.

II. METHOD

A. Acquisition description

Density projections, denoted p, are related to the object f
through a linear projection operator R such that Rf − p = 0.
Ideal system measurements are intensity projections I related
to p via the Beer-Lambert law I = I0e

−p, where I0 is the
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intensity of the X-ray beam measured in air. Note that real
data are corrupted by noise and scattered radiations.

1) Dual-rotation acquisition: We assume that two sets of
intensity projections are available: one set of full FOV pro-
jections (indexed by F), and one set of truncated projections
(indexed by T). Both sets are acquired with the standard short-
scan circular rotation (“spin”) available on C-arm systems.

Given a reference air intensity I0, we define the air mea-
surements of the incoming X-ray beams in both cases as{

IF0 = αF · I0
IT0 = αT · I0

, with αF + αT = 1. (1)

Density projections pn (n ∈ {F,T}) are obtained from the
Beer-Lambert law: pn = log(In0 )−log(In). If air measurement
In0 is not available, then pn is only known up to a constant
offset.

2) Dose reduction factor: Assuming that both acquisitions
have the same angular sampling and that truncation reduces
the exposed detector area by a factor p < 1 compared to the
un-collimated case, we define the dose reduction factor d as
the ratio of IF0 + p · IT0 with I0, yielding

d =
I0

IF0 + p · IT0
= (αF + p · αT)

−1. (2)

B. Reconstruction

1) Analytical reconstruction: If both intensity spins IT and
IF were acquired at the very same angular positions (RF =
RT = R), the data could be summed according to

p =

{
αF · pF + αT · pT in the collimated area,
pF elsewhere. (3)

Equation (3) is sensitive to offset errors in pF or pT. The
Feldkamp-Davis-Kress (FDK) algorithm [7] is a filtered-
backprojection type method to reconstruct cone-beam projec-
tions from a circular orbit. We denote fFDK = RTDp this
analytical reconstruction, with D the ramp filter and RT the
transpose of R, that is the backprojection operator.

Ramp filtering is performed in the Fourier space. For acurate
reconstruction, the discrete ramp filter is not equal to sampling
the continuous Fourier ramp filter, but is computed as the
Fourier transform of the finite spatial ramp kernel. This results
in a non-zero DC value, which, again, is sensitive to any offset
error in pn.

If acquisition geometries are different, there is no standard
solution and for each situation clever re-sampling or extrap-
olation of the truncated data must be derived. We thus turn
to iterative reconstruction as a generic approach that allows
multiple geometries and does not require accurate knowledge
of the exposures.

2) Minimization criterion: We define two quadratic forms

Qn(f) =
1

2
(Rnf − pn)

TD(Rnf − pn), n ∈ {F,T}

that we minimize simultaneously, through:

argmin
f

⎧⎨⎩ ∑
n∈{F,T}

αnQn(f) + χ(f)

⎫⎬⎭ , (4)

where χ(f) is a convex regularizing term. If the acquisition
geometries of pT and pF were the same, then RT = RF = R,
and Problem (4) would simplify into

argmin
f

{
1

2
(Rf − p)TD(Rf − p) + χ(f)

}
, (5)

with p defined in eq. (3).
3) Iterative algorithm: We adopt a forward-backward split-

ting scheme [8], yielding a two-step update made of a gradient
descent step (iterative FDK) followed by the application of a
proximal operator (e.g. filter){

f (i+1/2) = f (i) − τ
∑

n αnR
T
nD(Rnf

(i) − pn)
f (i+1) = proxτχ(f

(i+1/2))
, (6)

where τ > 0 is a constant gradient step and proxτχ(f
(i+1/2))

is the proximal operator of scaled function τχ on image
f (i+1/2). This scheme was used in [8] with non-linear filtering
to correct for cone-beam artifacts.

4) Ramp filtering: For operator D, we discretize the contin-
uous Fourier ramp filter, in order to zeroe the DC component
together with all offset errors. Although it introduces a shift
in FDK reconstructed images, this shift is removed by the
iterative process. The use of the Fourier transform implies
data extrapolation. Zero-padding of the signal would introduce
strong discontinuities resulting in artifacted reconstructions.
Thus, extrapolation is achieved by mirroring the data at each
extremity of the signal.

5) Extension to volume-of-interest imaging: If one is only
interested in reconstructing the volume of interest defined by
the truncated dataset, we need to distinguish between high-
and low-frequency artifacts. High-frequency artifacts strongly
corrupt the image, but are easily removed for instance by
data mirroring as already mentionned. Low-frequency arti-
facts (small intensity gradient over the FOV, cupping) are
less disturbing, but forbid visualizing low contrasts over a
uniform background. However, we anticipate that adding a
few full-FOV projections will provide sufficient low-frequency
information to yield a uniform reconstruction. In this case, we
replace weights αn in eq. (4) by new weights βn such that{

NF = βF ·N
NT = βT ·N

, with βF + βT = 1 and βF � βT, (7)

where NF and NT are the number of projection views in each
set, and N = NF +NT is the total number of projections.

III. EXPERIMENTS AND RESULTS

A Catphan� phantom LC detection module [9] was ac-
quired on a GE Healthcare IGS-630 biplane system, whose
flat-panel detector is 30cm wide. The source-to-detector dis-
tance was 1080mm. Each rotation provided 600 intensity
projections covering 200◦. Three spins were acquired with
a vertical FOV height of 5cm, in order to limit scattered
radiations, that is not addressed by our method. A full-
FOV width was kept for all acquisitions. One spin acquired
at 76kVp and 3.4mAs was used as the un-truncated, low-
exposure spin. A second spin at 76kVp and 3.4mAs was used
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(a) Truncated at 120kVp (b) Un-truncated at 76kVp, σ =
5.6

(c) αT = αF, σ = 3.1 (d) αT = 4 · αF, σ = 2.7

Fig. 1: Recontructions of the Catphan� CTP515 module. Standard deviation σ is calculated over the squared region-of-interest.
Window level-width: 330-100 in Fig.1a; 570-100 in Fig.1b, 1c and 1d. Isotropic voxel size: 0.78mm.

(a) Truncated at
120kVp

(b) Un-truncated
at 76kVp

(c) αT = αF (d) αT = 4αF

Fig. 2: Recontructions of the Catphan� CTP515 module.
Detail on central LC inserts from 10 HU (top) to 3 HU
(bottom) from Fig.1. Window level-width: 330-100 in Fig.1a;
570-100 in Fig.1b, 1c and 1d. Isotropic voxel size: 0.78mm.

to test the case αT = αF. In order to test the case αT ! αF,
we acquired a third spin at a shifted spectrum of 120kVp
and 3.4mAs. The dose-area-product (DAP) of a Catphan�

acquired at (120kVp, 3.4mAs) was approximately 4 times the
DAP of the acquisition at (76kVp, 3.4mAs). We neglected
the influence of the X-ray spectrum on the reconstruction
problem. Truncation was simulated with p = 2

3 , yielding a
dose reduction factor of d = 1.2 for αT = αF and d = 1.36
for αT = 4 · αF. Contrasts of the Catphan� LC inserts are
10 HU, 5 HU and 3 HU. Their diameters vary from 2mm
to 15mm. The diameters of the central (subslice) inserts vary
from 3mm to 9mm.

Images are reconstructed by solving eq. (4) using 50 itera-
tions of eq. (6) with τ = 0.5. Because we focus on a quality
assurance phantom, the regularization is a simple isotropic
linear diffusion filter corresponding to χ(f) = λ‖∇f‖22. The
full width at half maximum (FWHM) is equal to 3.33

√
λ.

Here, the FWHM is set to 1. The reconstruction of pF is
our reference image. Reconstructions are visually compared
on Fig.1 and Fig.2.

Figure 1a shows the reconstruction from the truncated
projections at 120kVp. The central LC inserts are visible,
thanks to the high exposure, yet the true uniform background
cannot be visualized in a narrow display window due to
cupping. Information lying outside the cylinder defined by the
truncation is lost. Figure 1b shows the reconstruction from
the full-FOV projections only. The image is uniform, but
the higher noise decreases LC resolution. Figures 1c and 1d
show the reconstructions obtained with the dual acquisition.
Images are uniform and contrast resolution is improved due
to lower noise. The improvement extends beyond the truncated
FOV. Indeed, the backprojection operator redistributes density
projections along the entire projection lines. It thus becomes
possible to identify small LC inserts of 10 HU and 3 HUH,
as shown on Fig.2.

Image standard deviations were computed over a homo-
geneous region of interest (ROI) overlaid on images from
Fig.1. We observe that doubling the exposure at the center
of the image (Fig.1c) decreases the standard deviation by 1.8,
which is slightly above the expected value, since

√
2 ≈ 1.4.

Multiplying by 5 the exposure at the center of the image
(Fig.1d) yields a standard deviation 2.1 ≈

√
5 times lower,

which is approximately the expected value
Figure 1b shows some oblique streaks that are also present

in Fig.1c and Fig.1d. These streaks seem to originate from the
bed, which is truncated in all acquisitions. Streak intensities
did not prevent LC visualization, but further work is needed to
understand how they interact with our method. In particular,
kV change seem to induce stronger artifacts as seen on Fig.1d,
where the dual-rotation reconstruction involves two energy
spectra.

We also tested the reconstruction of a volume of interest
using the truncated, high-exposure spin and 18 un-truncated
projections uniformly sampled from the un-truncated, low-
exposure spin. We replaced weights αn in eq. (4) by weights
βn defined in eq. (7). Results are shown in Fig.3. Figure 3a
is the central part of Fig.1a. It emphasizes the strong non-
uniformity when reconstructing from truncated projections
only. Figure 3b shows the reconstruction obtained with our
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(a) Reconstruction from truncated
data only

(b) VOI reconstruction (c) Ground truth from Fig.1d

Fig. 3: Recontructions of a volume of interest in the Catphan� CTP515 module. Window levels are respectively 585, 345 and
570. Window width is 50. Isotropic voxel size: 0.78mm.

method. It looks similar to Fig.3c, which is the central part
of Fig.1d used as our ground truth. This demonstrates that
a highly subsampled set of un-truncated projections com-
pensates for truncated data when reconstructing a volume of
interest.

IV. DISCUSSION AND CONCLUSION

The dual-rotation acquisition was designed as an alternative
to the bow-tie filter. Results on a quality assurance phantom
show that an angularly finely sampled acquisition of truncated
intensity projections increases LC resolution of C-arm CBCT,
when combined with a (sub)set of un-truncated, low-intensity
projections. If the un-truncated projections are acquired at a
similar angular range, the image is improved over the entire
FOV. This case addresses over-exposure of small densities, and
shows that dose reduction factors with p = 2

3 can be achieved
without a bow-tie filter. If the un-truncated projections are
angularly highly sub-sampled, the image non-uniformity can
still be restored over the truncated FOV, given a small change
in the weights of the minimization problem. This result
confirms that non-uniformity is a low-frequency problem.

The minimization problem we solve includes the ramp
filter in the data fidelity quadratic forms. Thus, intensity
measurements in air are not needed. This trick may be used in
any penalized least-squares problem by replacing the squared
norm ‖Rf − p‖22 by our quadratic form.

This work constitutes a first step towards C-arm CBCT
imaging of brain soft-tissue, since focus has been put on
imaging a quality assurance phantom with almost no scattered
radiations. C-arm CBCT of brain soft tissues faces well-known
issues, namely cone-beam artifacts, skull beam-hardening and
scatter. It is straightforward to replace the isotropic filter used
for the Catphan� with non-linear anisotropic diffusion filters
to correct for cone-beam artifacts [8]. Skull beam-hardening
should be dealt with using the full-FOV acquisition, that is
expected to allow skull segmentation. The biggest challenge
remains scatter. We plan to benefit from the truncated acqui-
sition to improve scatter estimation and correction by reading
the actual scattered radiations under the collimator blades as
suggested in [10].
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Two cone-beam consistency conditions for a
circular trajectory

Jérôme Lesaint, Rolf Clackdoyle, Simon Rit, Laurent Desbat

Abstract—Data consistency conditions are equations that
should be satisfied by the projection data if the underlying
line integral model perfectly matches the physical reality. In
this work, we propose two cone-beam consistency conditions
based on previous theoretical works. The source trajectory is
circular, with the detector oriented perpendicularly to the plane
of the trajectory, as usual. The conditions apply equally well to
any planar source trajectory. We introduce two DCC functions
that are applied to the cone-beam projections, such that the
same constant function value occurs for all projections provided
the data are consistent. Evaluations of the functions are easily
implemented and any projection whose DCC function value
deviates from the constant indicates inconsistency with the rest
of the data.

I. INTRODUCTION AND RELATED WORK

Characterization of the range of integral operators involved
in Computed Tomography (CT) has been studied for decades,
from the classical Helgason-Ludwig data consistency condi-
tions (DCCs) [1], [2] for parallel beam geometry to more
recent DCCs in fanbeam geometry [3]–[5]. For the 3D cone-
beam (CB) geometry, DCCs have been derived in [6]–[9].
Beyond their theoretical interest, DCCs can be used to detect
some systematic effects like patient motion [10], [11] or failing
equipment [12], to automatically calibrate CT systems [13] or
to correct scatter [14]. In this work, we build upon existing
CB theory [15], [16] within a common framework [17]–[19] to
develop simple DCCs for the standard circular CB geometry
and other planar source trajectories.

II. NOTATION AND THEORETICAL BACKGROUND

We consider a CB-CT system made up of an X-ray source
and a flat detector, both undergoing a planar source trajectory
(typically, a circle) around the object of interest. The plane
containing the trajectory is denoted ΠS . The source location
is �aλ parametrized by the angle λ ∈ Λ where Λ ⊂ R is an
interval. Throughout the trajectory, the detector plane Πλ is
perpendicular to ΠS . We let �u denote one of the two possible
unit vectors in the direction of the intersection ΠS ∩ Πλ (for
example, the one parallel to the motion of the source). For each
projection, we define a detector reference frame as follows:

J. Lesaint, R. Clackdoyle and L. Desbat are with the TIMC-IMAG
laboratory, CNRS UMR 5525 and Université Grenoble Alpes (e-mail :
lesainje@imag.fr and laurent.desbat@imag.fr).
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This work is partially supported by the Agence Nationale de la
Recherche (France), Labex CAMI, number ANR-11-LABX-0004-01 and
project ”DROITE”, number ANR-12-BS01-0018.

Fig. 1. Description of the geometry and choice of coordinate system. The
source �aλ moves along the circle. And the detector moves accordingly.

the origin is the orthogonal projection of the source onto the
detector (the principal point). The normal to the detector is
�w, pointing in the direction of the source, so that �aλ = d �w
(where d is the distance from the source to the detector). We
set �v so that (�u,�v) define a reference frame of the detector
and (�u,�v, �w) is a 3D reference frame. A point on the detector
can be written u�u+ v�v. See Fig. 1.

The 3D Radon transform of an attenuation function f is
defined by:

Rf(�β, s) =

∫
�β⊥

f(s�β + �y)d�y

with �β ∈ S2 (S2 denotes the unit sphere in R3) and s ∈
R. Given a fixed �β ∈ S2, we also denote Rβf the 1D-
function:Rβf(s) = Rf(β, s). The CB projections are defined
over the set Λ× S2 by :

g(λ, �α) = Df(λ, �α) =
∫ +∞

0

f(�aλ + t�α)dt (1)

Early CB CT reconstruction methods are based on links
between filtering CB data and filtering 3D Radon transform.
Following [17] an intermediate function G is defined on the
set Λ× S2 by:

G(λ, �β) =

∫
S2

h(�α · �β)g(λ, �α)d�α, (2)

where the generalized function h is positively homogeneous
of degree -2, i.e. ∀k > 0, h(ks) = (1/k2)h(s). In this work,
h can be either odd (∀x ∈ R, h(−x) = −h(x)) or even (∀x ∈
R, h(−x) = h(x)). The relation between the function G and
the 3D Radon transform of f is given by:

G(λ, �β) = sh

(
h ∗ R�βf

)
(�aλ · �β), (3)
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where sh = 1 if h is even and −1 if h is odd. A proof of
this result can be found in [18]. Note that if the projection
data are given by Eq. (1) and if some plane Π(�β, s) - defined
by its normal direction �β and its signed distance to origin s
- contains two source positions �aλ1

and �aλ2
(meaning that

�aλ1 · �β = �aλ2 · �β), then:

G(λ1, �β) = G(λ2, �β). (4)

Equation 4 provides a consistency condition.

III. IMPLEMENTATION

In this section, we investigate two practical aspects of the
implementation of these DCCs: the evaluation of the function
G and the choice of the filter h.

A. Evaluation of the function G

In order to evaluate the function G in practice, we need to
express Eq. 2 in terms of detector coordinates. With the (u, v)
coordinates of the detector (see Sec. II and Fig. 1), one can
write:

�α = �α(u, v) =
u�u+ v�v − d�w√
u2 + v2 + d2

.

This change of variables leads to the following expression:

G(λ, �β) = sh

(
h ∗ R�βD

g̃λ

)
(�aλ · �β), (5)

where g̃ denotes pre-weighted projections:

g̃λ(u, v) = g̃(λ, u, v) =
d√

u2 + v2 + d2
g(λ, �α(u, v)).

In Eq. 5, Rg̃λ is the 2D Radon transform at fixed direction
�βD of g̃λ:

R�βD
g̃λ(s) =

∫
R

g̃λ(s�βD + l�β⊥
D)dl

and �βD denotes the normalized orthogonal projection of �β
onto the detector plane Πλ. As Eq. 5 shows, the evaluation
of G(λ, �β) is three steps : pre-weighting the projection, com-
putation of the 2D Radon transform along lines perpendicular
to �βD and convolution of this 1D function with h at �aλ · �β.
While pre-weighting in step 1 is familiar, step 2 may be more
involved if �βD is not aligned with pixel lines and may require
complex re-binning and/or backprojection of the data in a
virtual detector. The particular choice which is made in this
work, makes computations in step 2 considerably easier. This
choice is �β = �v. The main result of this work is the following:

Proposition 1. Let g = Df for some object function f , with
a planar source trajectory

{
�aλ ∈ R3, λ ∈ Λ

}
⊂ ΠS ; Let h

be positively homogeneous of degree −2, odd or even ; the
function G defined by:

G(λ,�v) =

∫
S2

h(�α · �v)g(λ, �α)d�α (6)

is constant (independent of λ).

To better understand this statement, we replace �β with �v in
Eq. 5. For all λ, �aλ ·�v = 0 and R�βD

g̃λ is R�v g̃λ, the 2D Radon

transform of the pre-weighted projection in the direction �u (i.e.
along pixel lines) thus depending only on v. Let lλ be this 1D
function defined (in the (u, v) coordinates of the detector) by:

lλ(v) = R�v g̃λ(v) =

∫
g̃λ(u, v)du, (7)

Plugging (7) into (5), Eq. (6) now reads:

G(λ,�v) = sh(h ∗ lλ)(0). (8)

B. Choice for the function h

The intermediate function G defined in [17] provides with
a unifying framework for various early 3D reconstruction
formulas such as the ones from Smith [15] and Grangeat [16],
[20]. Both approaches correspond to different choices for the
function h. Smith’s approach is based on the ramp filter:

hR(s) =

∫
R

|σ|e2iπσsds.

Grangeat’s approach is based on the derivative filter:

hD(s) =

∫
R

2iπσe2iπσsdσ.

It is easily verified that both hR and hD are positively
homogeneous of degree -2 and that they are even and odd
respectively.

The choice of h will impact the implementation of Eq. (8).
In the case h = hD, Eq. (8) reduces to: −l′λ(0), the derivative
of lλ taken at v = 0. The function l will only need to be
evaluated in a neighbourhood of v = 0 in order to estimate
this derivative. In the case h = hR, Eq. (8) remains a standard
convolution and the function lλ will have to be evaluated for
all possible v (i.e. on all detector lines). hD is a local filter
whereas hR is global.

IV. EXPERIMENTS AND RESULTS

The following experiments aim to demonstrate that the
consistency condition claimed in Proposition 1 can detect
unwanted systematic effect in the data. Moreover, the ability
to choose between two filters provides flexibility in the task
under study.

A. Material and methods

We used a standard Shepp-Logan phantom for the simula-
tions, as described in [21]. Projections were computed using
the Reconstruction ToolKit [22]. The trajectory of the source
was a circle with radius 100. 72 projections were computed
over a full angular range of 360 degrees (λ ∈ [0, 2π)). The
source-to-detector distance was 200. The exterior ellipsoid of
the phantom has axis semi-lengths of (55.2, 73.6, 72). Each
projection has 1024 × 1024 pixels. And the cone angle was
104◦ in both directions. The extremely large cone-angle was
intentional, to emphasize the divergent ray effects because
the function lλ(v) is the same for all projections in the
parallel case and the consistency conditions are then trivial.
The detector is assumed to be perfectly aligned so that pixel
lines are aligned with the u-coordinate. Hence, no interpolation
was necessary to evaluate the function lλ as described above.
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Fig. 2. Scenario 1 : projection truncations. Among the 72 projections, three
were truncated as indicated. The dotted line indicates the line v = 0.
Truncation of proj. #10 (top right) is away from the line. Truncation of proj.
#40 (bottom left) impacts the line. Truncation of proj. #55 (bottom right) is
closer to the line. See text for analysis.)

Fig. 3. Scenario 2 : organ motion. The phantom is kept fixed from projections
#1 to #20. From projection #21 to the end, one of the ellipsoids is moving. The
motion is linear, perpendicular to the line v = 0 (dotted line). The moving
ellipsoid is a ball of radius 4 and has density 1.0. It intersects the central line
in the range of projections #47 to #65.

The derivative filter was implemented with a central difference
approximation. The ramp filter was implemented as described
in [21]. We also applied a smoothing filter in the v-direction,
to account for numerical instabilities. The filter has a support
of length 11 pixels. It is applied after the ramp (or derivative)
filter.

In the sequel, GD and GR denote the function G with the
corresponding hD and hR respectively. In our first experiment,
we study the behaviour of GR and GD with respect to
truncations. In three projections (#10, 40 and 55), part of
the projection is set to zero. Truncation of projection #40 is
symmetric around the line v = 0 in the detector and simulates
a large patient. Truncation of projection #10 is a trans-axial
truncation (see Fig. 2). Projection #55 simulates a defect on
the detector or an occlusion.

In the second experiment, we simulated an organ motion
by moving an ellipsoid along a linear trajectory that crosses
the line v = 0. The ellipsoid keeps a fixed position during the
first 20 projections, then undergoes its motion till the end of
acquisition cycle (see Fig. 3).

For each experiment, we compute and plot the function GD

and GR. And as Proposition 1 states, if the data are consistent,
we expect a constant plot.

B. Results

Figure 4 shows the results.
1) Truncation: The use of the ramp filter allows for the

detection of any truncation, wherever this truncation occurs
whereas only the lateral truncation is detected by the derivative
filter (see Fig. 4, left). Because the ramp filter has an infinite
support, it will detect truncation anywhere in the data (see
Fig. 4, bottom left). On the other hand, the derivative filter is
local and will only detect truncation in the neighbourhood of
the line v = 0 (see Fig. 4, top left). It should be noticed that
truncation in projection #10 was detected by the ramp filter
because the inconsistency was ”massive”. It would not be able
to detect a lighter modification that was far from the central
line. The reason being that the lower response of the DCC
would be indistinguishable from the background numerical
instability.

2) Motion: For the motion experiment, we observed similar
behaviour. The derivative filter detected the motion only when
the object crossed the line v = 0 (see Fig. 4, top right). On the
other hand, with the ramp filter (see Fig. 4, bottom right), the
function GR deviated from its (approximately) constant value
long before the object crossed the line v = 0. This, again,
reflected the global nature of the ramp filter, which makes the
DCC able to detect almost any consistency, almost anywhere
in the data.

V. DISCUSSION

In this paper, we have revisited existing theoretical results
from the DCC perspective. The necessary consistency con-
ditions we derived are easy to implement, comprehensive in
the sense that they scan all the data at once and valid under
reasonable assumptions on the acquisition geometry. First
numerical experiments demonstrate the potential to use the
DCC for the detection of data inconsistencies, e.g. truncation,
motion. The interesting point in the above experiments is the
complementary role that the two filters hR and hD can play in
the detection of systematic effects directly from the projection
data. The ramp filter is able to detect any inconsistency
anywhere in a projection. The ramp filter is global. On the
other hand, the derivative filter only detects inconsistencies
in the neighbourhood of the central plane. The derivative
filter is local. As an example, the derivative filter does not
detect truncation not affecting the central plane. Depending
on the problem under study, this may be an advantage or a
disadvantage (consider the case where motion in the central
plane needs to be identified while truncation away from this
plane occurs). We also noticed the limits of both filters: one
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Fig. 4. Numerical simulations : plot of the function GD (top) and GR

(bottom) with respect to projection number in the case of truncation (left)
or motion (right). The x-axis is the projection index. The dotted line on the
right-hand column is the mean value of the function with no inconsistency.

of them is the numerical instability that prevents detection of
low-level inconsistencies far from the central line. The use of a
smoothing filter to reduce this noise comes with the attenuation
of respective specificities of the two functions.

We emphasize the fact that the DCC with the ramp filter is
a truly CB DCC: all the data in each projection are involved
in the evaluation of the DCC function. On the other hand, the
derivative version is equivalent to a 2D fanbeam DCC: only
the data on the intersection of the projection plane with the
central plane are used.

Finally, note that we could have considered different �β (not
in the �v direction) in order for the derivative version to access
other parts of the projection data. In this case however, the
DCC would only be able to compare the projections pairwise
(only two cone-beam projections at a time), because for �β
different from �v, the plane orthogonal to �β will intersect the
source trajectory in at most two points. Whereas, with the
specific choice we made for �β, all the projections can be
checked at once.
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Intra-operative 3D micro-coil imaging using
subsampled tomographic acquisition patterns on a

biplane C-arm system
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Abstract—The restriction of CBCT to micro-coil imaging
allows for integrating key a priori knowledge that a coil is
a high-density spatially sparse curvilinear structure. In this
paper, we investigate acquisition patterns specifically designed
for biplane systems allowing a faster workflow and reduced
dose. Each pattern is a subsampling of a standard tomographic
acquisition reconstructed with an �1-constrained algorithm to
promote sparsity together with diffusion filters that promote the
curvilinear nature of the coil. Three tensor-based 3D diffusion
filters are investigated. Quantitative and qualitative results are
provided for one coil and four patients datasets. They show how
the reconstruction performs according to the selected acquisition
pattern (uniform versus non-uniform subsampling), the quantity
of missing information and the selected diffusion filter. We
observed a systematically better recovery of the coil in recon-
structions obtained using a uniform subsampling pattern but at
the cost of being systematically noisier than those obtained with a
non-uniform subsampling pattern. Diffusion filtering significantly
reduced this structural noise.

I. INTRODUCTION

Endovascular aneurysm coiling is a minimally invasive
procedure most commonly used for treating balloon-shaped
cerebral aneurysms. A micro-coil (or coil) is a pre-shaped
platinum wire that is guided through a catheter inside the
aneurysm and that winds as it exits the catheter. Several
coils are usually placed one after the other to embolize the
aneurysm, thus preventing blood from pressuring the diseased
vessel wall and starting an hemorrhage. Real-time guidance
and control are obtained using fluoroscopic images acquired
with an X-ray biplane C-arm system (Fig.1). Proper position-
ing of the coils means that no coil loop should enter the parent
artery. However, some anatomical configurations of aneurysms
require moving the C-arm in positions that are not available
due to mechanical restrictions. In such cases, Cone-Beam
Computed Tomography (CBCT) provides a 3D depiction of
the coil. In the standard CBCT workflow, the X-ray source of
the frontal plane of the C-arm rotates over a 200◦ circular
arc (called spin). The lateral plane must be parked prior
to the acquisition and repositioned after so that performing
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(a) (b)

Fig. 1. (a) GE Healthcare IGS 630 biplane acquisition system. (b) X-ray
projection of a single intra-cranial micro-coil

CBCT is time-consuming. It is also expensive in terms of
X-ray dose to the patient with respect to fluoroscopy. Our
purpose is thus to investigate angularly subsampled rotational
acquisition patterns that are appropriate for intra-operative 3D
coil imaging by taking advantage of the knowledge that the
object of interest is a coil.

II. METHODS

The restriction of CBCT to coil imaging allows for inte-
grating key a priori knowledge of the object of interest: it is
a high-density spatially sparse curvilinear structure. Recently
developed compressed-sensing-based CBCT reconstruction al-
gorithms have shown promise for reconstructing sparse objects
[1]. In our context, we consider a reconstruction algorithm
constraining the �1-norm of the image to promote sparsity
together with diffusion filters to also promote curvilinear
structures. We here discuss several subsampling schemes of
the standard CBCT acquisition designed such that the lateral
plane needs not be parked and compare uniform versus non-
uniform subsampling.

A. Subsampling patterns

Fig.2 illustrates the three angularly subsampled acquisition
patterns that are investigated. Pattern P0 corresponds to the
case where the lateral plane is left in place but not used. The
frontal plane angular coverage is thus restricted. It is a limited-
aperture tomographic acquisition. Within the aperture limits,
the angular sampling is uniform and equal to that of a standard
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(a) (b) (c)

Fig. 2. Acquisition patterns: (a) P0 is a limited-aperture rotation (aperture
angle α = 60◦), (b) P1 adds one extra-projection to P0, (c) P2 is a uniform
subsampling of a full spin acquisition (angular step is γ = 30◦).

CBCT acquisition. For a maximum aperture of 60◦, a gap of
120◦ is not sampled. Pattern P1 augments pattern P0 with a
single projection acquired with the lateral plane in a direction
orthogonal to the central projection of P0, so that gaps between
projections never exceed 60◦. Pattern P2 corresponds to the
case where both planes would rotate simultaneouly, thus
allowing for a complete tomographic coverage with uniform
subsampling. The largest angular step that was tested was 30◦

amounting to acquiring 6 projections only. In terms of me-
chanical design, pattern P2 implies the strongest requirements
on the lateral plane: that it can rotate synchronously with and
in the same repeatable way as the frontal plane, despite its
rather different design. Pattern P1 only requires reaching a
single position precisely and repeatably. Pattern P0 alleviates
any constraint on the lateral plane.

B. Sparse iterative reconstruction through �1 minimization

Previous works have shown the possibility to handle sub-
sampling using �1-constrained reconstructions, one in partic-
ular in the context of C-arm CBCT imaging of an iodined-
injected sparse vessel tree over a non-sparse background [1].
C-arm CBCT imaging of coils falls into the same category.
Following [1], we take a hierarchical approach where struc-
tures of higher intensity are reconstructed first. It is based on
solving the following N penalized reconstruction problems
indexed by n:

f (n) = argmin
f≥0

1

2
(Rf − p)tD(Rf − p) + λ(n)||f ||1 (1)

where R is a matrix that models the acquisition pattern, D
is the matrix of ramp filtering, p is the vector of the projections
acquired with the pattern, f is the vector containing the
reconstructed volume and λ(n) is a positive scalar that defines
the level of sparsity of the solution by acting as an intensity
threshold. Vector f (n) is thus an approximation of the solution
whose sparsity is proportional to λ(n). Since the coil sparsity
is not known, N problems (called stages) is defined a priori
with N intensity thresholds λ(n) ∈ [λmin, λmax] such that
λ(n) ≥ λ(n+1) and λmin > 0. At each stage, f (n) is computed
as the solution of (1) initialized by f (n−1) using proximal
splitting, that is the following 2-step iterative algorithm:

{
f (i+ 1

2 ) = f (i) − τRtD(Rf (i) − p)

f (i+1) = argminf≥0 ||f − f (i+ 1
2 ))||2 + λ(n)||f ||1

(2)

To get matrix R to model each pattern we must consider the
weighting of each projection. It is a single scaling factor when
the sampling is uniform. When it is not, as in pattern P1, it
is intuitive that the projection from the lateral plane contains
unique information. Indeed, we found necessary to give this
extra-projection a weight equal to the sum of the weights of
all other projections to get the best results.

C. Structural prior through diffusion filtering

Promoting curvilinear structures is introduced as a filtering
operator W modifying (2) into the following 3-step algorithm:

⎧⎪⎨⎪⎩
f (i+ 1

3 ) = f (i) − τRtD(Rf (i) − p)

f (i+ 2
3 ) = W (f (i+ 1

3 ))

f (i+1) = argminf≥0 ||f − f (i+ 2
3 ))||2 + λ(n)||f ||1

(3)

Operator W is a diffusion filter such that the filtered image
f (i+ 2

3 ) is solution of the diffusion equation :{
∂tf = ∇t(T (f).∇f)

f(t = 0) = f (i+ 1
3 )

(4)

where ∇ denotes the gradient operator and T is a 3×3 matrix
designed to locally modulate the strength and direction of the
filtering according to the underlying structures in image f .
Three designs of T are investigated :

• TCED = Uθdiag(λCED, α, α)U−θ where Uθ is a rotation
matrix such that the filtering has diffusivity λCED along
direction θ. This corresponds to Weickert’s Coherent-
Enhancing Diffusion where Uθ and λCED are computed
as described in [2]. We have α << 1, that is no filtering
in directions orthogonal to θ, and λCED ∈ [α, 1]. We
expect close to full filtering (λCED → 1) when the
underlying structure is curvilinear and close to no filtering
(λCED → α) otherwise.

• TNLD = (1−λCED)diag(1, 1, 1) is an isotropic non-linear
diffusion tensor based on λCED only which is expected
to smooth out non-curvilinear structures while leaving
curvilinear structures unchanged.

• TNLAD = Uθdiag(λCED, 1 − λCED, 1 − λCED)U−θ is an
anistropic non-linear diffusion tensor combining the two
above designs such that curvilinear structures are en-
hanced and non-curvilinear structures are smoothed out.

III. EXPERIMENTS

We present results on one coil in air and four clinical data
sets obtained right after the first coil was deployed within
the aneurysm sack. All five data sets were acquired with the
same GE Healthcare IGS 630 biplane C-arm system, following
a standard workflow of CBCT spin acquisition (pixel pitch
0.4mm, rotation speed 40◦/s, 150 projections total). The acqui-
sition patterns were derived by extracting the projections from
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the full spin. Subsets of projections P0(α, θ) were generated
following pattern P0 for eleven values of the aperture angle α
from 30◦ to 60◦ in steps of 3◦ and four values of the start angle
θ of the rotation from 0◦ to −30◦ in steps of 10◦. For each
subset P0(α, θ), a corresponding subset P1(α, θ) following
pattern P1 was obtained by adding an orthogonal projection
as described in Sec. II-A. Subsets P2(γ) were generated
following pattern P2 for increasing angular steps γ, starting
from the ground truth (GT) of 150 projections (γ = 1.5◦)
down to as low as 6 projections (γ = 30◦). Fig.2 shows
configuration P1(60

◦, 0◦) and P2(30
◦). All �1-constrained

reconstructions, including ground-truth reconstructions of full
spins, were performed with the same parameters: N = 30,
f (0) = 0, λmax = 0.9 × max(f (1/2)) where f (1/2) is a
least-square approximation of f , λmin = 3000 to separate
the coil from other intense anatomical structure (eg. bones).
Since we are interested in recovering the shape of the coil
(ie its loops), reconstructions were evaluated quantitatively in
terms of support only. Let f (01) denote the binarized version
of the soft-background thresholded volume f (N). The false
negative (FN) rate is defined as the proportion of non-zero
voxels of the ground-truth reconstruction of the coil (”true
voxels”) that are missing in f (01) with respect to the total
number of true voxels. The false positive (FP) rate is defined
as the proportion of non-zero voxels appearing in f (01) that
are not true voxels with respect to the total number of true
voxels. The FN (resp. FP) rate best value is 0%. The max
value for the FN rate is 100% but can exceed 100% for the
FP rate. For settings P1(60

◦, 0◦) and P2(30
◦), reconstructions

were also performed using the diffusion filters of Sec. II-C. We
compared using algorithm (3) at all stages of the hierarchical
approach to using algorithm (2) from stages 1 to N − 1 and
algorithm (3) at the last stage N . This latter approach is faster
because it uses diffusion essentially as a post-processing step.
Filtering impact was quantified as the (signed) percentage
of improvement in FN (resp. FP) rates with respect to no
filtering defined by : 100 × (FNFilter − FNNoFilter)/FNNoFilter
(resp. 100× (FPFilter − FPNoFilter)/FPNoFilter).

IV. RESULTS

Fig.3 shows a scatter plot of the FN and FP rates of each
setting P1(α, 0

◦) and P2(γ) (one dot per reconstruction). The
plots compare patterns P1 (blue symbols, one symbol per
aperture angle α) and P2 (red symbols, one symbol per angular
step γ) for the clinical data combining all 4 patients. We
observe very different plot trends between patterns P1 and
P2. Pattern P1 curves have a vertical trend, with the FN rate
decreasing as the aperture increases with little increase of the
FP rate except for patient 4. The same trend was found for
pattern P0 (not shown on plot), with higher FN rates than
pattern P1. With pattern P2, the FN rate was always lower
than with pattern P1 while the subsampling implied increased
FP rate. The two plots of Fig.4 show the influence of the
starting angle θ for pattern P1 for the ex-vivo coil (Fig.4a) and
patient 2 (Fig.4b) data. The best starting angle for the ex-vivo
coil (θ = −30◦) is the worst for the patient case, for which

Fig. 3. FN rates against FP rates (clipped to 60%) comparing P1 and P2.
Black circles : P1(30◦, 0◦), P2(3◦). Red circles : P1(60◦, 0◦), P2(30◦).

(a) (b)

Fig. 4. Plots of FN rates against FP rates (4b clipped to 90%) showing the
impact of the starting angle θ for pattern P1.

more variability is observed, possibly due to the presence of
more intense background structures. Overall, systematically
lower FN rates are obtained with pattern P2 showing a better
recovery of the coil in reconstructions than those obtained
with pattern P1, but at the cost of higher FP rates yielding
visually noisier reconstructions. Visual inspection of the coil
reconstructions as MIP rendering images for patient 1 and
patient 2 are provided. A comparison of the ground truth
(GT) reconstruction with reconstructions obtained with each
pattern of Fig.2 and using algorithm (2) at all stages of the
hierarchical approach is provided on Fig.5. Visual quality of
the reconstruction is ranked lowest for P0 (Fig.5b) and highest
for P2 (Fig.5d). Result for P1 (Fig.5c) shows that using one
extra-projection orthogonal to the center orientation of P0

significantly improves the quality of the reconstruction. The
GT reconstruction for patient 2 shows a peripheral loop of
the coil (see arrow) on Fig.6a. This key clinical information
is not entirely recovered with P1 whatever the starting angle
θ (Fig.6b,6c,6e,6f). It is clearly recovered using P2(30

◦)
(Fig.6d) ie with 6 projections only. Quantitative results where
3D diffusion filtering of settings P1(60

◦, 0◦) and P2(30
◦).

TABLE I reports the percentage of improvement for FN and
FP rates averaged over all four clinical data sets. Overall,
multi-directional diffusion tensors TNLAD and TNLD had more
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impact than TCED. Using diffusion as a post-processing (algo-
rithm (3) at stage N only) generally resulted in better FN and
FP rates than using diffusion at all stages of the hierarchical
approach. Diffusion filtering with TNLAD reduced the structural
noise induced by angular subsampling (decreased FP rates)
and recovered some of the missing information (decreased
FN rates). It is most significant with pattern P2 where there
is more structural noise than with pattern P1. Fig.7 shows
reconstructions obtained using diffusion at all stages of the
hierarchical approach for patient 1 with setting P2(30

◦).
Coherence enhancing diffusion filter (TCED tensor) resulted in
visually smoother coil structures (Fig.7a) with some remaining
structural noise. The alternative isotropic tensor TNLD resulted
in visually less noisy reconstructions (Fig.7b) while tensor
TNLAD appears to produce a good combination of the other
two filters (Fig.7c).

V. DISCUSSION AND CONCLUSION

In this paper we evaluated three subsampled rotational
acquisition patterns for intra-operative 3D coil imaging that
are specifically designed for biplane C-arm systems. Sparse
approximation through �1-constrained reconstruction was used
to generate 3D images of the coil in presence of missing
projection data. Results obtained for one coil in air and four
patient datasets showed how a sparse approximation performs
according to both the selected acquisition pattern and the quan-
tity of missing information (angular aperture or angular step)
in terms of support recovery and visual inspection. Analysis
of false negative and true positive rates clearly distinguished
the limited aperture patterns P0 and P1 from the uniformly
subsampled pattern P2. Pattern P0 was deemed insufficient
in all cases, and pattern P2 was ranked best. In between,
pattern P1 showed a non-negligible variability depending on
the start angle of the acquisition. This confirms that there exists
a preferred direction in which a coil should be imaged, as
described in a different context by Varga [3], in order to avoid
unfavorable background superimposition. Indeed, we found
in one instance that a clinically important information was
not recovered with pattern P1 whatever the starting angle.
Pattern P2 was able to recover this information with as few
as 6 projections. We also investigated using 3D diffusion
filtering as part of the reconstruction process to promote
curvilinear structures. Three different diffusion tensor designs
were considered to locally modulate the strength and direction
of the filtering. All three filters improved the reconstructions
either by promoting curvilinear structure and/or smoothing out
structural noise.
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(a) (b) (c) (d)

Fig. 5. Patient 1. MIP rendering of reconstructions without diffusion filtering:
(a) GT, (b) P0 (60◦, 0◦), (c) P1 (60◦, 0◦), (d) P2 (30◦).

(a) (b) (c)

(d) (e) (f)

Fig. 6. Patient 2. MIP rendering of reconstructions without diffusion filtering:
(a) GT, (d) P2 (30◦), (b) P1 (60◦, 0◦), (c) P1 (60◦,−10◦), (e) P1

(60◦,−20◦), (f) P1 (60◦,−30◦). White arrow points at a coil loop.

TABLE I
COMPARING % IMPROVEMENT OF FN AND FP RATES USING DIFFUSION

FILTERING AT ALL STAGES OR LAST STAGE ONLY FOR ACQUISITION
PATTERNS P1(60◦, 0◦) AND P2(30◦)

.

Diffusion P1, all P1, last P2, all P2, last

tensor T FN FP FN FP FN FP FN FP

CED −1 +3 −2 −2 +4 −11 −4 −14

NLD −7 +5 −6 −8 −22 −27 −24 −28

NLAD −4 +2 −8 −11 −19 −31 −27 −29

(a) (b) (c)

Fig. 7. Patient 1. MIP rendering of reconstructions with diffusion filtering at
all stages and pattern P2 (30◦): (a) CED, (b) NLAD
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Abstract—High quality cardiac X-ray CT imaging is important 
in the diagnosis of various heart diseases. Since the heart is 
continuously beating during X-ray CT scanning, however, motion 
artifacts are included in a reconstructed image which may lead 
misdiagnosis. Recently, we proposed a cardiac motion estimation 
(ME) and motion compensation (MC) algorithm based on partial 
angle reconstructed (PAR) images, and showed using a digital 
phantom and a physical phantom that the algorithm can 
noticeably improve the image quality by reducing motion artifacts. 
Since the cone angle effect on 3D PAR images was not considered 
in the previous study, however, the estimated motion may be less 
accurate in recent high-end systems having a large detector cone 
angle. In response, we propose a space-invariant filter, which is 
designed by analyzing the frequency characteristics of PAR image, 
so as to remove the cone angle effect in the ME process. Via 
simulations, it is shown that the proposed filter improves the 
accuracy of motion estimation and consequently the quality of 
motion-compensated images. 
 

Index Terms—Cardiac X-ray CT, partial angle reconstruction, 
motion artifacts, motion estimation and compensation, cone beam 
CT. 

I. INTRODUCTION 
Cardiac X-ray CT imaging has become a promising 

noninvasive tool for early detection of cardiac disease as the 
gantry rotation speed becomes faster. However, it is still 
challenging to obtain an artifact-free cardiac image, because the 
rotation speed is not fast enough compared with cardiac motion. 
Thereby, many vendors try to reduce motion artifacts by 
developing an advanced X-ray CT system with faster rotation 
speed. However, it leads high hardware complexity and 
consequent cost increase. In response, many software 
approaches have been proposed to improve the image quality 
by estimating the cardiac motion and compensating it without 
hardware modification [1-6]. 

Recently, we proposed a cardiac ME/MC algorithm based on 
PAR images [6]. Since a PAR image is reconstructed by using a 
sinogram with a scan range of  which is much smaller than a 
short scan range of + , it has high temporal resolution. Our 
previous algorithm can thereby estimate motion accurately and 
reduce motion artifacts considerably in the experiments using 
the digital XCAT phantom and a physical dynamic cardiac 
phantom. Since the algorithm estimates cardiac motion without  
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Fig. 1.  Local shift-variant Fourier model for (a) a single view and (b) multiple 
views within a scan range of . 
 
considering the cone angle effect on 3D PAR images, however, 
the estimated motion may be less accurate for an X-ray CT 
system having a large cone angle.  

In this paper, we propose filtering PAR images prior to ME 
to improve the performance of the previous PAR image-based 
ME/MC algorithm. Via the proposed filtering, we can remove 
the cone angle data inconsistency between two PAR images for 
ME. 

This paper is organized as follows. In section II, brief 
reviews on our previous algorithm and the description on the 
proposed prefiltering scheme are given. In section III, 
experimental results are provided, and conclusions are given in 
section IV.  

II. PROPOSED METHOD 
Our previous algorithm estimates the cardiac motion based 

on PAR images and incorporates it into image reconstruction 
for motion compensation [6]. In the algorithm, to estimate the 
motion, an acquired cone beam sinogram is converted into 
cone-parallel geometry via a rebinning process. Subsequently, 
two PAR images are reconstructed at the two phases separated 

 90 from a target phase, respectively, with a scan range of . 
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Fig. 2.  Illustration of a frequency band filled by the cone-parallel sinogram 
with an angular range of , at an arbitrary point x.  
 
For the sake of convenience, we consider that the two conjugate 
PAR images correspond to the phases of 0  and 180 , 
respectively. To reduce the shading artifacts due to the limited 
view angle, we apply band-pass filtering to those PAR images, 
and estimate MVF via non-rigid registration between them. 
Using the estimated MVF from two conjugate PAR images, we 
can determine MVFs from the target phase to any arbitrary 
phases, based on the linear motion assumption. We can then 
perform motion-compensated reconstruction using the MVFs 
[7].  

As the cone angle increases, however, the inconsistency 
between conjugate PAR images arises, and consequently the 
motion estimation may become inaccurate depending on the 
location. In order to eliminate the image inconsistency, we 
analyze the frequency characteristics of a PAR image based on 
a local shift-variant Fourier model [8, 9]. According to this 
model, at an arbitrary point x, the projection for one view 
contributes to the frequency information on the plane in the 
frequency domain, whose normal vector equals to a direction 
vector of the ray passing through x, as shown in Fig. 1(a). By 
extending this model to a continuous scan trajectory, we can 
determine the frequency band for an arbitrary point x in a PAR 
image at phase 0  as shown in Fig. 1(b). Similarly, we can also 
determine the frequency band at the same point x in the PAR 
image at phase 180 . We can easily note that the frequency 
bands of two PAR images are not the same but have an overlap. 
Based on this observation, we may eliminate the image 
inconsistency by using only the common frequency band for 
each point. Since the common frequency band changes 
according to the reconstructed point, spatially variant 
processing is required, which leads to high computational 

 
Fig. 3.  Proposed space-invariant filter in the frequency domain, to obtain the 
filtered conjugate PAR images including only the common frequency band 
information. 
 
complexity. 

In order to solve this problem, we propose to use a 
shift-invariant filter, which extracts only the common 
frequency band for any pair of corresponding points between 
conjugate PAR images. Figure 2 demonstrates the frequency 
band where the information is filled by the cone-parallel 
sinogram with an angular view range of , for an arbitrary point 
x in the PAR image of phase 0 . Here, 

1,startL  and 
2,endL  

denote the crossing lines between plane fxy|fz =  and the 
frequency planes where the information is provided by ray 
projections at the start and end views, rstart and rend, respectively. 
For a continuous source trajectory, the frequency band for x can 
be determined as the dotted area in Fig. 2(c), by sweeping a line 
from 

1,startL  to 
2,endL . Note here that the bounding lines, 

1,startL  and 
2,endL , vary according to the position of x. Since 

the position of reconstruction point x is bounded by the detector 
cone angle range, - m and m,  the small gray shaded frequency 
band in Fig 2(c) is only covered for any arbitrary x. Similarly, 
we can note that the same frequency band is covered for any 
arbitrary point in the PAR image at phase 180 . Based on this 
observation, we design a shift-invariant filter for PAR images 
so as to extract the information only in the common frequency 
band. Note that to prevent unwanted ringing artifacts, a smooth 
transition is imposed on the filter, as shown in Fig. 3. Applying 
the proposed space-invariant filter to the conjugate PAR 
images, we can eliminate the cone angle data inconsistency. We 
can thereby estimate more accurate motion for compensation.  

III. RESULTS 
In order to illustrate the effect of cone angle in conjugate 

PAR images, we adopt two simple numerical phantoms, NP1 
and NP2, as shown in Fig. 4. The left NP1 consists of a large 
static sphere and a small moving sphere, and the right NP2 has 
an additional large static sphere at the bottom compared with 
NP1 so that it can cause the cone angle data inconsistency that 
disturbs ME. 

Figure 5 shows the simulation results for the numerical 
phantoms. In Fig. 5(a), since the object movement can be 
clearly observed in the difference image even without proposed 
filtering, the object motion is estimated and compensated well. 
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Fig. 4.  Two numerical phantoms with a small moving object, which appears as 
white circles: (a) NP1 and (b) NP2. 
 
If a large static object locates near a moving object, however, 
the object movement may not be visible in the difference image, 
as shown in Fig. 5(b), due to the significant difference that is 
caused by the cone angle data inconsistency. Thereby, the 
estimated motion becomes erroneous, and motion artifacts still 
exist in the motion-compensated image. On the other hand, if 
the proposed prefiltering is applied, the cone angle data 
inconsistency is removed in conjugate PAR images, as shown 
in Fig. 5(c), so that the estimated motion becomes more 
accurate. Consequently, the motion-compensated image quality 
is also improved as shown in the figure.  

We also adopt the digital XCAT phantom [10] to evaluate 
the proposed algorithm, and Fig. 6 shows the simulation results. 
It is noted in Fig. 6(a) that the cone angle data inconsistency 
appears at the boundary between the lung and an organ 
(indicated by an arrow in the coronal image) and disturbs 
accurate ME. On the other hand, in Fig. 6(b), we can note that 
the cone angle data inconsistency is successfully eliminated by 
using the proposed prefiltering. Thereby, the motion- 
compensated image quality is considerably improved.  

IV. CONCLUSION 
We propose a preprocessing method to improve the 

performance of the PAR image-based cardiac ME/MC 
algorithm in X-ray CT. The proposed method attempts to 
remove the image inconsistency between conjugate PAR 
images by using only the common frequency band of two PAR 
images. The method can thereby estimate the motion more 
accurately even with the scanner having a large detector cone 
angle. Since the proposed method is based on shift-invariant 
filtering, it is computationally efficient and easy to implement. 
Via a phantom simulation study, it is found that the proposed 
method can estimate accurate motion so that the motion- 
compensated image quality can be improved. 
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Fig. 5.  Simulation results obtained from two numerical phantoms: (a) NP1 
without preprocessing, and (b) NP2 without and (c) with proposed prefiltering. 
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Fig. 6.  Simulation results obtained from the digital XCAT phantom (a) without 
and (b) with proposed prefiltering. 
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� 
Abstract—We are developing PRISM, the Particle/Ray 

Interaction Simulation Manager, as a simulation platform for x-
ray or CT imaging in security applications. PRISM is designed to 
be customizable and extensible and leverages existing tools such 
as GEANT4 for Monte Carlo simulation of photon trajectories or 
scatter, and TASMIP for the definition of the incident spectrum. 
Ray tracing can be used for accelerated calculation of the 
distribution of transmitted photons. Objects can be loaded from 
CAD models, enabling the modeling of complex objects. The 
detector module includes effects such as noise, crosstalk, gain, 
and lag. We use PRISM to simulate the CT scan of a suitcase and 
present the effects of the detector model and the reconstructed 
CT images.  
 

Index Terms—Computed Tomography, Detector Model, 
Monte Carlo, Projection Data, Simulation  

I. INTRODUCTION 
HERE is increasing desire to use simulations in the design 
of new X-ray systems for security applications and for 

characterizing the threat detection performance of existing 
systems and algorithms. Simulations can potentially overcome 
current challenges caused by limited access to raw 
experimental data. To realize these potential benefits, 
simulations must model objects with realistic complexity.  
Also, simulations must correctly model system effects such as 
focal spot blur, detector response, beam hardening and scatter, 
so that the appearance of threat and non-threat features is 
realistically depicted in the resulting images.  

We are developing a simulation tool capable of generating 
realistic computed tomography projection data. The goal of 
this project is not to reinvent the wheel, but rather to provide a 
platform that combines well validated software tools such as 
GEANT4[1] and TASMIP[2] for easy use. The platform also 
allows the import of standard Computer Aided Design (CAD) 
models, which will enable the modeling of realistic and 
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complex collections of objects.   
Fig 1 shows the workflow of the PRISM software. The 

simulation parameters are configured using a GUI interface, in 
which the source, detector, trajectory, and object are defined 
and passed to the simulation engine (GEANT4).  

Generate source
/� Choose initial distribution of energy, 

direction, position, and emission time 
from predefined set of functions

Simulation

Load initial photon 
distribution

System Geometry
/� Fixed, realistic source 

and detector geometry
/� Few editable 

parameters
/� Choose detector 

response from 
predefined list

Object Geometry
/� Select from luggage 

library or user 
generated CAD files

Physics
/� Choose ray-tracing/

Monte Carlo
/� Choose which processes 

to include for each 
particle type

Detector Response
/� Predefined list (photon 

counting, scintillator, 
etc.) or user can 
process output file

Data Processing
/� Save as images

Simulation Parameters
/� Angular range, number of 

views, seed, verbosity, 
output path, frequency of 
scatter simulation

Photon counting 
detector

Use simulation output 
as input for detector 

simulation

 
Fig.  1. Workflow of the PRISM software 

 
A typical bottleneck in realistic simulations is time and our 

aim is to alleviate this by employing various computational 
strategies such as graphics card computing and multi-core 
implementations. Monte Carlo simulation of photon transport 
through the object offers the most realistic distribution of x-
ray photons, but full Monte Carlo simulations are quite costly. 
Ray tracing methods are much faster but cannot simulate 
scatter accurately. Therefore, we combine ray tracing and 
Monte Carlo by using Monte Carlo simulations to estimate the 
scatter distribution, and ray tracing method to produce realistic  
transmission images, complete with effects such as beam 

PRISM: A new software tool for simulating 
realistic CT data with CAD model based objects 

T. Funk, D. Badali, S. Hsieh, T.G. Schmidt  

T 
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hardening and focal spot blur. However, PRISM is designed to 
be modular so that the simulation can be tailored to the user’s 
needs. For imaging based on back scatter, for example, 
PRISM can be run entirely in Monte Carlo mode. 
 

Hence, we propose to estimate the primary signal using ray 
tracing and the scatter signal from a subset of projection data.  
The estimated scatter signal is then denoised, interpolated, and 
combined with the ray tracing output. Fig. 2 shows a flow 
chart of the proposed workflow.  

 
Fig. 2  Scatter variance reduction workflow.  
 
 Several types of x-ray detectors are presently available for 
commercial use. These include (1) amorphous silicon flat-
panel detectors, (2) CMOS detectors, (3) scintillator-
photodiode detectors, (4) xenon gas detectors, (5) CCD 
detectors and (6) direct conversion, photon counting detectors. 
PRISM has a flexible detector module to convert detected x-
ray photons into detector images, taking into account various 
detector imperfections which are included as postprocessing 
steps. The type of postprocessing is tuned to the detector type. 
Most effects are parameterized and the strength of each effect 
can be tuned for easy adaption to realistic detector responses.  

The detector module is responsible for the injection of 
noise. Quantum noise is added to each energy bin, and energy-
dependent quantum efficiency and gain factors are also 
included. For example, an ideal photon counting detector 
weights all photons equally, but other detectors with finite 
stopping power will fail to detect all photons and would 
integrate the total deposited energy[3], [4]. Gaussian 
electronic noise from the detector readout is also added. 
Crosstalk is included. Detector lag, which is typically more 
prominent in amorphous silicon detectors, is modeled as a 
decaying exponential residual[5]. Veiling glare is also 
included as an exponential falloff[6].  

II. SUITCASE SIMULATION 
We have assembled a packed suitcase model using common 

items (shown in Fig. 3). We also included a handgun with all 
metal parts converted to plastic, demonstrating the utility of 
such simulations.  

For the example simulations, the source-to-detector distance 
was 100 cm and the center of rotation was 70 cm from the 

source. We simulated a 140 kVp X-ray source with a TASMIP 
spectrum. The detector was 95 cm by 95 cm with 512 x 512 
pixels and a pixel pitch of 1.86 mm. We assumed a CMOS 
detector with a CsI scintillator screen of 3 mm thickness. A 
circular trajectory was assumed and we simulated 512 
projections over 360 degrees.  

Fig. 3. Rendering of the CAD model of the suitcase. 
 
We used our in house reconstruction engine AccuRabbit1 to 

reconstruct the simulated projection data. We used 512^3 
voxels with a voxel size of 1 mm. 

III. RESULTS 

 
Fig. 4. Projection images (top, left) ray tracing using a 

monochromatic beam, (top, right) ray tracing using a 
polychromatic beam, (bottom, left) ray tracing using a 
polychromatic beam with scatter and focal spot blur added, 
(bottom, right) smoothed scatter response from Monte Carlo 
simulation.   
 

1 AccuRabbit was recently added to the benchmarking website RabbitCT 
(https://www5.cs.fau.de/research/projects/rabbitct/show_algorithm/?aid=32) 
and is the most accurate and one of the fastest GPU algorithm listed.  
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Fig. 4 shows one projection with different post processing 
applied after the ray tracing step. We compare a 
monochromatic scan at 180keV and a polychromatic scan at 
140kVp. In addition, we show how scatter and focal spot blur 
degrades the projection images.  

 

 
Fig. 5.  Cross-section through the reconstructed volume 

using simulated projection data. (top, left) ray tracing using a 
monochromatic beam, (top, right) ray tracing using a 
polychromatic beam, (bottom, left) ray tracing using a 
polychromatic beam with scatter and focal spot blur added, 
(bottom, right) same data as on the left with realistic levels of 
Poisson noise added. 

 

 
Fig. 6.  Cross section through the reconstructed volume 

using simulated projection data with scatter and focal spot blur 
with different levels of detector noise (top, left) Poisson noise 
only, (top, right) added electronic noise and QDE, (bottom, 
left) added veiling glare (bottom, right) added cross talk. 

 
Fig 5 and Fig 6 show reconstructions of projection data with 

different levels of physics and detector effects. In particular, 

Fig 5 shows the appearance of beam hardening artifacts when 
a polychromatic spectrum is used instead of the 
monochromatic spectrum. Further artifacts are introduced 
through the addition of scatter and Poisson noise. We also 
simulated the effects of detector imperfections such as QDE 
and electronic noise, vailing glare, and cross talk. The 
resulting reconstructions are shown in Fig 6. Artifacts due to 
detector imperfections are subtle but it is very clear that they 
cannot be ignored in a realistic simulation.  

IV. CONCLUSIONS 
PRISM is being developed as an easy-to-use X-ray 

simulation platform for security applications.  The results 
demonstrate the ability of PRISM to model realistic detector 
effects, such as veiling glare and electronic noise.  The CAD 
interface enables the simulation of complex objects, such as 
the suitcase model presented in this work.  Future work is 
planned to further validate the PRISM tool and to develop a 
library of luggage models.  
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A reformulation of the x-ray transmission image reconstruction problem for more

accurate modeling of the polychromatic and spatial resolution effects

Lucretiu M. Popescu∗

Abstract— We present a reformulation of the x-ray transmission

tomography problem resulting from taking second order approx-

imations of the integrals of the exponential attenuation term over

projection spatial resolution kernel and energy spectrum. The re-

sults lead to an algebraic formulation of the transmission tomog-

raphy problem involving the cross-correlations of image elements’

projections, consequence of projection beam finite size and image

elements arrangement pattern, as well as the polychromatic nature

of the x-ray source. Using a general model for x-ray transmission to-

mography we derive multiplicative iterative reconstruction schemes

for the cases of Gaussian and Poisson noise, and unify the solutions

into a single form. The implementations of the new formulations

are discussed.

I. INTRODUCTION

The recent transition from analytic to iterative reconstruction
algorithms in x-ray transmission computed tomography (CT)
represents a shift from integral geometry view of the image re-
construction problem to algebraic formulations, that are increas-
ingly derived from physical and statistical considerations. The it-
erative algorithms allow for incorporation of more accurate mod-
els of physics and geometry of data acquisition directly into the
reconstruction model [1], rather than as data preprocessing steps,
with expected positive impact on image definition and noise
propagation. The experience of a previous such transition that
has taken place in nuclear medicine (PET, SPECT) for about the
past two decades, has confirmed such expectations. However, in
the case of CT, some anecdotal reports, as well as a fairly re-
cent study [2], have pointed out that the increase in measured
image quality can be attributed more to the use of regulariza-
tion terms, rather than the accurate modeling of x-ray projection
beams. Here we show that the solution to the problem of in-
tegrating the x-ray attenuation factor over the spatial resolution
kernel, as well as the energy spectrum, requires consideration of
the image elements projections cross-correlations, leading to an
algebraic formulation different from the standard form.

II. X-RAY TRANSMISSION TOMOGRAPHY MODEL

A. The projection data model

For a given x-ray transmission projection data point gj , the
expected detector signal value is given by

gj = Ijεj

∫
E
dEφj(E)ξj(E)

∫
Dj

dywj(y)e
−∑

i hi(y)μi(E)+bj ,

(1)
where

Ij the expected number of source photons emitted at data point
position j.

∗Office of Science and Engineering Laboratories, Center for De-
vices and Radiological Health, Food and Drug Administration, E-mail:
lucretiu.popescu@fda.hhs.gov.

φj(E) the energy spectrum of the source photons for data point
j; E is the energy domain,

∫
E φj(E)dE = 1.

εj the average detector efficiency (probability of detection) for
photons providing signal in data point j integrated over
the energy spectrum φj .

ξj(E) is the average contribution of a photon of energy E to
the signal collected in data point j; normalized so that∫
E φj(E)ξj(E)dE = 1.

y is a projection ray (a point in the projection space);

wj(y) is the spatial resolution kernel, the probability a photon
incident along ray y produces a signal in j; Dj is the pro-
jection domain support of wj(y),

∫
Dj

wj(y)dy = 1.

hi(y) is the distance the ray y crosses the image element i.

μi(E) is the energy dependent attenuation coefficient of image
element i; more about it in section II B.

bj background signal (scattered photons, . . . ) at position j.

In (1) the index j can stand for one particular spatial projec-
tion as in the case of standard CT, or a combination of spatial
projection and source setting as in the case of dual (or multiple)
energy CT, or for a spatial projection and detector energy window
combination, as in the case of photon-counting energy-resolving
detectors, as well as the case of dual layer detectors. The factors
φj(E) and ξj(E) can be modified accordingly, with ξj(E) de-
pending also on the count rate. The system response function is
factorized in energy and spatial components wj(y)ξj(E), which
is well justified if wj(y) is mainly due the acquisition geometry
(e.g. the gantry rotation). A more general version of (1) can be
written if we take ξj(y, E). Here we will use the factorized ver-
sion, however, variations of the results derived below can also be
obtained for the nonfactorized version of detector response.

When no object is present we have

gj0 = Ijεj (2)

which usually is the value used in practice, however some adjust-
ments may be necessary due to the detector nonlinear response
with the incident photon flux.

B. Object attenuation representation

The energy dependent attenuation coefficient μi(E) can ex-
pressed as a linear superposition of several components

μi(E) =

L∑
l=1

filμl(E) . (3)

If a standard data acquisition is used (a single energy source and
energy integrating detector) most often there is little ability to
distinguish between multiple components, in which case a sin-
gle component that provides a good representation of the aver-
age attenuation may be used. For spectral CT, two components
with low and high atomic number, respectively, can be used. The
components can also be chosen by splitting into photoelectric
and Compton interaction parts, the dominant photon attenuation
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mechanisms in the CT operating energy range [3, 4]. In par-
ticular situations, more components could be used if additional
constraints are imposed.

We introduce the following collective notations: ĝ ≡ {ĝj} the
ensemble of data collected, and f ≡ {fil} the ensemble of all
image component coefficients. The former are the data, and the
latter are the unknowns to be determined.

With this representation the sensitivity of data model to image
values is

−
∂gj(f)

∂fil
= Ijεj

∫
E
dEφj(E)ξj(E)μil(E)×∫

Dj

dywj(y)hi(y)e
−∑

i hi(y)μi(E) . (4)

III. IMAGE RECONSTRUCTION ALGORITHM

The expressions for gj(f) and
(
−∂gj(f)

∂fil

)
can be introduced

into the iterative update equation below

f
(m+1)
il =f

(m)
il

⎡⎢⎢⎣ 1∑
j∈Sm

1
ηj

(
− ∂gj

∂fil

) ∑
j∈Sm

1

ηj

(
− ∂gj
∂fil

)(
ĝj

gj(f
(m))

)α⎤⎥⎥⎦
−λ

,

(5)
where ĝj is a measured projection data point, and Sm is a subset
of data points j used for the m-th update. Equation (5) represents
a formal unification of two multiplicative update expressions.
The first, obtained for α = 2, corresponds to the least-squares
solution considering independent Gaussian noise σ2

ĝj
= ηjgj ,

where ηj is the detector element Fano factor. The second, ob-
tained for α = 1, is obtained for photon counting detectors,
ηj = 1, in conditions of Poisson noise, and corresponds to a max-
imum likelihood expectation maximization (ML-EM) scheme.
The second exponent, λ > 0, is a relaxation parameter applied
in keeping with the multiplicative nature of the algorithm. This
form was previously presented in [5]. Generalizations consider-
ing noise correlations between nearby detector elements can be
obtained as in [6].

IV. CALCULATION OF PROJECTION gj AND
∂gj
∂fil

A. Integration over the spatial resolution kernel

In (1) the attenuation exponential appears as the integrated of
two integrals, one over the spatial resolution kernel, the other

over the energy spectrum and detector energy response function.
Integrating over the energy can be done by summing over the dis-
cretized energy spectrum points as proposed in [7, 8]. The same
strategy can be applied to the integration over the spatial resolu-
tion kernel by subsampling the spatial resolution range and pro-
jecting each line individually. However, the precise projection
of each line is the time consuming bottleneck of image recon-
struction algorithms, with great effort usually expended to sim-
plify and speed it up [9], so this approach leads to multiple times
increase in computation time. Even if this alternative becomes
more approachable with the availability of massive parallel com-
putation resources, it obscures the insight into the nature of the
problem that a more analytic approach could reveal.

To investigate the problem of the attenuation exponential inte-
gration we will use the relation〈

e−X
〉
= e−〈X〉+ 1

2var(X) (6)
where 〈f(X)〉 =

∫
p(X)f(X)dX , with p(X) a probability den-

sity. The equation is exact for Gaussians, and a good approxima-
tion for other distributions provided the variance is not too large
or the distribution not too skewed.

In order to simplify the notations we define

〈X〉 =
∫
Dj

wj(y)X(y)dy . (7)

With this the integral over the spatial resolution domain then can
be approximated as〈

e−
∑

i hi(y)μi(E)
〉
≈ e−〈

∑
i hi(y)μi(E)〉+ 1

2var(
∑

i hi(y)μi(E))

(8)

With the notations

〈hij〉 = 〈hi(y)〉 , (9a)
cov(hij , hi′j) = 〈hi(y)hi′(y)〉 − 〈hij〉 〈hi′j〉 , (9b)

the mean and variance in (8) are〈∑
i

hi(y)μi(E)

〉
=
∑
i

〈hij〉μi(E) (10a)

var

(∑
i

hi(y)μi(E)

)
=
∑
i,i′

cov(hij , hi′j)μi(E)μi′(E)

(10b)

From (8) and (3) the transmission projection model (1) becomes

gj(f) =Ijεj

∫
E
dEφj(E)ξj(E) exp

⎡⎣−∑
i

〈hij〉
∑
l

filμl(E) +
1

2

∑
i,i′

cov(hij , hi′j)
∑
l,l′

filfi′l′μl(E)μl′(E)

⎤⎦ , (11a)

and the sensitivity with fil is

−
∂gj(f)

∂fil
=Ijεj

∫
E
dEφj(E)ξj(E)

[
〈hij〉μl(E)−

∑
i′

cov(hij , hi′j′)
∑
l′

fi′l′μl(E)μl′(E)

]
×

exp

⎡⎣−∑
i

〈hij〉
∑
l

filμl(E) +
1

2

∑
i,i′

cov(hij , hi′j)
∑
l,l′

filfi′l′μl(E)μl′(E)

⎤⎦ . (11b)
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hi′j

hij

hi′′j

FIG. 1: Schematic representation of a projection beam as it passes through im-
age elements represented as pixels. If two pixels are situated along the projection
path so that most rays passing through each of them are simultaneously pass-
ing through both of them, and with lengths of similar proportions, (high/high,
small/small), then the projections are positively correlated, as is the case with
hij and hi′j in the picture above. If the pixels are positioned relative to the
projection beam so that most of the rays are not passing simultaneously through
them, or when passing the length have dissimilar values (high/small, small/high),
then the projections are negatively correlated, as is the case with hij and hi′′j in
the picture above.

For a better understanding of the meaning of cross-correlation
of image element projection pairs, cov(hij , hi′j), see the exam-
ple in FIG. 1. The interference between the projection path and
the image elements arrangement pattern leads to positively and
negatively cross-correlated pairs of image elements projections,
as function of their relative positions along the path. When using
only thin projection lines these correlation terms are neglected
leading to artifacts, especially along tangents to the edges of
higher attenuating objects [10].

B. Integrating over the energy spectrum

Applying (6) directly over the whole energy spectrum may not
work because of the large departure from a bell-shaped distri-

bution of the projection values with energy, therefore we take
a decomposition of the spectrum φj(E) in a few more narrow
components

φj(E) =
∑
k

ajkφjk(E) (12)

with
∫
E φjk(E)dE = 1, and

∑
k ajk = 1. We can write

gj(f) =
∑
k

Ijkεjk

∫
Dj

dywj(y)

∫
E
dEφjk(E)ξjk(E)×

e−
∑

i hi(y)
∑

l filμl(E) + bj , (13)

with Ijk = Ijajk, εjk = εj
∫
E φjk(E)ξj(E)dE, and ξjk(E)

being ξj(E) renormalized so that
∫
E φjk(E)ξjk(E)dE = 1.

For the integral over the energy we introduce the notation

〈Y 〉E,k =

∫
E
φjk(E)ξjk(E)Y (E)dE . (14)

In order to avoid ambiguities, when necessary, we will use sub-
scripts to distinguish between averaging operators: E, k or just
k for integration over energy, and y for the integration over the
spatial resolution kernels. But we will drop them when confu-
sion is not likely in order to avoid cluttering. With this notation
equation (13) can be rewritten as

gj(f) =

〈∑
k

Ijkεjk

〈
e−

∑
i hi(y)

∑
l filμl(E)

〉
E,k

〉
y

+ bj .

(15)

From (6) we have

〈
e−

∑
i hi(y)

∑
l filμl(E)

〉
k
= e−

∑
l Tl(y)〈μl〉k+ 1

2

∑
l,l′ Tl(y)Tl′ (y)cov(μl,μl′ )k , (16)

where Tl(y) =
∑

i hi(y)fil. With (16) in (15) we obtain

gj(f) =
∑
k

Ijkεjk

∫
Dj

dywj(y) exp

⎛⎝−∑
l

Tl 〈μl〉k +
1

2

∑
l,l′

Tl(y)Tl′(y)cov(μl, μl′)k

⎞⎠ (17a)

−
∂gj(f)

∂fil
=
∑
k

Ijkεjk

∫
Dj

dywj(y)hi(y)

(
〈μl〉k −

∑
l′

Tl′(y)cov(μl, μl′)k

)
exp

⎛⎝−∑
l

Tl 〈μl〉k +
1

2

∑
l,l′

Tl(y)Tl′(y)cov(μl, μl′)k

⎞⎠
(17b)

V. DISCUSSION

For a better understanding of the results, it is helpful to make
a comparison to the algebraic formulation of the standard com-
puted tomography problem, which best corresponds to the emis-
sion tomography case. In TABLE I we show the projection
equations for emission tomography and transmission tomogra-

phy in the thin line approximation, and integrating over the res-
olution kernel, respectively. For simplicity here we have taken
the monochromatic x-ray transmission case. In the thin line ap-
proximation, the logarithmic form of transmission tomography
and the standard (emission) tomography form are algebraically
equivalent. However, when considering the finite beam size we
see a departure, the transmission tomography form requiring the
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TABLE I: Comparison of the algebraic formulae for emission tomography, and monochromatic transmission tomography in the approximation of
thin projection line and the finite spatial resolution case, respectively.

Projection Ideal thin line Finite resolution

Standard (emission)
tomography

ge(y) =
∑
i

hi(y)fi ge
j =

∫
Dj

wj(y)g
e(y)dy =

∑
i

[∫
Dj

wj(y)hi(y)dy

]
fi =

∑
i

〈hij〉 fi

Transmission
tomography

gt(y) = g0(y)e
−∑

i hi(y)fi gt
j = g0je

−∑
i〈hij〉fi+ 1

2

∑
i,i′ cov(hij ,hi′j)fifi′

Transmission
tomography (log)

gtl(y) = ln
g0(y)

gt(y)
=
∑
i

hi(y)fi gtl
j = ln

g0j
gt
j

=
∑
i

〈hij〉 fi − 1

2

∑
i,i′

cov(hij , hi′j)fifi′

inclusion of the image elements projections cross-correlations,
fifi′cov(hij , hi′j), as a higher order approximation, while the
standard tomography form preserves its linear character, taking
only the averages of the projection elements 〈hij〉. It should be
noted, that is the latter form that is presented as model-based
in some transmission iterative reconstruction algorithms, not the
higher order approximation form.

Concerning the practical implementation, the spatial correla-
tions cov(hij , hi′j) can be computed more easily if the image is
represented with spherically symmetric basis functions (blobs),
because the projection values are not dependent on incident an-
gles. Only the distances from the blobs to the projection line
and how far apart the pair of blobs are from each other are nec-
essary, resulting in only three dimensions being required for a
blob projection cross-correlations look-up table. By substantially
changing a previous ray tracing algorithm through blobs [11] we
have implemented a ray tracing algorithm that retrieves the nec-
essary parameters for the blob projections cross-correlation cal-
culation. However, the full calculation introduces a new loop
with the number of operations of order O(N2), where N is the
length in image elements of a projection line. This makes the
algorithm uncompetitive to the alternative of directly ray-racing
multiple lines in order to adequately sample the spatial resolu-
tion kernel and the image elements projections, however it can
be used for analysis of the finite beam size effects.

The second part, integration over the energy spectrum, pre-

sented in section IV B, leads to equations that can be directly
implemented and used in update equation (5). This is a more
convenient alternative to the discrete integration by fine sampling
and summation over the energy spectrum and detector response
function. The tests carried using a single component, so far, show
practically equivalent results, with an increase in speed.

VI. CONCLUSIONS

The differences between transmission and emission tomogra-
phy go beyond the need to take the logarithm of the data and ac-
count for the resulting changes in noise propagation. The projec-
tion beam finite size results in image element projections cross-
correlation effects, that depend on their overlapping pattern along
the projection beam. The second-order approximate equations
derived here allow for an analytic investigation of the interfer-
ence between image element size and representation form (voxel,
blob, spline, etc) and the projection beam size and shape. It may
also provide new means to investigate and mitigate the streak
artifacts produced by high attenuation objects (metal artifacts).
The results of the integral over the energy spectrum offer a prac-
tical solution to the problem of polychromatic x-ray tracing that
can be directly used in the iterative update equations presented,
and applicable for standard or spectral CT.
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X-ray Computed Tomography of Flame Structure in
Porous Media Burners

Meng Wu, Jared Dunnmon, Yan Xia, Waldo Hinshaw, Norbert Pelc, Andreas Maier, Rebecca Fahrig,
and Matthias Ihme

Abstract—X-ray Computed Tomography (CT) measurements
are applied to combustion systems to obtain non-invasive three-
dimensional temperature field measurements at high spatial
resolution. X-ray attenuation measurements are obtained us-
ing a multi-zone silicon carbide Porous Media Burner (PMB)
combusting a radiodense Kr-O2-CH4 mixture. A special beam
hardening correction is designed to reduce the nonlinearity
of the reconstructed krypton attenuation signal resuling from
beam hardening by the burner wall. A statistical reconstruction
algorithm is investigated to yield the noise reduction in the
reconstruction domain. The ideal gas law is then used to estimate
the temperature field using reconstructed krypton attenuation.
The results demonstrated the potential of CT in obtaining
quantitative, spatially resolved temperature field data within
optically inaccessible porous media combustion environments.

Index Terms—X-ray Computed Tomography, combustion,
beam hardening correction, statistical reconstruction.

I. INTRODUCTION

Porous Media Burners (PMBs) facilitate combustion of a
gas mixture within the voids of a solid matrix, which results
in combustion properties substantially different than those of a
free flame. Stabilization of the flame inside the porous material
leads to lower emissions, enhanced combustion stability at
lean conditions, and increased burning rates [1]. Due to these
characteristics, PMBs show promise as a more efficient, robust,
and environmentally friendly alternative to a wide variety of
conventional combustion systems. Potential applications for
PMBs include surface heaters, domestic heating units, gas tur-
bines, reformers, and afterburners in solid oxide fuel cells [2].
Traditional techniques for PMB combustion measurements are
often based on pointwise diagnostics such as thermocouples
and exhaust gas probes, which do not yield high-resolution
volumetric visualization of internal flame structure or three-
dimensional field data. Thus, we investigate the use of X-
ray CT technology as an alternative experimental diagnostic
that enables research into the detailed physical, chemical, and
thermodynamic processes taking place within PMBs.

X-ray CT methods are increasingly being applied to fluid
mechanics problems that involve optically inaccessible flow
environments. Even in gas-phase phenomena, X-ray CT can
be used to create 3-D quantitative datasets describing the
mole fraction of krypton, a radiodense tracer gas, at energies
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characteristic of clinical and research scanners [3]. To increase
the contrast of krypton gas, low X-ray energies (45-60 kVp)
have been successfully used for imaging. However, as a result
of the relatively high attenuation of the solid burner structure
and the uncertain path length through the porous media, the
transmitted X-ray spectra are altered; this affects the mass
attenuation of the krypton in a complex fashion. This non-
linearity may cause inaccurate krypton attenuation measure-
ments in reconstructed CT images. However, since most beam
hardening correction algorithms are meant to obtain correct
attenuation coefficients of primary attenuators in a scanned
object (e.g. water and bone in medical applications), these
algorithms are not necessarily well-suited for application to
combustion systems where variations in gas-phase attenuation
are of interest.

Although krypton has a high atomic number, the density
of krypton gas is much lower than water and adipose. Thus,
the krypton attenuation measured by CT reconstruction suffers
severely from quantum noise. While one may acquire multiple
scans and use averaging to improve the Signal-to-Noise Ratio
(SNR), it is desirable to minimize the amount of time over
which the data must be averaged to ensure steady-state mea-
surements. In this work, we demonstrate that application of
statistical reconstruction techniques that have performed well
in medical contexts to reconstruction of attenuation data within
gas-phase combustion. The application of these techniques
show promise in SNR enhancement via noise reduction.

II. POROUS MEDIA BURNER

The PMB investigated in this work is illustrated in Fig.
1(a). It is placed on the tabletop X-ray radiography system
shown in Fig. 1(b). The burner casing consisted of a quartz
tube of 0.41 cm thickness, 5.59 cm inner diameter, and 17.78
cm length. The burner matrix consistes of three adjacently
placed Silicon Carbide (SiC) disks of 2.54 cm in height and
5.08 cm in diameter. A fine-pore 100 Pores-Per-Inch (PPI) disk
was placed furthest upstream for use as a flashback arrestor
and flow homogenizer, followed by a 65 PPI disk for flame
quenching and a 3 PPI disk that functions as the combustion
zone. SiC-disks were held in place via a compression fit using
a ceramic fiber insulation lining, visible in Fig. 1(a).

III. METHODS

A. Relation between attenuation and temperature

X-ray CT allows reconstruction of the attenuation coeffi-
cients, μ, in three spatial dimensions from a set of projections
taken over a large number of angles [4]. The attenuation
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Fig. 1: Experimental setup.

coefficient may be expressed as the following combination
of the mass attenuation coefficient m and the density ρ of a
known material,

μ(ξ) = m(ξ)ρ, (1)

where m is a nonlinear function of the photon energy (ξ) that
varies with material composition. Writing Eq. (1) for a mixture
of gases and introducing the partial density ρj gives [3],

μ(ξ) =
N∑
j=1

mj(ξ)ρj =
P

RuT

N∑
j=1

mj(ξ)XjWj , (2)

taking Wj as the molar mass of species j, Ru as the universal
gas constant, and Xj as the mole fraction. In the case of a
radiodense tracer gas such as krypton combined with low-
attenuation gases, one may treat Eq. (2) as the combination
of attenuation from the tracer and from the solid burner. In
this case, one may extend Eq. (2) to yield the following
simple expression for gas temperature in terms of known and
measured quantities [3],

T =
PWKrXKrmKr

RuΔμ
, (3)

where Δμ = μM − μB , μB is the attenuation measured
in a background scan (with only non-attenuating species in
the burner), μM is the attenuation of the burner containing a
krypton-augmented gas mixture at the effective X-ray energy,
and mKr is the mass attenuation coefficient of krypton at
the effective energy. Because light gases such as combustion
products and ambient air attenuate negligibly at these energies,
the μB-value is a good measurement of the appropriate signal
to be subtracted to isolate the attenuation resulting from the
radiodense tracer [3]. In the current work, we have used
projection-based subtraction to compute Δμ, which simplifies
averaging over multiple scans while requiring only a single
application of the beam hardening correction to the final
projection set.

B. Beam-hardening correction

As mentioned above, the goal of the beam hardening
correction presented here is different from that in most medical
CT-applications. To obtain an accurate krypton attenuation

image for transformation to an implied temperature signal, it
is necessary to compensate for nonlinear effects of varying
path length within the quartz tube and SiC porous reticulated
foam that make up the body of the burner. Since subtraction is
performed in the projection domain, we may apply the same
correction to the background and mixture scan sets before sub-
traction. Note that the effect of the beam hardening correction
for the quartz tube will cancel out in the subtraction process.
We propose to use a two-step beam hardening correction with
prior reconstruction to accurately model the effects of the two
materials.

The subtracted polychromatic line-integrals of the back-
ground scan and mixture scan are:

Δy =yM − yB

= log

(∫
I0(ξ)e

−μSiO2
(ξ)lSiO2

−μSiC(ξ)lSiCdξ

)
− log

(∫
I0(ξ)e

−μKr(ξ)lKr−μSiO2
(ξ)lSiO2

−μSiC(ξ)lSiCdξ

)
(4)

where μi(ξ) are the attenuation coefficients of three materials,
quartz, SiC, and krypton; li, are the path lengths, and I(ξ)
denotes the spectrum of the X-ray beam. The desired beam
hardening gain correction for krypton is,

α(lSiO2
, lSiC) =

Δy

μKrlKr
, (5)

which is a function of path lengths in both the quartz tube
and porous media. We have ignored the effect of krypton
because of its very low attenuation relative to the solid, and
the path length of the quartz tube can be easily calculated
from a prior reconstruction. However, the path length within
the porous media is hard to quantify explicitly because of its
complex internal structure. We therefore simplify the process
of computing the gain correction as a polynomial function of
lSiO2 and total line integral that includes both materials,

α(lSiO2
, lSiC) ≈ α(lSiO2

, y)

= β0 + β1y + β2y
2 + β3lSiO2 + β4y · lSiO2 .

(6)
The β-coefficients can be computed with a linear fitting using
known X-ray spectrum information. An example of calculated
polynomial coefficient values for a 60 kVp spectrum with an
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TABLE I: An example of calculated values for polynomial
coefficients of the beam hardening correction for 60 kVp
spectrum.

β0 β1 β2 β3 β4

0.9528 0.1130 -0.0085 -0.0114 0.0016

effective energy of 44.8 keV is shown in Table I. For larger
total line integral values, we increase the gain α to compensate
for the beam hardening effect. Further, longer quartz-tube path
lengths will decrease the correction gain because SiO2 has a
relatively small photoelectric effect compared to SiC. The line
integral difference Δycorr = α ·Δy that has been corrected for
beam hardening is used during the reconstruction process.

C. Statistical reconstruction

Attenuation measurements for the krypton tracer within the
reconstruction suffer from low signal–this is particularly true
when the flame temperature is high. Because CT noise remains
at the same level as it would in medical applications, this
variation may substantially alter computed krypton attenua-
tion in common FDK reconstructions [5]. Statistical iterative
reconstruction techniques based on accurate physical noise
modeling and geometric system description, on the other hand,
have demonstrated significant image quality improvement over
conventional methods [6]. In this study, we therefore consider
the penalized weighted least-squares (PWLS) algorithm for X-
ray CT reconstruction as an alternative to analytic methods.
In PWLS, the attenuation field is reconstructed as,

μ = argmin
0≤μ≤μmax

I∑
i=1

wi([Aμ]i −Δȳi)
2 + βR(μ), (7)

where A denotes the system matrix for the data acquisition
geometry, Δy denotes the subtracted projection with beam
hardening correction, and w contains the least-squares weights.
We selected the total variation as the penalty function R:

R(μ) =
J∑

j=1

∑
k∈Nj

|μj − μk|, (8)

where Nj denotes the indices of the neighbors of voxel j. Total
variation minimization has been known to perform well in
terms of both noise reduction and edge preservation. Because
the quartz tube and porous media will appear as zeros in
the reconstruction of subtracted projections (assuming perfect
registration), we reduced the weights of the penalty function
at voxels describing the solid-gas boundary by half.

IV. EXPERIMENTS

All experiments were performed using the PMB shown in
Fig. 1(a) on the tabletop X-ray radiography system (see Fig.
1(b)). The configuration of the PMB is detailed in Section
II. The tabletop system includes a fluoroscopic X-ray source
and a flat panel detector with pixel spacing of 0.336 mm. As
shown in Fig. 1(b), the burner is placed between the source-
collimator assembly (left) and detector (right) on a precision
rotating table to acquire 1200 projections over 360 degrees.
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Fig. 2: Beam hardening correction results using non-reacting
scan data with cold-flow krypton concentration of 35.58%
(solid mask in black).

The source-to-isocenter distance was 1061.2 mm, and source-
to-detector distance was measured at 1477.9 mm. Tomographic
acquisitions were conducted with a 60 kVp and 50 mA X-ray
beam to optimize SNR. The 3-D reconstruction volume has a
size of 384×384×700 pixels with 0.2 mm isotropic spacing.

V. RESULTS

A. Beam hardening correction

Figure 2(a) and (b) show FDK [5] reconstructions of a
tube filled with 36% krypton gas using the dual-material
polynomial beam hardening correction [7] and our proposed
approach. With our proposed beam hardening correction, the
krypton attenuation is more uniform than with the traditional
method. For instance, the differences between the gas region
and porous media region are smaller than using the conven-
tional correction—this can be observed in Fig. 2(c), which
shows the cross-sectionally average attenuation coefficient of
the gas voxels at different slices. With our proposed beam
hardening correction approach, the reconstruction has the same
krypton density inside and outside the 3 PPI porous media,
while with the conventional approach this is not the case.

B. Statistical reconstruction

Reconstruction results of a PMB burning a mixture contain-
ing 82.5% krypton using both FDK and PWLS are shown in
Fig. 3. We used the ADMM accelerated separable quadratic
surrogate method with 30 iterations to achieve the solution of
the PWLS problem for every fixed β value [8]. Even though
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Fig. 3: FDK (left) vs. PWLS (right) reconstruction results
using burn scan data with the krypton concentration of 82.4%
(solid mask in black).

a Hamming window is applied on the ramp filtering of the
FDK method to suppress high frequency components, it can
be observed that the noise level is fairly high throughout
the image. In contrast, the noise in the reconstruction results
from the PWLS-algorithm using TV penalty function (β = 4)
is substantially reduced. The interface between the different
porous media sections is also more clearly visible in the PWLS
result.

Finally, measured standard deviation of a homogeneous
region from one reconstructed slice was substantially lower
for PWLS ( 6.1× 10−4) than for FDK (2× 10−3), indicating
that local variations present in the FDK reconstruction has
been reduced by over 50 % by the PWLS technique.

C. Temperature analysis

At this point, we can use Eq. (3) to estimate an implied
temperature field from the attenuation data of Fig. 3. Specifi-
cally, we estimate the temperature field by observing that the
product μT is constant for constant P and XKr; this implies
that temperature at a given point is simply T = μoTo/μ, with
inlet temperature To known and the attenuation values μ and
μo obtained from the reconstruction. Note that while the 3 PPI
porous media structure can be easily identified and segmented
in the CT reconstruction, the 65 PPI and 100 PPI porous media
is below the resolution of the CT system. We treat voxels in
the 3 PPI section as the separate SiC and gas, and voxels in
the 65 PPI and 100 PPI as the mixture of SiC and gas. Thus,
the volume fraction of the SiC in the mixture voxels needed
to be properly accounted for before converting to temperature.

Because the attenuation is in the denominator of Eq. (3),
noise in this field will cause an inordinate amount of vari-
ability in the implied temperature field. Thus, reduction in
krypton attenuation noise resultant from PWLS results in a
substantially smoother temperature field, as shown in Fig. 4.
Such results show promise in allowing for reliable extraction
of 3-D flame structure and temperature fields from the PMB
interior. In these images, for instance, the flame (indicated
by regions of high temperature) is settled near the interface

Fig. 4: (Left) Reconstruction result of air scan (i.e., without
subtraction) to show the solid porous media structure and
(right) implied temperature distribution computed from the
reconstruction of PWLS (solid mask in black).

between the 3 PPI and 65 PPI regions. Substantial internal
structure can be observed throughout, while heat recirculation
within the solid matrix is also well visualized.

VI. CONCLUSION

In this paper, we have demonstrated the application of X-ray
CT to combustion systems to obtain non-invasive 3D tempera-
ture field measurements. With the particularly designed exper-
imental setup, the implied gas-phase temperature information
can be derived from the 3-D reconstructed attenuation data.
Further reconstruction methods are undertaken to improve the
image quality, including the newly proposed beam hardening
correction for reducing nonlinearity of Krypton attenuation as
well as the adoption of the statistical reconstruction algorithm
for suppressing the noise. From final 3D implied temperature
measurements, several key internal physical phenomena, such
as heat recirculation and spatial inhomogeneities within the
reaction zone, can be observed.

REFERENCES

[1] D. Trimis and F. Durst, “Combustion in a porous medium-advances and
applications,” Combust. Sci. Technol., vol. 121, no. 1-6, pp. 153–168,
1996.

[2] M. A. Mujeebu, M. Z. Abdullah, M. A. Bakar, A. Mohamad, R. Muhad,
and M. Abdullah, “Combustion in porous media and its applications–a
comprehensive survey,” J. Environ. Manage., vol. 90, no. 8, pp. 2287–
2312, 2009.

[3] J. Dunnmon, S. Sobhani, T. W. Kim, A. Kovscek, and M. Ihme,
“Characterization of scalar mixing in dense gaseous jets using X-ray
computed tomography,” Exp. Fluids, vol. 56, p. 193, 2015.

[4] J. Hsieh, Computed Tomography, Second Edition. 1000 20th Street,
Bellingham, WA 98227-0010 USA: SPIE, Oct. 2009.

[5] L. Feldkamp, L. Davis, and J. Kress, “Practical cone-beam algorithm,” J.
Opt. Soc. Am. A, vol. 1, no. 6, pp. 612–619, 1984.

[6] J.-B. Thibault, K. D. Sauer, C. A. Bouman, and J. Hsieh, “A three-
dimensional statistical approach to improved image quality for multislice
helical CT,” Med. Phys., vol. 34, no. 11, p. 4526, 2007.

[7] J. Hsieh, R. C. Molthen, C. a. Dawson, and R. H. Johnson, “An iterative
approach to the beam hardening correction in cone beam CT.,” Med.
Phys., vol. 27, pp. 23–9, Jan. 2000.

[8] H. Nien and J. A. Fessler, “Fast X-ray CT image reconstruction using
the linearized augmented Lagrangian method with ordered subsets,” arXiv
Prepr. arXiv1402.4381, p. 21, Feb. 2014.

The 4th International Conference on Image Formation in X-Ray Computed Tomography

454



� 
Abstract—A three-dimensional, two material pre-processing 

beam hardening correction method for x-ray computed 
tomography is described (BHC3D2M) for implementation in 
iterative reconstruction (IR). Beam hardening correction (BHC) 
can be implemented as part of IR; however, the computational 
cost of adding BHC to IR iterative loops is high.  For that reason, 
a preprocessing method of beam hardening correction for IR is 
desirable.  In this metod,   a seed image volume is first 
reconstructed, which is segmented into bone and water images.  
Bone and water pathlengths are determined by forward 
projection.  The pathlengths are used as indexes to a lookup 
table, which is used to correct the projection data.  One limitation 
of earlier beam hardening methods is that water is corrected in 
preprocessing, and bone in post-processing.  The methods to 
estimate the bone pathlengths were fan beam, thus limiting the 
accuracy of the bone correction.  The forward projection used 
here is three dimensional, producing a more accurate correction. 
 

Index Terms—x-Ray, CT, Computed Tomography, Beam 
Hardening Correction 
 

I. INTRODUCTION 

 
OST CT reconstruction algorithms operate under the 
assumption that the x-ray source is monochromatic.  In 

reality the x-ray source is polychromatic and the x-ray beam is 
comprised of photons covering a range of different energies. 
The attenuation of x-rays through tissue is energy dependent.  
Higher energy photons are attenuated less than lower energy 
photons, thus the x-rays reaching the detector are “harder” 
than those that left the source.  The primary contributors to 
beam hardening are soft tissue and bone.  If not accounted for, 
artifacts due to soft tissue beam hardening include cupping, 
where the image is darker at the center than the edges.   Bone 
beam hardening artifacts consist of dark streaks or bands 
between high density bone structures, such as temporal bones 

 
Abstract submission to the 4th International Conference on Image 

Formation in X-Ray Computed Tomography 2016, Bamberg, Germany. 
I. Hein, Toshiba Medical Research Institute, USA, Vernon Hills, IL 

(ihein@tmriusa.com). 
Z. Yu, Toshiba Medical Research Institute, USA, Vernon Hills, IL 

(ihein@tmriusa.com). 
S. Nakanishi, Toshiba Medical Systems Corporation, Japan 

(satoru.nakanishi@toshiba.co.jp). 
 

Material in this document is proprietary and confidential until publication. 

in the skull. Typical methods of beam hardening correction 
include two-pass methods, where soft tissue is modelled as 
water and water beam hardening correction is performed as a 
preprocessing step.  Images are reconstructed and bone beam 
hardening correction is implemented as a post-processing step 
[1][2]. In the post-processing step, the image is segmented into 
water and bone images, and the water and bone pathlengths  
estimated.   One disadvantage of these methods is that 
pathlength estimation assumes a 2D geometry.  Iterative BHC 
(not reconstruction) methods for beam hardening correction 
also exist [3][4].   
 

When the CT reconstruction algorithm is an iterative one, 
BHC can be made part of the iterative process.  However, 
iterative reconstruction is already computationally very 
intensive, and adding BHC to the reconstruction algorithm 
will only increase the computational demand.   

 
The BHC3D2M method described here is purely a 

preprocessing method, which segments images into water and 
bone and calculates 3D pathlengths via forward 
projection[5][6][7].  Once the pathlengths are known, a lookup 
table is used to correct the projection data.  BHC3D2M has 
been tested with phantom, patient head, and patient cardiac 
data.. 

II. CORRECTION ALGORITHM 
 

Fig. 1 shows the block diagram for the 3DBHC2M.   The 
input projection data sinogram PDIn is uncorrected.   A 
segmentation image volume is reconstructed, which is 
segmented into bone and water images.  These images are 
forward projected to calculate the bone and water pathlengths.  
The pathlengths are inputs to a correction table, which corrects 
the input sinogram.   
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Fig. 1:  BHC3D2M Sinogram Correction 

 

A. Reconstruct Segmentation Image Volume 
The bone and water pathlengths are calculated by forward 

projection through water and bone segmented versions of the 
input volume.  Thus, the accuracy of the water and bone 
pathlength calculations depends on the input volume voxel 
size.  The smaller the input voxel size, the finer the pathlength 
resolution and the better the correction.  Ideally,  FOVSEG 
should be as small as possible and MatrixSEG as large as 
possible; where FOVSEG is the reconstruction field of view 
diameter and MatrixSEG  is segmentation image matrix size.  

 
The smallest possible FOVSEG is determined by the detector 

fan angle, since FOVSEG  must cover the entire detector. 
Investigations have shown that MatrixSEG = 512 is fine enough 
to produce an accurate correction. 

 

B. Segmentation into Water and Bone Images 
 
The segmentation is  fractional model based, which assumes 

that the image consists of water,  bone, and water bone 
mixture.  Two parameters, ThW and ThB for water and bone, 
define the segmentation.   This illustrated in Fig. 2. 

 

 
Fig. 2:  Segmentation 

 
The model assumes that HU values less than ThW are pure 
water, that values are above ThB are pure bone, and values in 

between are a water + bone mixture.  In the water + bone 
region, it is assumed that the linear attenuation coefficient � 
can be separated into water and bone components fw and fb : 

 
WSEGwBSEGBSEG ff ����� �
�� ][][  

 
or in terms of image, 
 

WINwBINBSEG IMGfIMGfIMG �� �
�� ]'[']'[''  
 
where  
     IMG'SEG =  IMG'SEG  + 1000. 
 

The relation ship between �� and the input image IMG'SEG is 
given by:  
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and HUB is the HU value of bone at effective 

monochromatic energy. 
 
Water and bone fractional curves are shown in Fig. 3.  They 

are based on the Elbakri & Fessler displacement model [11], 
using a sine function to model the model.     

 

 
Fig. 3:  Water and bone fractional model curves, calculated using 
sine function (below) with ThW = 110 and ThB = 850. 
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Calculation of fb and fw are given by: 
 
     0.0              HU <  ThW   

fB[HU ]=     
2

2
)(sin1 �

�
	

�

� ���


�
WThHUSinW

   ThW <HU <  ThB 

 
      1.0                   HU >  ThB 
 

                                        
fW[HU ] =    1.0 � fW[HU ] 
 
where  

SinW = � / (ThB � ThW) 
 

C. Forward Projection 
Various forward projection algorithms exist in the 

literature[8][9][10].  For this application, a ray-tracing based 
forward projection is implemented.  The ray is sampled at an 
evenly spaced positions along the ray, and a 3D interpolation 
of the voxels surrounding the sampling position are used as 
the contribution of that sampling point to the ray.  Two 
forward projections are performed, one for IMGWater and the 
other for IMGWater.  The outputs of the forward projections are 
the pathlength sinograms PLWater[c,s,v] and PLBone[c, s,v].   

 

D. Correct Input Sinogram 
The pathlength sinograms, along with bilinear interpolation, 
are used to correct the input sinogram by 
 

PDBHC[c,s,v] = PDIN[c,s,v] +  
 

BHC3D2M [PLWater[c,s,v], PLBone[c,s,v] ]   
 

III. BHC3D2M TABLE GENERATION 
 

The table is a four dimensional table, where the correction 
term is calculated for the all the possible bone and water 
pathlengths lb, lw  for each channel and segment c, s.  For each 
[c, s, lb, lw] entry, the monochromatic and polychromatic 
counts MonoCnt and PolyCnt are determined and the 
correction term calculated. MonoCnt and PolyCnt are 
calculated from the water and bone pathlengths and  linear 
attenuation coefficients �b and �b.  The monochromatic and 
polychromatic counts are given by Beer’s law: 

 
MonoCnt = Io

][][ monolmonol wWbBe �� ���  
 

                   �
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Where the Ios are the post-wedge counts.  Projection data is 
logged, so the correction term is the difference between the 
logged polychromatic and monochromatic counts.   
 

BHC3D2M[ c, s, lb, lw] = Log(Po) – Log(PolyCnt) –    
                                         Log(MonoCnt)    

 
where 

 

�
�

��
kVp

keV
oo keVIP

1
][  

 
In practice, table values are calculated on the fly rather than 
stored as a table. 
 

IV. RESULTS 
 
BHC2D2N was tested with both phantom and patient data.  
Data was collected with a Toshiba Aquilion One 320 slice 
scanner. 

A. Cranial Test Phantom   
A QRM cranial CT phantom, manufactured by QRM GmBH, 
Moehrendorf, Germany, was used for quantitative testing.  It 
consists of skull and temporal bone protrusions which produce 
bone beam hardening artifacts similar to those found in the 
skull.  Fig. 4 shows IR reconstructions with and without 
BHC3D2M correction.  Without correction (image A), 
significant blooming appears around the skull edge, and a dark 
band is present between the temporal bone.  With BHC3D2M 
correction the blooming and dark band disappear, and the HU 
value is consistent. 
 

 
 

Fig. 4: A) No BHC3DM; B) BHC3D2M.  WL=30/WW=80. 

B. Clinical Cranial 
Figs. 5A shows the cranial IR CT reconstruction without bone 
beam hardening correction.  Various brightening and 
darkening artifacts are seen in the image, and structure at the 
top of  posterial cranial fossa is not distinct.  Fig. 5B shows the 
same reconstruction with BHC3D2M beam hardening 
correction.  The blooming around the skull is gone, the image 
is uniform.  

A  B  

39.7 HU  

33.3 HU  30.0 HU  

33.7 HU  
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Fig. 5:  A)  No BHC3DM.  B) BHC3D2M Correction.  WL= 25/WW=100. 

C. Clinical Cardiac 
Beam hardening artifacts in cardiac images with iodine-based 
contrast agents typically show up as a darkening between the 
left ventricle and descending aorta, as shown in Fig. 6A.  Fig. 
6B shows the same data when corrected with BHC3D2M.   In 
this case the table used for correction was a water-iodine 
(Iopromide) based table instead of a water-bone table.  With 
BHC3D2M, the cardiac beam hardening artifacts are 
eliminated. 
 

 
 
Fig.  6:  A)  No BHC3D2M.  B) BHC3D2M with water-Iopromide table.  
Arrow indicates beam hardening artifact.  WL=125/WW=300 
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Abstract—Penalized Maximum Likelihood (PML) is a 

Bayesian-based tomographic reconstruction algorithm broadly 
used for positron emission tomography (PET). Due to its iterative 
nature and computation complexity, although it outperforms 
theoretical approaches when dealing with noise, the 
computational performance is extremely slow without hardware 
acceleration. Fortunately, there are many accelerator choices 
nowadays including Nvidia’s Kepler GPUs and Intel Xeon Phi 
coprocessors associated with more programming friendly toolkits 
and APIs. In this paper, we studied and compared the 
acceleration performances of a chosen PML approach on CPU, 
GPU and Phi hardware. A detailed comparison of kernel 
implementations was discussed. In addition, we also considered a 
range of criteria including budget plan, implementation difficulty, 
and data scale.  
 

Index Terms—Tomography reconstruction, PET, acceleration, 
GPU, Intel Xeon Phi coprocessor, performance analysis.  
 

I. INTRODUCTION 
HREE dimensional tomographic image reconstruction – a 
popular approach to reveal the cross-sectional information 
of the object is widely utilized in scientific areas including 

Physics, chemistry, biology and medicine. Its performance has 
considerable impact on their corresponding industrial 
applications such as energy material development, drug design, 
genetic analysis and clinical diagnosis. For its application in 
transmission X-ray microscopy and electron microscopy, the 
main challenge is that the images acquired for reconstruction 
are often degraded – they are taken within a limited angle, from 
an unstable position, or with reduced dosage. For emission 
tomography such as PET, since the photon counts in the 
detector are much less than the transmission tomography, the 
results are even noisier. Therefore, model-based/statistical 
approaches are more favorable for such tomographic 
reconstructions by adding object constraints/priors to the cost 
function, such as non-negativity, piecewise smoothness, 
motion models and so on. The reconstruction process 
iteratively improves the estimate that finally converges to a 
numerically optimized solution.  
 

This work was supported by the U.S. Department of Energy STTR Phase I 
Grant# DE-SC0013305. 

W. Xu is with Brookhaven National Laboratory, Upton, NY 11973 USA 
(e-mail: xuw@bnl.gov).  

D. Feng is with Peri LLC, Kings Park, NY 11754 USA (e-mail: 
d.feng@perillc.com). 

Unfortunately, for large-scale reconstruction problems, these 
methods are highly computation demanding. With the 
development of modern acceleration hardware, we now have 
many high performance computing (HPC) choices such as 
supercomputers, Graphics Processing Units (GPUs) and the 
Many Integrated Core (MIC) coprocessors, together with more 
friendly programming toolkits and interfaces. Among them, 
there are some economic HPC architectures including GPUs 
and coprocessors. Their costs are modest from several hundred 
to a couple of thousand dollars, while their performances can 
improve up to a few orders of magnitude compared with 
traditional CPU-based architecture. However, to parallelize the 
computation, it still requires the help of high performance 
computing experts especially to tune up the implementation 
and optimize its performance.  

In this work, we study the acceleration performance on both 
Nvidia GPU and Intel Xeon Phi coprocessor (mentioned as Phi 
in following sections) for a PET reconstruction method. The 
purpose is not to provide the most advanced acceleration 
techniques for this specific reconstruction algorithm. Instead, 
we pick the straightforward acceleration implementations as 
first attempt to parallelize a program in order to quantify the 
effort, cost and improvement on both platforms. We hope to use 
our work as a showcase of parallelizing a statistical iterative 
reconstruction (SIR) method on HPC platforms in 
consideration of a range of criteria including budget, 
implementation difficulty and data scale. 

The remainder of this paper is as follows. In section II, we 
introduce the PML method and explain the implementation 
details on GPU and coprocessor. Section III presents the 
performance analysis results, followed by conclusions in 
section IV. 

II. METHODOLOGY 

A. PML 
For PET, there are many penalized maximum likelihood 

methods such as one-step-late (OSL) [1] algorithm, iterative 
coordinate descent (ICD) [2] algorithm, maximum a posteriori 
method with surrogate functions [3][4], and 
ordered-subset-based approaches [5][6]. We selected an 
approach that follows De Pierro’s surrogate functions [3][4] for 
the log likelihood function but has a closed form expression [7]. 
This approach is currently used by Tomopy [8] – a Python 
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void PML() 

{ 
  for each iteration n: 
    for each slice s: 

  for each projection p: 
        for each detector pixel d: 
          Calculate the intersection points,  

            compute distances between them as P; 
          Forward project; 

          Compute ; 

      Compute  and ; 

      Update ; 

}  

based open source tomography package developed for 
utilization by synchrotron science.  

As stated in [7], the PML estimate  is the nonnegative 
minimizer of , where  is the log 
likelihood function,  is the penalty function, and  is the 
penalty parameter. The authors further constructed de-coupled 
surrogate functions for  and . Eventually, the closed form 
solution for th value of  in the th iteration is achieved 
as 

                                          (1) 

Where  

                                                      (2) 

                               (3) 

             (4) 
 
Among them,  is the probability matrix,  is the number of 
photon pairs recorded by the th detector pair,  is the 
accidental coincidence rate,  is the nonnegative weights,  is 
the neighborhood of ,  is the chosen surrogate function, and 

 is the average of  and . Please refer to [7] for 
more details. The benefits of this approach are 1) its simplicity 
to implement, 2) guaranteed non-negative estimates and 
monotonic decrease of objective function with increasing 
iterations, and 3) sufficient choices of surrogate functions.  

Since in synchrotron science most experiments can be 
treated as parallel beam, the corresponding implementation can 
be developed as the reconstruction for a stack of 2D slices. The 
pseudocode is shown in Fig.  1. The total number of lines in C is 
about 840. 

  
B. Phi implementation  

For acceleration on Intel Xeon Phi, we implement 
parallelism through cilk [9] and develop only offload mode 
with simple pragma directives. Besides, the implementation 
was developed in Intel parallel studio that automatically 
evaluates the best strategies to parallelize code. Afterwards, 
only simple replacement from standard keywords to parallel 
keywords is required, while all other algorithm code remain 

totally unchanged. The vectorization of computing is 
automatically optimized by Intel compiler by default. In 
specific, for the PML method, after automatic evaluation, the 
computation for each slice is parallelized by replacing regular 
for-loop with cilk_for. Additional pragma offload statements 
are used to set up the offload mode and coprocessor memory 
space allocation, data transfer and deletion are also added. This 
acceleration porting from original C code on CPU is extremely 
light-weighted. The total modification is only about 10 lines of 
code, with majority of program remain unchanged. For a more 
advanced parallelization implementation, vectorization by 
using 512 bit vector instruction set can further improve the 
performance as reported in [10]. However, it will also require 
more effort rewriting the program. In this paper, we aim at 
discussing the first attempted strategy towards parallelism. 

C. GPU implementation  
When porting to Nvidia GPU, we used CUDA for 

acceleration. The major difference from Xeon Phi 
implementation is that we instead serialize the computation of 
each slice but for every slice we parallelize the computation 
internally: there are three major steps for parallelization – to 
compute   based on acquired sinogram, to compute  and 

 , and to update  . This design is based on the 
difference of core numbers of each board (2688 on GPU vs. 57 
on Phi). To implement, all major steps are rewritten as CUDA 
kernels and caller functions. Besides, CUDA initialization, 
memory allocation and transfer (adopted only global memory 
for simplicity), and CUDA cleanup including memory 
deallocation are necessary. After this direct migration, the new 
implementation has about 2100 lines. 

III. PERFORMANCE ANALYSIS 
Our experiments are tested on Nvidia Tesla K20X GPU that 

has 2688 cores, 6GB global memory, 1.31Tflops Peak double 
precision floating point performance and 3.95Tflops Peak 
single precision floating point performance [11], and Intel 
Xeon Phi coprocessor 31S1P that has speed of 1.1 GHZ, 8 GB 
memory and 57 cores [12]. In the following section, we first 
evaluate the overall acceleration performances on all hardware 
platforms, then discuss other criteria including platform porting 
difficulty and budget plan. All implementations are open source 
and available online in Github [13][14]. 

A. Overall performance 
Our test data are 3D Shepp Logan with two profiles: 1) small 

set: 643 volume resolution with 100 projections of size 64×91, 
and 2) large set: 1283 volume resolution with 200 projections of Fig.  1. Pseudocode for the selected PML approach. 

TABLE I 
PERFORMANCE (IN SECONDS) ON VARIOUS HARDWARE PLATFORMS 

Hardware Small Large 

CPU 7.95 125.79 
Phi 1.22 13.36 

GPU 0.71 6.43 
3D Shepp Logan was used for testing with two data scales. Small profile dataset 
has 100 projections of size 64×91 with a 643 volume resolution, and the large 
profile has 200 projections of size 128×182 with a 1283 volume resolution. 
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$200 

$2000 

Cost

size 128×182. All computation stops when convergence is 
reached. As shown in Table 1, we tested the time performance 
on CPU, Phi and GPU for both data sets. Compared to CPU, the 
parallelism on Phi introduced speedup of 6.52 for small profile 
and 9.42 for large profile while on GPU the speedup is 11.20 
for small profile and 19.56 for large profile. Therefore, when 
the data size is large enough, Phi brings speedup close to one 
order of magnitude, while GPU brings additional 2 times 
speedup. 

B. Programming difficulty and budget plan 
As mentioned in last section, Phi implementation added up 

only 10 lines of code, which is about additional 1.1% effort 
based on C implementation but gives a speedup of ~10 times 
faster. For GPU, the CUDA implementation has about 2100 
lines of code, where useful original C code only takes up 34% 
of lines. In another words, the GPU implementation added up 
200% new code to enable execution on GPU and gives a 
speedup of ~20 times faster.  

To consider the cost in terms of money, a GPU K20X board 
costs $2000 as the best deal on market, while a Phi 31S1P board 
costs $200. Additional cooling devices may be required within 
$30. Therefore, the ratio of Phi is ~20 $/speedup, while the 
ratios of GPU is ~100 $/speedup. 

We sum up all the related criteria in Fig.  2. 

 

IV. CONCLUSION 
In this paper, we compared and evaluated as a case study of 

the HPC performance of a regularized penalty maximum 
likelihood reconstruction approach for PET on an Nvidia GPU 
and an Intel Xeon Phi coprocessor. We intended to choose the 
most intuitive acceleration implementations on Phi and GPU in 
order to provide a fair comparison about programming 
difficulty. As a result, we found out that Xeon Phi was almost 
costless to implement while CUDA implementation required 
additional twice the effort with an existing CPU 
implementation. Besides, although GPU version doubles the 
speedup than Phi, it costs about 10 times of Phi. This 
observation is also consistent with experiments in other 
domains. 

For both platforms, there are strategies to further improve the 
performance. For GPU, the usage of texture memory with 
hardware interpolation, pitched memory write, and the usage of 
CUDA libraries and toolkits for example Thrust [15] to ease 

memory management and take advantage of existing hardware 
accelerated functions. For Phi, as aforementioned, the 
utilization of vector instruction set can bring additional 
improvement. As future work, we are summarizing the 
roadmap to gradually optimize a statistical iterative 
reconstruction (SIR) method for both GPU and Xeon Phi. We 
hope the adopted strategies can be generic for use in other SIR 
algorithms. 
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Abstract—Flat-panel cone-beam CT (CBCT) has been applied
clinically in a number of high-resolution applications. Increasing
geometric magnification can potentially improve resolution, but
also increases blur due to an extended x-ray focal-spot. We
present a shift-variant focal-spot blur model and incorporate it
into a model-based iterative-reconstruction algorithm. We apply
this algorithm to simulation and CBCT test-bench data. In a tra-
becular bone simulation study, we find traditional reconstruction
approaches without a blur model exhibit shift-variant resolution
properties that depend greatly on the acquisition protocol (e.g.
short vs. full scans) and the anode angles of the rays used to
reconstruct a particular region. For physical CBCT experiments
focal spot blur was characterized and a spatial resolution phan-
tom was scanned and reconstructed. In both experiments image
quality using the shift-variant model was significantly improved
over approaches that modeled no blur or only a shift-invariant
blur, suggesting a potential means to overcome traditional CBCT
spatial resolution and system design limitations.

I. INTRODUCTION
Flat-panel cone-beam CT (CBCT) is a promising modality for
high-resolution applications, such as quantitative trabecular
bone analysis in extremities imaging and microcalcification
detection in mammography. Current application-specific
imaging systems are often unable to resolve all trabeculae
or microcalcifications, which can be on the order of 100μm.
A high-magnification geometry has the potential to improve
resolution, but projections suffer from increased blur due to
the extended focal spot. Model-based iterative reconstruction
(MBIR) methods have previously demonstrated improved
image quality through the use of sophisticated system and
noise models. Proper modeling of the x-ray focal spot,
and incorporation of this model into a MBIR method, can
mitigate the effects of focal spot blur in high-resolution
high-magnification reconstructions.

Previously, we have developed a reconstruction method
that models detector blur, focal spot blur, and spatial noise
correlations using a staged approach (deblurring and other
preprocessing followed by reconstruction).[1] Shift-invariant
blur models were assumed in order to simplify deblurring.
However, such assumptions are not valid at large fan angles,
where the angulation of the anode results in a position-
dependent apparent focal-spot shape. Moreover, this effect
is more pronounced in high-magnification systems due to a
larger focal-spot blur. Properly modeling shift-variant focal-
spot blur is critical to generating high-resolution images
in these systems. Previous work by La Rivière to model
shift-variant focal-spot blur addressed deblurring data for
multidetector CT systems with the anode-cathode axis of the
x-ray source oriented axially.[2]

In this work, we characterize focal spot blur along the
anode-cathode axis in a CBCT system where this axis is
perpendicular to the axis of rotation (a common orientation

This work was supported by NIH grants R21EB014964, R01EB018896,
and an academic-industry partnership with Varian Medical Systems (Palo Alto,
CA). The authors would also like to thank Matthew Jacobson for his assistance
in developing the reconstruction algorithm.

in CBCT systems). We use a non-linear objective function
that includes shift-variant blur in the forward model (e.g.
no deblurring in preprocessing) to reconstruct high-resolution
objects in simulation and test-bench studies.

II. METHODS
A. Forward Model and Objective Function
We use the general forward model:

y ∼ N (B exp(−Aμ),KY ) (1)
with measurement vector, y, and object attenuation values,
μ. The linear operator B contains focal spot blur and gain
terms (e.g. photons per pixel), A is the forward projector, and
KY is the measurement covariance matrix. The corresponding
penalized-likelihood objective function is:

μ̂ = argmin ||y −B exp(−Aμ)||2
K−1

Y

+ βR(μ) (2)

where R is a penalty function and β is the penalty strength.
Equation (2) was minimized using a separable paraboloid

surrogates approach, similar to that of Erdoğan et al.[3], [4] but
with an added separability step in the B exp(−Aμ) term. The
resulting baseline algorithm is:

a = BTK−1
Y B1, γ = A1, b = BK−1

Y y
for n = 1 : N do

l(n) = Aμ(n)

d(n) = −b−D{a} exp(−l(n)) +BTK−1
Y B exp(−l(n))

h
(n)
j (lj) � 0.5aj exp(−2lj) + exp(−lj)d(n)j

c
(n)
j = optimum curvature of h(n)

j from [3]
L(n) = AT (−D{a} exp(−2l(n))−D{dn} exp(−l(n)))
c
(n)
μ = ATD{γ}c(n)

μ(n+1) =

[
μ(n) +

−L(n)−β�R|
μ(n)

c
(n)
μ +β�2R|

μ(n)

]
+

end for

We further extend the algorithm using Nesterov’s accelera-
tion method. All reconstructions used 20 ordered subsets.[4]
The regularization gradient and curvature were computed
using standard surrogate techniques.[4]
B. Shift-Variant Blur Model
We model the shift-variant focal spot blur along directions
parallel to the detector. The model approximates a depth-
independent blur. (See § IV for a discussion of depth-
dependent effects.) Therefore, the blur model can be included
in the B term in (1). To estimate a continuous source-blur
model for discrete inputs and outputs, we use nearest neighbor
interpolation to create a continous approximation of the input
image, apply a convolution operation, then discretize the
signal using a rectangular kernel with the dimensions of a
pixel and sampling at pixel centers. The full operation is:

g[k, l] =

∫
x,y

∫
ξ,η

∑
i,j

f [i, j] rect(
ξ − iTx

Tx
,
η − jTy

Ty
)TxTy

h(x, y; ξ, η) rect(
x− lTx

Tx
,
y − kTy

Ty
) dξ dη dx dy (3)
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Fig. 1. Geometry used to calculate the focal spot blur impulse response.
The focal spot is represented by the bold line on the side of the anode. All
coordinates are in detector coordinates. The origin of the anode coordinate
system is at (u0, v0, SDD).
where f and g are the input and output images, Tx and Ty

are the pixel widths along the corresponding directions and
h(·, ·; ξ, η) is the impulse response of a point source at ξ, η.
Equation (3) can be approximated by discretizing variables
and assuming h is constant over small displacements.
We sample x and ξ at intervals of Tx/s and y and η at
intervals of Ty/s, where s is an odd integer. Applying these
approximations and simplifying leads to:

g[k, l] ≈
∑
j,i,a,b

f [i, j]|1− a||1− b|

h ((a+ l)Tx, (b+ k)Ty; iTx, jTy)TxTy/s
2 (4)

where a and b range from −(s − 1)/s to (s − 1)/s in
increments of 1/s. The transpose operation (e.g. for BT )
requires switching the indices for f and g, and summing over
k, l instead of i, j.

The impulse response (h) centered at a given point (uc, vc)
is assumed to be a binary function, with values either equal
to 0 or k = area(h(·, ·;uc, vc))

−1. To determine the value
of h(u, v;uc, vc), the point (u, v) is backprojected through a
pinhole onto the anode. A two dimensional cross section of the
geometry is illustrated in Figure 1. The pinhole is placed a dis-
tance wp from the detector and along the line connecting (uc,
vc) with the center of the focal spot. If the backprojected point
is in the rectangular focal spot, h(u, v;uc, vc) = k, otherwise
h(u, v;uc, vc) = 0. The area of h was found by forward pro-
jecting the corners of the focal spot through the pinhole, and
applying Bretschneider’s formula to the resulting points.[5]
C. Simulation Study
Data were generated from the digital extremities phantom in
Figure 2. Line integrals were generated from a high-resolution
truth image (3300×2300 image of 30μm voxels) projected
onto a one-dimensional detector with 8192 pixels and a
48.5μm pixel pitch. A high-magnification geometry was used,
with a source-detector distance of 1200mm, a source-axis
distance of 250mm, and an angular spacing of 0.5◦. These
line integrals were downsampled by a factor of 4 to give a
pixel pitch of 194μm. Measurements were generated from
the downsampled line integrals (l) according to:

ynoiseless = BsI0 exp(−l) (5)

y = ynoiseless +N (0,D{ynoiseless}) +N (0,D{σ2
ro}) (6)

(a) (b)

(c) Medial
(d) Lateral

0.000

0.008

0.016

0.024

0.032

0.040

0.048

0.056

m
m
−
1

Fig. 2. Digital extremeties phantom with medial (c) and lateral (d) bones,
line pairs (a), and a uniform disc (b).

where I0 is 104 photons per pixel, Bs is the focal spot blur
operator (we assume there is no detector blur), and the readout-
noise standard deviation (σro) is 3.32 photons. The focal spot
was modeled as a 5mm×0.8mm rectangle on a 14◦ anode with
the anode-cathode axis parallel to the detector row. The sam-
pling factor (s) was equal to 41. (Note that BsI0 is equivalent
to B in (1).) Data were generated using two short scans (short-
1 and short-2) spaced 180 degrees apart, and a full scan. The
short-1 scan placed the medial bone (Figure 2c) predominately
on the anode side, and the lateral bone (2d) predominately on
the cathode side. The reverse is true for the short-2 scan.

Data from each scan were reconstructed using the algo-
rithm presented above with three models for focal-spot blur:
identity (no blur), shift-invariant blur, and shift-variant blur.
The sampling factor (s) used in reconstructions was 11. Data
were reconstructed into a 1650×1150 volume of 60μm voxels
using a Huber penalty (δ = 10−4). The covariance matrix was
modeled as D{y + σ2

ro}.
The accuracy of trabeculae segmentation in the medial and

lateral bones was used as a measure of image quality. The truth
segmentation for each bone was found by downsampling the
high-resolution phantom to match the reconstruction volume
dimensions and thresholding at the average attenuation of
bone and fat. Data were reconstructed at several penalty
strengths and thresholded at regularly spaced values between
the attenuation values of fat and bone. Accuracy was quantified
as the mutual overlap between the thresholded truth, t, and the
thresholded reconstruction, r:[6]

mutual overlap(t, r) = 2(
∑

tr)(
∑

(t+ r))−1 (7)

D. Bench Characterization
To apply the approach to physical data, we characterized the
focal spot blur on a CBCT test bench consisting of a Rad-94
x-ray tube (Varian, Salt Lake City UT), a PaxScan 4343CB
flat-panel detector (Varian, Palo Alto CA), and a SDD of 108
cm. In this work we focus on two-dimensional reconstructions,
and therefore only measure one dimensional MTFs along the
u axis. MTFs were measured using a tungsten edge[1][7]
placed at isocenter (40cm from the source) and translated
in the ±u directions. The detector MTF was measured by
placing the edge at the detector. We assume the detector MTF
is shift-invariant and fit it to the following model:[8]

|MTFd(fu)| =
∣∣∣∣ sinc(fuTx)

1 +Hf2
u

∣∣∣∣ (8)

where fu is the spatial frequency in mm−1 and H is a blur
parameter. The focal spot MTF at each position up was
modeled as a rect function with an apparent length L(up),
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Fig. 3. Best mutual overlap versus β. A) Medial and B) Lateral bone.
resulting in the combined MTF:

|MTFsd|(fu;up) = |sinc(fuL(up))MTFd(fu)| (9)
Theoretical apparent blur lengths from anode angle (θ) and
focal spot length (L) were fit to the measured lengths to yield
estimates for θ and L.
E. Resolution Phantom Study
A cylindrical resolution phantom (CatPhan CTP528 High
Resolution Module, Phantom Laboratory, Salem, NY) with
variable frequency line pairs was scanned on the CBCT test
bench. The source-detector and source-axis distances were
108 cm and 40 cm respectively. A full scan of 720 projections
was collected at 80 kVp and 0.504 mAs per projection. Data
were reconstructed using the identity and shift-variant blur
models, as well as three shift-invariant blur models. The
three shift-invariant blurs modeled were the blur at the center
of the detector (as in the simulation study) and the blur at
either edge of the detector. The presented MBIR algorithm
was used with 800 iterations to ensure a nearly converged
solution. The reconstruction volume was 170mm×170mm
with 100μm voxels. The blur model used the focal spot length
and anode angle from § II-D and a subset parameter (s) of 5.
We assume that detector blur is negligible and do not model
it in the reconstruction algorithm.

III. RESULTS
A. Simulation Study
The best mutual overlap values (over all threshold values)
for each (β) are shown in Figure 3. Results are shown for
reconstructions with an identity (ID) blur model and the
shift-variant (SV) blur model. Each line represents a blur
model and scan type combination, and each point represents
a reconstruction. A higher best mutual overlap indicates that
a segmentation based on that reconstruction is closer to the
truth segmentation, and the reconstruction is therefore more
accurate. All methods that used the SV model were more
accurate than those that used the ID model, which is evident
by comparing the maximum of each line. With the ID model,
the best quality segmentation of the medial bone is achieved
with data from the short-1 scan, which placed the medial bone
projections primarily on the high-resolution (anode) side of the
detector. The lowest quality was the short-2 scan, which placed
the projections primarily on the low-resolution (cathode) side.
The full scan reconstructions with the ID model rank between
the reconstructions from the two short scans. Neglecting to
model blur is equivalent to assuming that classically redundant
projections in the full scan (i.e. those with the same integration
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Fig. 4. Reconstructions of the medial bone with the highest mutual overlap
over all thresholds and β’s. The top half of each reconstruction is thresholded.
path but reversed direction) contain the same information,
despite the fact that they are subject to different degrees
of blurring, which results in a reconstruction whose image
quality is a compromise between that of the two short scan
reconstructions. Predictably, the lateral bone reconstructions
are best when using the short-2 scan and worst when using the
short-1 scan, in which the lateral bone projection data was on
the high- and low-resolution sides of the detector, respectively.

When using the SV model, the full scan provides the best
reconstruction of both bones, followed by the short-1 scan
and then the short-2 scan in the case of the medial bone,
and the short-2 scan and then the short-1 scan for the lateral
bone. The better image quality of the full scan images over
the corresponding high-resolution short-scan reconstructions
can be attributed to the additional (low-resolution) data. The
SV model can use this additional information to improve the
reconstruction without losing details provided by the high-
resolution data. In effect, rather than averaging the redundant
data, the low-frequency data is used to reduce noise while
the high-frequency data maintains spatial resolution. The
corresponding low-resolution scan for each bone (short-2 for
the medial bone and short-1 for the lateral bone) results in the
lowest quality reconstructions due to the increased difficulty
in deblurring the data.

Figure 4 shows the medial-bone reconstructions (bottom
of each image) and segmentations (top of each image)
corresponding to the best possible mutual overlap (optimal
threshold and β values) with each scan type and blur model
combination. All SV reconstructions depict more trabecular
structure than the shift-invariant (SI) or ID models. The
difference in image quality among ID reconstructions is
readily apparent in these images, with the short-1 scan
resulting in the most trabecular detail. Finally, the SI images
depict more detail than the ID model but less detail than
the SV reconstructions. However, the SI model results in a
ringing artifact, particularly evident on the lower left aspect
of the medial bone in the full scan reconstruction. This is
likely due to blur/model mismatch (the SI model is accurate
at the center of the detector but less accurate at the edges).
B. Focal Spot Measurement
The detector MTF and the combined focal-spot and detector
MTFs at different positions are shown in Figure 5. The
magnification in this system was about 2.7, so that the focal-
spot blur dominates over the detector blur. Each combined
focal-spot and detector MTF is labeled by the distance of
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Fig. 6. Physical CBCT reconstructions. Each subfigure shows a portion of
the phantom from the edge to one of the line pairs. Each reconstruction has
approximately the same noise level (indicated in each subplot in units of
mm−1 and denoted by σ).
the tungsten edge from the central ray. At positive positions,
the edge is on the cathode side, and at negative positions
the edge is on the anode side. There is a dramatic difference
in MTFs at different positions due to the angulation of the
anode. Fits for each MTF are also shown. These fits give the
apparent length of the focal spot at each position, which was
used to estimate the actual length of the focal spot and the
angle of the anode. The focal spot length was found to be
5.23mm and the anode angle was 14.3◦.
C. Bench Study
Figure 6 shows the same region-of-interest of five reconstruc-
tions, each of which used a different blur model. The three SI
blur models are the apparent focal spot size at the center, anode
side, and cathode side of the detector. The reconstructions
have approximately the same amount of noise (estimated by
computing standard deviation in a flat region at the center of
the phantom). The line pairs in the SV (6c) and center SI
(6b) reconstructions are much sharper than those in the ID
reconstruction (6a). That the SI reconstruction line-pairs are
roughly as sharp as those of the SV reconstruction suggests
that at this distance from isocenter (approximately 4.75cm)
the SI approximation is fairly accurate. However, at the edge
of the phantom (approximately 7.5cm from isocenter), this
assumption breaks down, and the resulting mismatch between
the model and the actual blur results in a “ringing” artifact.

The anode-side SI blur model (6d) underestimates the blur
over most of the detector, reducing ringing compared to the
center SI blur model but also reducing the sharpness of the line
pairs. The cathode-side SI blur model (6e) overestimates the
blur over much of the detector, increasing the ringing artifact.

IV. DISCUSSION
The image quality difference in identity blur model recon-
structions from the two different short scans illustrates the
importance of considering shift-variance in high-resolution,
high-magnification systems. The poor image quality and/or
ringing artifact in the reconstructions with a shift-invariant blur
model demonstrate that this model is a poor approximation
for large objects (relative to the field of view), and that a
full shift-variant model is more appropriate. These results also
suggest a means to improve local resolution properties when
advanced blur models are not available: if the location of a
high resolution target in the object is known a priori, then
that object can be placed such that the high resolution target
favors the anode side of the detector during a short scan.

This work suggests x-ray tube orientation is an important
factor in system design. Blur shift-variance, and therefore
reconstruction resolution, will depend on whether the anode-
cathode axis is oriented parallel or perpendicular to the axis
of rotation. Models such as the one presented may alter the
trade-off associated with tube orientation, allowing for more
flexibility in system design. Future studies will analyze three-
dimensional reconstructions in order to properly characterize
resolution/image quality both in-plane and axially. While
we have demonstrated the utility of a depth-independent
source blur model, future work will consider depth-dependent
source blur effects. In the presented bench study, we estimate
that apparent focal spot size approximately doubled over
the length of the object along the source-detector direction.
By comparison, the measured apparent focal-spot lengths
approximately quadrupled over the length the object along the
direction parallel to the detector. Thus, depth-dependent shift-
variance is a large effect, but not as large as shift-variance
due to anode angulation.

We have provided a method to improve image quality with
an advanced shift-variant blur model, and used this model to
reconstruct high-resolution trabecular details in a simulation
study and fine line-pair patterns on a CBCT test bench. This
technique could help overcome spatial resolution limits in
high-magnification systems, improving current systems and al-
lowing new systems to be designed with higher magnifications
for high-resolution applications.
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Abstract— 
Photon counting x-ray detectors (PCXDs) are being considered 

for adoption in clinical settings due to their advantages of 
improved tissue characterization, reduced noise, and lower dose.  
The benefit of having multiple energy bins data in turn put a 
burden on the bandwidth of slip ring and data storage 
subsystems, through which the projection data samples must be 
transmitted in real-time.  The problem is further amplified with 
PCXDs’ increased number of detector channels.  This leads to a 
bandwidth bottleneck problem.  In this work, we propose a lossy 
compression method for raw CT projection data from PCXDs, 
which includes a step of quantizing prediction residuals prior to 
encoding.  From our modeled prediction error distribution, the 
quantization level is chosen such that the percentage of variance 
due to quantization error vs quantum noise variance is equals to 
1 or 2 %.  Huffman code and Golomb encoder are applied.  Using 
three simulated phantoms, compression ratio of 3.1:1 with 1.15% 
RMSE to std. of quantum noise and compression ratio of 3.4:1 
with 2.85% RMSE to std. of quantum noise are achieved for the 1 
and 2 percent quantization error variance, respectively.  From 
the initial simulation results, the proposed algorithm shows good 
control over compression and image quality of reconstructed 
image. 
 

Index Terms—CT raw projection data, lossy compression, 
photon counting detector.  
 

I. INTRODUCTION 
T projection data are acquired in the rotating gantry of CT 
systems and must be transferred through the slip ring in 

real-time.  They are also commonly stored in redundant arrays 
of independent disks (RAID) prior to image reconstruction [1].  
With photon counting x-ray detectors (PCXDs), the bottleneck 
problem in bandwidth of the slip ring and RAIDs is certain to 
result since the amount of projection data is multiplied by the 
number of energy bins obtained.  In addition, PCXDs tend to 
have more and smaller detector channels so as to increase the 
count rate, which stresses the problem even further.  
Therefore, compression of the projection data samples prior to 
data transmission through slip ring is of interest. Compression 
of raw projection data from conventional CT detectors was 
reported [2-5].  We have previously investigated lossless 
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compression for PCXD data, incorporating the redundancies 
available in the multiple energy bins [6], and found that the 
achieved compression ratio is limited by the quantum noise in 
the data.  In this paper, we propose a lossy compression for 
PCXD data that obtains compression beyond this restriction.   
 Unlike lossless compression, lossy compression allows the 
decompressed data to not be exactly the same as the original 
data.  Nevertheless, lossy compression in medical imaging can 
maintain diagnostic accuracy [7, 8]. 
 Our compression method is divided into two parts: 
prediction (estimating the data value) and encoding (reducing 
the bit representation of the prediction residual before data 
transfer).  This paper focuses on the encoding part, which has 
an extra step to quantize the prediction error prior to encoding. 

II. PREDICTION 
 The detail of our prediction can be found in our previous 
work [6].  Its summary is as follows. 
 Our prediction of ��, a projection data sample in energy bin 
i, is the weighted average of the values that are physically 
close to it: the projection data samples in the adjacent view 
and detector cells (a, b, c, and d), and an approximation of �� 
calculated from other energy bins (��). 

���������� � �� � � � �� � � � �� � � � �� � � � �� � �� 
where ���������� is the prediction of ��  and �� � ’s are the 
weights for energy bin i. 

 
Fig. 1.  The x-ray spectrum and partitioning for 5 energy bins indicated by 
vertical bars (left) and the schematic diagram for projection data samples 
(right). 
 �� is calculated by assuming object composed of two basis 
materials, water and calcium, with thicknesses computed from 
the projection data in energy bin 1 and 3. 
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��

��� ����
��

 

�� � �������������������������������� ��� 
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T
sC 
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where ������and ��� are the water and Ca thicknesses.  ����������� and ��������  are the effective attenuation coefficients of 
the two basis materials in energy bin i, and ���� is incident 
intensity of energy bin i. 

The optimal weights for (1) are assumed to be about the same 
for all objects and are computed from a least squares fit to data 
in a training CT projection data database.  These weights are 
thus fixed and known prior to the scan and can be different in 
different parts of the sinogram.  We applied our proposed 
three-component context in this analysis. 

III. QUANTIZATION 

A. Uniform Quantization 
A uniform quantization is applied to the prediction error (or 

residual) to reduce the number of possible values to a smaller 
set.  The range of prediction errors is divided into n inner 
intervals of the same length L, resulting in quantization 
boundaries ���������� �������� �� �� ���� � �������  if n 
is even and �� �������� ������������ ���� ������ � ������� if n is odd.  A quantized value is the midpoint of the 
interval that a residual occupies, except for when the residual 
falls outside of the outer boundaries � ������ or ������ , in 
which it is quantized to � ������ � ��� or ������ � ��� , 
respectively. 

The number of quantization levels is chosen to be suitable 
for each sinogram pixel location depending on the level of 
quantum noise.  In other words, we would allow more 
quantization error (difference between the actual and 
quantized values) if the quantum noise of that sample is large.  
We also limit the probability of quantization error due to each 
outer quantization interval to 0.01% by setting the outer 
boundary accordingly.  In particular, the quantization level is 
selected such that ������

������ � �^� 

�� � � � �� � � �� � � �
� � � ����� 

� � � 
where Q is a quantization error, X is a detected number of 

photons, � is a prediction residual, and c is a constant (e.g. 1 
or 2). 

If the above conditions cannot be satisfied, the residual will 
not be quantized (i.e., full accuracy is retained). 

Since the accuracy of context determination is important, 
the projection data inside patient area of energy bin 5 is 
transmitted without quantization, and we use energy bin 5 to 
calculate the context for all energy bins.  Moreover, pixels 
along object boundary with high signal variation could have 
large quantization errors, causing the build-up of errors in 
subsequent pixels.  Thus, the projection samples at 4 detector 
channels along phantom boundary are not quantized in this 
analysis. 

B. Model of Prediction Error 
 The distribution of prediction error is assumed to be 
Gaussian with zero mean and standard deviation that is a 
linear function of standard deviation of the quantum noise.   
The coefficients of this linear function are specific to each 

context and are pre-computed from a least-square fit of 
standard deviation of prediction residual to standard deviation 
of quantum noise in training CT data in database. 
 The standard deviation of quantum noise is obtained from 
the square root of the average values of projection data 
samples near the coordinate of the projection data sample in 
consideration, �� (e.g. 10 x 11 samples indicated in the yellow 
region of Fig. 2). 

In the quantization process of a projection data sample, the 
compressor first acquires the standard deviation of quantum 
noise.  Then, the standard deviation of prediction residual is 
calculated, and the modeled probability distribution of 
prediction error at that projection sample is obtained.  This 
distribution is subsequently used to determine the quantization 
boundaries.  Finally, the prediction error is quantized with the 
computed quantization boundaries. 

 
Fig. 2.  The schematic diagrom of projection data indicating samples included 
in averaging to find variance of quantum noise in yellow  

IV. ENCODER 
The following encoders were used to encode the prediction 

errors.  If constraint (3) holds, Huffman coding is applied to 
the quantized prediction error.  If not, Golomb code is 
employed for the non-quantized prediction error. 

A. Huffman code 
Huffman code is a type of optimal prefix code.  It represents 

values that occur more frequently with fewer bits, thus 
reducing the average number of bits needed.  In our case, the 
Huffman table is calculated from the distribution of quantized 
residuals from our model, which is also known at the 
decompressor side and does not need to be transmitted. 

B. Golomb code 
It is commonly accepted that the residuals from a 

deterministic predictor in continuous-tone images follow a 
zero-centered two-sided geometric distribution [9].  Since 
Golomb codes are optimal for one-sided geometric 
distributions of nonnegative integers [10], we map our 
prediction residuals to nonnegative integers and encode them 
with a Golomb coder.  The encoding process is done by 
dividing a nonnegative integer y into an upper part (�y/k�) and 
lower part (y mod k), where k is a positive integer parameter.  
The transmitted data is the upper and lower parts in unary and 
binary representations, respectively.  In our implementation, 
the parameter k is context-dependent and is adaptively 
updated. 

(3) 
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V. EVALUATION METHODS  
 In this work, we assume simple fan-beam geometry, 
resulting in a 2D projection data for each energy bin. The x-
ray spectrum and partitioning of energy bins are displayed in 
Fig. 1 (left). 
 The projection data used in the performance evaluation of 
our proposed lossy compression was obtained by analytical 
forward projection of three simulated phantoms: a cylindrical 
low contrast water phantom (with inserts of either dilute 
iodine, dilute calcium carbonate, dense water, or adipose), a 
cylindrical water phantom with 8 inserts of bone with different 
density, and a head phantom [11]. 
 The projection data is lossy compressed, and the image is 
reconstructed from the decompressed projection data.  This 
image is then compared to the image reconstructed with the 
original projection data.  
 

 
Fig. 3.  The tested simulated phantoms: a cylindrical low contrast water 
phantom with insert of different materials (left), a cylindrical water phantom 
with 8 inserts of bone with different density (middle), and a head phantom 
(right) [11]. 

VI. RESULTS 
The error images, or the differences between the 

reconstructed images from lossy and original projections are 
shown in Fig. 4 and 5.  Streaks are observed in regions with 
larger quantization errors, which tend to result from larger 
prediction errors (e.g. in areas with higher projection sample 
value variation).  The uniform region seen in the error images 
is the zero-error region where prediction residuals are not 
quantized due to low detected counts in the center area of 
phantoms (the proposed quantization constraint is not met).  
The relatively higher errors at the boundary of the uniform 
zero-error region are caused by larger quantization errors in 
some transitions between non-quantized and quantized 
sinogram pixels. 

Compared to percent quantization error variance c=1%, 
c=2% gives worse image quality with more streaks and 2.03 
HU higher average root mean squared error (RMSE) due to 
quantization, but achieve 0.27:1 increase in average 
compression ratio.  Nevertheless, both cases significantly 
improve the compression ratio (3.15:1 and 3.42:1) from a 
typical 2:1 lossless compression ratio, while degrading the 
reconstructed image quality with relatively low ratio of RMSE 
to the standard deviation of quantum noise (1.15% and 
2.85%).  This ratio shows that even though the error could be 
quite high, it comes from the fact that the quantum noise 
variance is high as well.  The average RMSE is 1.32 HU for 
c=1% and 3.35 HU for c=2%.  While the former has -7 HU 
minimum error and 7 HU maximum error, the latter has -16 

HU mimum error and 18 HU maximum error. 
With this initial results, the value of percent quantization 

error variance c between 1 and 2% could be preferred, 
considering the trade-off between compression ratio and 
quantization error. 

 
a) [-6 6]                    b) [-8 6]                 c) [-7 8] 

 
d) [-12 11]                e) [-14 13]             f) [-25 23] 

 
Fig. 4.  Difference image between the reconstructed images from lossy and 
original projection data for energy bin 1 when percent quantization error 
variance c=1% (top row) and 2% (bottom row).  The result of low-contrast 
(left), 8-insert (middle), and head phantoms (right) are displayed with 
minimum and maximum values as indicated in HU in the square bracket. 

 
g) [-7 7]                   h) [-9 9]              i) [-7 7] 

 
j) [-14 13]             k) [-18 19]            l) [-17 23] 

 
Fig. 5.  Difference image between the reconstructed images from lossy and 
original projection data for energy bin 4 when percent quantization error 
variance c=1% (top row) and 2% (bottom row).  The result of low-contrast 
(left), 8-insert (middle), and head phantoms (right) are displayed with 
minimum and maximum values as indicated in HU in the square bracket. 

 
TABLE I 

PERFORMANCE COMPARISON  
Phantom c=1%a c=2%a 

Low-contrast 

Compression ratiob 3.22 3.48 

RMSEc (HU) 1.22 3.00 
Mimimum error (HU) -6 -13 
Maximum error (HU) 6 13 
Ratio of RMSE to Std. of quantum noised 1.02% 2.38%

8-insert 

Compression ratiob 3.27 3.53 

RMSEc (HU) 1.34 3.24 
Mimimum error (HU) -8 -17 
Maximum error (HU) 8 16 
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Ratio of RMSE to Std. of quantum noised 0.62% 1.39%

Head 

Compression ratiob 2.96 3.26 

RMSEc (HU) 1.39 3.81 
Mimimum error (HU) -7 -19 
Maximum error (HU) 8 24 
Ratio of RMSE to Std. of quantum noised 1.80% 4.78%

Average 

Compression ratiob 3.15 3.42 

RMSEc (HU) 1.32 3.35 
Mimimum error (HU) -7 -16 
Maximum error (HU) 7 18 
Ratio of RMSE to Std. of quantum noised 1.15% 2.85%

 ac is a parameter in quantization level constraint (3), the percent variance of 
quantization error to quantum noise variance. 
 bThe number of bits of maximum data samples, 14 bits, was used in 
computing the compression ratio, while the number of bits representing an 
uncompressed projection data is assumed to be 15. 
 cThe root mean square error (RMSE) due to quantization, or the standard 
deviation in the error image, is calculated from the region inside phantom 
boundary of the difference between reconstructed images from lossy and 
original projection data.  The calculated standard deviation is averaged over 
energy bin 1 to 4 (since data in object boundary of energy bin 5 is not 
quantized) and shown in HU. 
 dThe ratio of RMSE due to quantization (or standard deviation in error 
image) to standard deviation of quantum noise is averaged over energy bin 1 
to 4 since data in object boundary of energy bin 5 is not quantized. 

VII. CONCLUSIONS 
From the simulation results, the proposed lossy compression 

shows an improvement in reducing number of bits needed to 
represent the projection data from PCXDs.  Unlike lossless 
compression, the achieved compression ratio is not limited by 
quantum noise variance.  However, a careful evaluation of lost 
information in reconstructed image is needed to ensure the 
diagnostic quality of the data. 
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Abstract—Model-based, iterative image estimation methods
demand accurate modeling of instruments. Inaccuracies in mea-
surements, particularly when correlated in space and/or time,
result in reduced diagnostic quality due to local biases in recon-
structions. We present a method of estimating gain parameters
in X-ray CT systems simultaneously with reconstruction of
3D imagery. It is applied in this paper to cone-beam data,
compensating for unmodeled biases in detectors at edges of
modules.

I. INTRODUCTION

Model-based methods of reconstruction have proven an
important tool for improving image quality in X-ray CT
systems [1], [2], [3]. Iterative solution of associated optimiza-
tion problems, however, may be more sensitive to errors in
models than conventional, single-pass, backprojection tech-
niques. Previously, we have corrected for partial blockage of
reference-normalization sensors [4] by estimating a relatively
small number of detector gain parameters simultaneously with
reconstruction. Each of these parameters scales photon count
data at detectors and becomes an additive factor in a detector
row after transformation by the log() operator. Modeling of
this “DC” offset in projection data allows compensation for
inconsistent photon count scaling among various projection
angles and removal of low-frequency shading in iterative es-
timates. Somewhat similarly, parameters in polynomial beam-
hardening correction may be estimated simultaneously [5], [6].

A major trend in CT scanners has been toward wider
detectors, allowing capture of the whole heart in a single beat
with uniform IV contrast, and other applications in which the
cone-beam aspect becomes important. Large detector arrays
may be composed of many rectangular sub-arrays, with the
geometry of their arrangement precluding a perfectly uniform
angular spacing of detectors, and necessitating some variation
in the relative positions of boundary detectors in adjacent sub-
arrays, shown in Fig. 1. This geometry is to have focally-
aligned sub-arrays to reduce distortions and other generic
detection challenges. However, the boundary detectors may
have slightly different responses from those in the center
of a block, and if this response is not accurately modeled,
systematic local bias may arise.

Image slices at the boundaries of a wide-cone scan, particu-
larly a full rotation at a single bed position (e.g. slice locations

z

detector row

X-ray
source

detector row

X-ray 
source

A

B

C

Fig. 1: Cone-beam axial acquisition trajectories at two opposite view angles.
Reconstruction volume is indicated by the blue box. (The sketch is for
illustration and not to scale.)

(a) (b)

Fig. 2: Cone-beam reconstructions using FBP (a) and statistical IR approach
(b). Display window width 200 HU.

marked by A, B and C in Fig. 1), are sampled spatially
quite differently from those near the center. With boundary
image slices incompletely sampled and the estimation problem
underdetermined, problematic artifacts may arise from any
systematic errors in data. Fig. 2b presents an example of cone-
beam artifacts using native geometry iterative reconstruction
(IR) methods. An analytical reconstruction specifically de-
signed to address sampling inconsistencies in the cone-beam
geometry is shown for reference, and remains absent of cone-
beam artifacts. While some of this systematic bias in IR can
be reduced by the simultaneous DC estimation process, the
artifact can not be entirely compensated by the approach. In
this paper, we augment the offset estimation process with a
second set of parameters representing signal-dependent gain
in the projection domain.
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II. DESCRIPTION OF METHOD

A quadratic model of the log-likelihood in CT for image x,
projection data y and vector of DC correction parameters d
may be written as

ln p(y|x, d) ≈ −1

2
(y+ d−Ax)TW (y+ d−Ax)+ c(y), (1)

where A represents forward projection in native geometry, W
is a diagonal weighting matrix with entries proportional to
received radiation strength, and c(y) is independent of the
parameter vectors x and d. For wider cone-beam CT, we find
that DC compensation cannot fully capture the inconsistencies
between y and Ax of the rows at detector module boundaries.
According to Beer-Lambert law, projections are estimated by

yj = − log
( λj

γjλ0,j

)
= − log

( λj

λ0,j

)
+ log γj , (2)

where λj and λ0,j are measured and incident photon counts
at projection ray j respectively. The scaling factor γj is
considered fluctuating around value 1 in z-dimension (i.e.,
along table moving direction), which can be fixed with a DC
correction. However, should there be any mis-estimation in λj

due to detector efficiency or scatter level differences at de-
tector module boundaries, systematic error may exist in some
measurements. The amount of mismatch is here modeled as
proportional to the integral density of the projection rays. Since
the discrepancies are generally observed to be a very small
fraction of the line integrals, we use a simple linear model
to approximate the mismatch. The log-likelihood function can
then be written as

ln p(y|x, g, d) ≈ −1

2

M∑
j=1

wj(gjyj + dj −Aj∗x)2 + c(y). (3)

The correction factors gj and dj will be constant along some
variables, and may be non-zero only for selected subsets of
detector indices. We define the entries of g as

gj := 1 + αr, j ∈ Ωr, (4)

where Ωr is a non-overlapping sub-collection of data indices
(j = 1, 2, ...,M), divided by physical detector row indices.
Similarly, the elements of vector d are defined as

dj := βv,r, j ∈ Ωv,r (5)

where Ωv,r is a non-overlapping sub-collection of data indices
divided by view and row indices.

We pursue a maximum a posteriori probability (MAP)
reconstruction for image x with an a priori model U(x), and
maximum likelihood (ML) estimate for gain parameters α and
β. Rewriting (3) in vector format, the objective function is
formed as

Φ(x,G, d) =
1

2
(Gy+d−Ax)TW (Gy+d−Ax)+U(x), (6)

where the diagonal matrix G = diag{gj}. To perform ML
estimation of the parameters α and β at a given image x, we

carry on the computation using Newton’s method for convex
optimization, and the update equations are as follows,

β(n)
v,r = β(n−1)

v,r −
∑

j∈Ωv,r
wj(g

(n−1)
j yj + d

(n−1)
j −Aj∗x(n−1))∑

j∈Ωv,r
wj

(7)

α(n)
r = α(n−1)

r −
∑

j∈Ωr
wjyj(g

(n−1)
j yj + d

(n)
j −Aj∗x(n−1))∑

j∈Ωr
wjy2

j

.

(8)
To avoid introducing the row-dependent biases from prepro-

cessed data y to image domain, the DC and gain corrections
as described in (7) and (8) are applied ahead of the image
update in each iteration. Algorithm 1 shows a pseudocode of
the implementation for a total iteration number of N . This
simultaneous sinogram correction is a generic technique that in
theory should work well with any gradient-based IR methods
[7], [8], [9].

Algorithm 1 Simultaneous sinogram correction for model-
based cone-beam CT reconstruction
Require: preprocessed projection estimation y, statistical

weights W and initial reconstruction image x(0).
1: compute forward projection of initial condition Ax(0)

2: for n = 1 to N do

3: update DC vector β(n) using (7)
4: update gain vector α(n) using (8)
5: update image: x(n) ← argminx Φ(x

(n−1), G(n), d(n))
6: update forward projection Ax(n)

7: end for

III. RESULTS

We apply the proposed method to axial cone-beam CT scan
data acquired on a Revolution CT scanner (GE Healthcare,
Waukesha, WI). A water phantom is tested for uniformity
check, without significant gradients along z; and a clinical
head scan is used for demonstration of the technique in
a challenging case where sampling non-uniformity is more
difficult to address given the gradient changes in patient’s
anatomy. All data is composed of 984 views per rotation,
1.0 sec/rotation and 160 mm collimation. Subsequent model-
based IR (MBIR) results are reconstructed with the q-GGMRF
as a priori image model using a gradient based IR algorithm
that simultaneously updates all the voxels [7], [8]. All images
are reconstructed at thickness of 0.625 mm.

A. Image Quality

The first experiment is done on an isotropic 20 cm water
phantom, scanned at 120 kV and 680 mA. The standard MBIR
(without DC and gain correction) method tends to create shad-
ings in some axial images of locations marked by A, B and
C in Fig. 1, corresponding to detector module edges, shown
in Fig. 3b. The shadings are usually centered in the scan field
of view, and they create ripple-like effect in z-direction, which
forms strip artifacts in reformatted coronal or sagittal images,
as in Fig. 4b. FBP does not show similar artifacts, because
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(a) (b)

(c) (d)

Fig. 3: Cone-beam reconstruction of water phantom at slice location B. (a):
FBP; (b): standard MBIR; (c): MBIR with DC correction; (d): MBIR with
DC and gain correction. Display window width 100 HU.

(a) (b)

(c) (d)

Fig. 4: Cone-beam reconstruction water phantom in coronal view. (a): FBP;
(b): standard MBIR; (c): MBIR with DC correction; (d): MBIR with DC and
gain correction. Display window width 100 HU.

cone-beam analytical reconstruction methods generally use
some rebinning and filtering techniques as pretreatments, and
such row-dependent biases may not be reflected in image
space. For native-geometry-based IR techniques, reconstruc-
tion is very sensitive to systematic errors in projection data
and some compensation may be required. In Figs. 3c and 4c,
only DC correction in (7) is applied to iterative estimation
while α is set to 0. Artifact reduction is evident, but residual
errors persist. With gain correction included, images in Figs.
3d and 4d have successfully eliminated artifacts introduced
by the under-sampling associated with wide-cone geometry.
At 100 HU display window width, the water phantom is,
appropriately, much more uniform.

We also applied the algorithm 1 on a clinical head dataset,
scanned at 140 kV and 270 mA. Similar to the improvement

(a) (b)

(c) (d)

(e) (f)

Fig. 5: Clinical cone-beam head reconstruction. (a), (c), (e): standard MBIR
in sagittal, coronal and axial views; (b), (d), (f): MBIR with DC and gain
correction in sagittal, coronal and axial views. Slice location C from Fig. 1
is chosen for axial images. Display window width 200 HU.

seen in the water phantom, the horizontal streaking artifacts in
the sagittal and coronal images, which correspond to shadings
in trans-axial plane, are successfully removed. The usual
advantages of the IR method have been maintained: compared
to FBP, MBIR has lower noise levels and finer details.

B. Convergence Discussion

The DC and gain parameters α and β are simultaneously
estimated within iterative loop, and their convergence behav-
iors are critical to the robustness of the algorithm. As shown
in Figs. 6 and 7, the convergence speeds are relatively fast
due to convexity of the quadratic penalty. Here we choose
one of the “problematic” slice locations, marked C in Fig. 1,
and compare its offset parameters against adjacent rows. The
DC components in Fig. 6 consistently move to one direction,
suggesting there are some DC mismatches in the data but
nothing particular is about the specific row rC . The conclusion
is also supported by DC profile plot in Fig. 8. However,
the gain profile plots in Figs. 7 and 9 indicate systematic
estimation errors in the projection data y at detector module
edges, which would lead to the cone-beam artifacts using
native geometry IR methods if not well compensated.

C. Computational Cost

The DC and gain offset estimation described in Algorithm
1 is highly parallelizable, and the computation is very efficient
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Fig. 6: Clinical head scan DC components βv,r estimation plots for view 1
and row indices of rC , rC − 1 and rC +1 (in the scale of integral density).
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Fig. 7: Clinical head scan gain components αr estimation plots for row indices
of rC , rC − 1 and rC + 1.

since it only involves addition and multiplication operations.
In real time tests, the extra cost of simultaneous parameter
estimation is negligible compared to overall computational
time of IR algorithm.

IV. CONCLUSION

Our approach to simultaneously correct row-dependent sino-
gram mis-estimation in iterative reconstruction framework
yields relatively robust control of cone-beam related artifacts
in the 3D volume. This improvement could extend the merit
of IR methods in native geometry reconstruction to wider
cone settings. Our subsequent work with these innovations will
include robustness testing on various clinical applications and
more extensive convergence and image quality studies.
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Abstract— CT images are often affected by beam-hardening 

artifacts due to the polychromatic nature of the spectra. These 
artifacts appear in the image as cupping in homogeneous parts 
and streaks among dense parts in heterogeneous objects.  

We propose a new correction method based on the complete 
calibration of the beam hardening effect by means of a very 
simple phantom, extending the idea of the commonly used 
linearization method. The calibration, completely based on 
experimental measurements, does not require any prior 
knowledge about spectra or tuning correction parameters. 

Preliminary evaluation done using simulations of a real size 
human head phantom showed better artifact compensation than 
the equivalent method proposed by Joseph and Spital. 

Index Terms—Beam-hardening, CT, artifacts, cupping, 
streaks, polychromatic. 

I. INTRODUCTION 
HE relationship between the intensity of the beam 
incident and transmitted through a material can be given 

by the Beer-Lambert Law, following the expression: 

   (1) 

where I0 is the incident intensity, μ the attenuation coefficient, 
path the trajectory followed by the ray, and L is the total 
length traversed. From this equation, the attenuation image 
(log of the beam attenuation) is directly proportional to the 
traversed thickness. 

However, due to the polychromatic nature of the spectra 
and the integration property of the detectors used in most CT 
scanners, equation (1) has to be rewritten as: 

      (2) 

Now, both the attenuation coefficient and the transmitted 
intensity depend on the energy , therefore the attenuation 
image is not proportional to the material thickness anymore.  
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This effect results mainly in two artifacts in reconstructed 
images: cupping in homogeneous regions and streaks among 
dense objects (like bone) [1]. These artifacts can be 
compensated by dual energy acquisition [2], which requires 
high dose, or including the polychromatic nature of the 
spectrum in an iterative reconstruction method, which implies 
high computational burden. 

Several algorithms have been proposed in the literature to 
compensate for these artifacts when using single KV 
acquisitions and analytical reconstruction. Most simple 
approximations consider the patient as an homogeneous 
material, correcting only the cupping artifact with the 
linearization method [3, 4], which is insufficient to correct 
dark streaks. Nalcioglu et al. estimates the bone and soft tissue 
amount from the uncorrected image, in order to calculate 
correction terms, but the knowledge of the spectrum is 
necessary [5]. 

The method described by Joseph et al [6] compensates the 
streak artifacts after a previous reconstruction and a bone 
segmentation that is forward projected. This method 
substitutes the need of the knowledge of the spectra for two 
parameters that affect the streaks reduction and the bone 
quantification recovery [7]. The calculation of these 
parameters can be cumbersome due to their dependency with 
the source parameters and the sample used. To solve it, 
Kyriakou et al [8] propose an iterative algorithm to calculate 
these parameters automatically and [9] goes a step further 
avoiding also the bone segmentation step, through the 
combination of the original image and a transformed image by 
a histogram spreading. These two methods are based on the 
iterative optimization of a cost function, which can imply high 
computational burden. 

In this work, it is presented a new method for beam 
hardening correction based on a complete and empirical 
calibration extending the idea of the water linearization to a 
2D function. Using a very simple phantom in a calibration 
step, we obtain a look-up table (LUT) with the correction 
factors corresponding to each traversed bone thickness value. 
Then, for a given study, the corrected reconstruction is 
obtained by: (1) bone segmentation in a preliminary FDK 
reconstruction, (2) traversed bone calculation at each pixel by 
the bone projection, (3) correction of each pixel in the 
projections using the corresponding linearization function, and 
(4) reconstruction of the corrected projections. We evaluate 
the method using simulated data of a real-size human head 
phantom, the PBU60 model manufactured by Kyoto Kagatu. 

Simple method for beam-hardening correction 
based on a 2D linearization function 

Cristóbal Martínez, Claudia de Molina, Manuel Desco, and Monica Abella 

T 
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II. MATERIALS AND METHODS 

A. Calibration 
In the calibration phase we obtain the 2D beam-hardening 

function (FBH) assuming only two different materials in the 
volume, bone and soft tissue: 

    (3) 

where  and  are the line integrals of water and bone 
respectively given by: 

;       (4) 

where mac(  and  are the mass attenuation coefficient 
the density of tissue i and path is the trajectory followed by 
the ray. 

In order to obtain the empirical , it is necessary 
to measure different combinations of traversed thicknesses of 
soft tissue and bone. To this end, we use the simple calibration 
phantom shown in Fig 1, which consists of two semicylinders 
made of PMMA and aluminum, which present similar 
attenuation properties to soft tissue and bone respectively. 

To generate the matrix of the traversed thicknesses for each 
material (tw and tb): (1) soft tissue and bone are segmented by 
thresholding of a previous reconstruction preformed with 
Mangose, an FDK-based algorithm [10], (2) soft tissue and 
bone masks are forward projected (Fig 1). 

 
Fig 1. Calibration process. 

The FBH function is built by the correspondence of the 
traversed bone and soft tissue corresponding with each 
projection value. Due to phantom geometry, we do not sample 
the whole support of FBH function. In order to estimate the 
missing values (Fig 2, left), we use the following strategy:  
1. 1D curves corresponding to no bone traversed axis and no 

soft-tissue traversed axis are fitted with: 
 ;    (5) 

where b and c are free parameters to adjust the curve.  
2. The 1D curves paralell to the axis (for each amount of 

soft tissue traveresed) are fitted with: 
       (6) 

where a is thickness of traversed water (Fig 2, right).  

3. The 1D curves paralell to the axis (for each amount of 
bone traveresed) are fitted with: 

       (7) 
where a is thickness of traversed bone. 

The complete surface is shown in Fig 3, left. 

 
Fig 2. Original beam-hardening function without fitting (left). First fitting in 

water traversed direction applied to beam hardening function (right).  

The ideal 2D function corresponding to the monochromatic 
case is determined by the tangent plane to the FBH function. To 
this end, we obtain the tangent to the 1D curves corresponding 
to the no bone traversed axis and no soft-tissue traversed axis 
(approximated with the mean value of the 4% of the total 
points). The monochromatic plane is then determined by the 
equation: 

       (8) 

where A and B are the tangents corresponding to soft tissue 
and bone curves respectively. 

 
Fig 3. Obtained beam-hardening surface (left) and ideal (monochromatic) 
function (right). 

The correction is based on the substitution of the real 
surface values for the monochromatic function values which 
have the same bone and soft tissue traversed, the relating 
function has the following expression: 

 
       (9) 

However, T function is not injective,so it is not possible to 
obtain the correction value for each given bone/soft-tissue 
thicknesses pair, we create one linearization function for each 
thickness of bone traversed (bonei), which follows the 
expression: 

     (10) 

The result of the calibration process is a look-up table 
(LUT) that provides the linearization function for each 
thickness of traversed bone.  
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B. Correction 
The beam hardening correction process is sketched in Fig 4. 

First, the bone is segmented on a preliminary reconstruction 
and projected to obtain the total traversed bone thickness for 
each pixel in the projection data. This information is used to 
address the LUT and obtain the linearization function 
corresponding to that thickness of traversed bone. Finally, the 
pixel is corrected applying that linearization function. 

 

 
Fig 4. Workflow of the process to obtain the corrected projections. 

C. Assessment of performance 
Evaluation was done on simulated data based on a CT of a 

real-size human head phantom (PBU-50 model, manufactured 
by Kyoto Kagatu) shown in Fig 5, adapted to have three 
different attenuation coefficients: soft tissue, hard bone and 
marrow (densities 0.8, 1.92, 1.6 gr/cm3, respectively). The CT 
volume was 512×512×500 pixels, with 0.5 mm isotropic 
voxel.  

 
Fig 5.  Phantom front view (top-left), axial (top-right). coronal (bottom-left). 
and sagittal CT slices (bottom-right). 

Simulations were generated with a simulator implemented 
in GPU [11], based on a cone-beam system with a distance 
source object and object detector source equal to 104 cm and 
57 cm respectively. We used a spectrum similar to those used 
in the clinic: polyenergetic 100 kVp spectrum, with 0.2 cm 
aluminum filtration, and the detector was modeled as a simple 
photon counting system with a pixel size equal to 0.774 mm.  
 Fig 6 shows an axial slice of the head obtained with a 
monochromatic and polychromatic spectra showing beam 
hardening effect (streaks). 

 
Fig 6. Axial slice of the phantom reconstruction of the monochromatic (left) 

and polychromatic simulations (right). 

The proposed correction scheme was compared with the 
results obtained with the Joseph and Spital method.  

In order to obtain differents regions to measure the 
imrpovement, volume has been separated in five different 
regions. Mean Squared Error (MSE) was obtained for bone 
and soft tissue and the percentage of improvement with 
respect to the polychromatic reconstruction was obtained as: 

     (8) 

We also obtained three different profiles in the two slices of 
the head, each one with different bone structures, these 
profiles can be seen on the Fig 7. 

 
Fig 7. Axial slices 1 (left) and 2 (right) used for assessment. Line 1 shows the 
beam hardening effect, line 2 the bone value and line 3 cupping effect. 

III. RESULTS 
Fig 8 shows the polychromatic data corrected with both 

proposed method (left) and Joseph-Spital method (right), 
showing a better streak compensation with the proposed 
method. 

 
Fig 8.  Polychromatic phantom reconstruction with the proposed method (left) 
and with the JS method (right). 

Table I shows an improvement in all regions when using the 
proposed method. Results for the JS method are not consistent 
for bone through the different slices. The lower improvement 
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in soft tissue error in slice 1, characterized by more bone, is 
due to the streak artifacts still present after the correction 

TABLE I. Improvement percentage 
Study PI(JS) PI(PL) 
Soft Tissue Slice 1 89.97 % 98.15 % 
Bone Slice 1 98.87 % 99.87 % 
Soft Tissue Slice 2 92.19 % 98.87 % 
Bone Slice 2 92.40 % 99.77 % 
Whole soft tissue 90.39 % 97.13 % 
Whole bone 96.14 % 99.76 % 

   
As it can be seen on top panel of Fig 9, the cupping is 

corrected with both methods. However, the JS method 
underestimates the value of bone and the streaks are not totally 
corrected in slice 1. These can be seen on the middle and 
bottom panel of the Fig 9, corresponding to the profile 1 and 2 
respectively. 

 

 
Fig 9.  Profiles 1, showing the cupping artifact in slice 2 (top),2, showing  the 
effects of the streaks in slice 1 (middle) and 3, showing the bone recovery in 

slice 1 (bottom). 

IV.   DISCUSSION 
We have proposed a new method to correct the beam-

hardening artifacts in CT. The method is based on the 
complete characterization of the beam hardening effect by 
means of a very simple calibration phantom, extending the 
idea of the commonly used water linearization method.  

A preliminary evaluation based on simulations showed that 
the proposed method outperforms the Joseph-Spital method 
both visually and analytically in terms of artifact reduction 
(9% percent on soft tissue and 7% on bone). The proposed 
method avoids the need of tuning parameters determining 
which is usually calculated heuristically. Furthermore, since 
the correction in JS method is based on the projection of bone, 
optimal parameters are different depending on bone structure 
and the reconstructed volume.  

Our method gives an optimal correction for every study 
independently of the sample structure or the reconstructed 
volume. Since it is based on empirical measurements, we 
expect to correct also the artifacts derived from scattering.  
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Towards Material Decomposition on Large
Field-of-View Flat Panel Photon-Counting Detectors

— First in-vivo Results

Kerstin Müller, Moiz Ahmad, Martin Spahn, Jang-Hwan Choi,
Silke Reitz, Niko Köster, Yanye Lu, Rebecca Fahrig, and Andreas Maier

Abstract—Dual-energy CT imaging allows to separate mate-
rials and tissue based on their attenuation behavior using two
different X-ray spectra. Various techniques exist to acquire X-ray
and CT images with two different energies. One approach utilizes
a specific detector technology to discriminate the photons in the
emitted X-ray spectrum by their energy instead of integrating the
energy as in current applied detector technology. Photon-counting
detectors (PCDs) offer several advantages compared to traditional
energy integrating detectors such as improved detective quantum
efficiency (DQE). However, due to manufacturing challenges,
PCDs are still part of on-going research and not applicable in
a clinical scanner, yet. In this paper, a first step towards in-
vivo material decomposition for iodinated contrast agent from
background tissue in a porcine study using a large field-of-
view photon-counting detector is presented. First preliminary
results are encouraging to further exploit material decomposition
methods using the presented photon-counting detector. However,
major challenges remain with the current technology that need
to be investigated and addressed in future work.

Keywords—C-arm Angiography, Photon-Counting Energy-
Resolving Detectors, Material Decomposition, Image Formation

I. INTRODUCTION

Photon-counting detectors (PCD) offer significant advan-
tages to current energy-integrating flat panel detectors (FDs)
such as improved detective quantum efficiency (DQE) and
photon energy resolution [1], [2], [3]. In particular the ability
to differentiate material properties dependent on photon en-
ergies has attracted significant attention as it allows material
decomposition with a single scan, as data with both energies
is acquired simultaneously. This enables 2-D projection-based
decomposition of materials [4], [5], [6]. The acquisition of a
high energy (HE) and total energy (TE) image at the same
time point with a PCD, assuming 2 energy bins, solves the
problem of degraded image quality due to motion artifacts.
For example for a 2D digital subtraction angiography (DSA),
where the mask and the fill images are acquired at different
time points, severe motion artifacts can occur as visible in
Fig. 1. Modern C-arm systems allow to select the mask image
and also provide motion correction algorithms. However, these
cannot eliminate severe motion between mask and fill images.

K. Müller, M. Ahmad are with the Radiological Sciences Lab, De-
partment of Radiology, Stanford University, Stanford, CA, USA. E-mail:
kmuell@stanford.edu. M. Spahn, S. Reitz, and N. Köster are with Siemens
Healthcare GmbH, Forchheim, Germany. J.-H. Choi and Rebecca Fahrig were
with the Radiological Sciences Lab, Stanford University, Stanford, CA, USA.
R. Fahrig is now with Siemens Healthcare GmbH, Forchheim, Germany. Y. Lu
and A. Maier are with the Pattern Recognition Lab, Department of Computer
Science, Friedrich-Alexander-Universität Erlangen-Nürnberg.

Fig. 1. Prominent motion artifact in DSA image may occur because mask
and fill image were acquired at different time points.

Current photon-counting detector technology still poses
significant challenges. Amongst other problems, an excess of
detected photons results in pulse pile-up and the detected
count rates are energy dependent and spatially varying [2],
[3]. So called homogenization approaches to compensate those
effects exist which result in significant improvements of the
acquired image stacks [7], [8]. Assuming a PCD with two
energy bins, a total energy (TE), high energy (HE), and low
energy (LE) image stack is acquired. The most benefit of the
homogenization techniques exists for the TE image. Results for
the individual energy bins (HE, LE), however may be inferior
(cf. Fig. 2). As pulse pile-up favors lower count rates, detectors
typically can only account for smaller pixel sizes and the X-
ray tube needs to be set to low exposure rates. As a result, the
acquired 2-D images have a noisy appearance and material
separation is not possible on the raw 2-D images.

All the previously mentioned challenges make it difficult
to advance from simulated phantom PCD experiments towards
integration into a clinical system. In this paper, a first attempt
towards projection-based material decomposition with a large
field-of-view photon-counting detector in an in-vivo porcine
study is presented. A non-linear denoising technique is applied
to the generated 2-D (LE, HE) image stacks to perform a
simple linear material decomposition. To the best of our knowl-
edge, this is the first study on in-vivo material decomposition
using a large field-of-view PCD.

II. MATERIALS AND METHODS

A. Photon-Counting Detector (PCD) Imaging

A large field-of-view dual-energy photon-counting detector
(XCD) for its application in interventional radiology was
”piggy-back” mounted to the flat panel detector (FD) of an
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Fig. 2. Homogenization algorithms improve spatially varying detection
behavior, but detector module artifacts are still present in the HE and LE
processed images.

Artis zeego system (Siemens Healthcare GmbH, Forchheim,
Germany). The detector is a customized OEM product manu-
factured by XCounter AB (Danderyd, Sweden). The detector
features a 1 mm cadmium telluride (CdTe) layer to convert
absorbed X-ray energy to an electrical signal. The detector
covers an active area of 30×5 cm2 made up of several
individual modules, each having a size of 1.25×2.5 cm2.
Overall the 2D image matrix is 3072×512 pixel with an
isotropic pixel resolution of 100μm. The exposure integration
range is from 100μs-5s. The XCD features two energy bins
per pixel with an adjustable threshold with a counter depth
of 12 bit. The adjustable thresholds are only mean values
and can vary between different pixel modules. The two bins
allow synchronous acquisition of a total energy (TE) and a
high energy (HE) image can be performed. The detector also
features a charge sharing correction feature to restore the
energy that may spread over several neighboring pixel due to
fluorescence or charge dispersion and to count the event only
once. The detector design is similar to the small PCD presented
in Ullberg et al. [1]. The readout of the XCD is performed over
a gigabit ethernet connection and the generated 2D images are
visualized and stored on an external workstation. The same
pre-processing and conditioning as described in Ahmad et al.
was applied to the TE and HE image stacks [9].

B. TE-guided Bilateral Filtering

As previously mentioned, the 2D HE and LE image stacks
suffer from severe pixel noise compared to the TE image stack
(cf. Fig. 2). In order to improve image quality and to reduce

noise, a non-linear joint bilateral filtering (JBF) technique is
applied [10], [11], [12]. The approach exploits the improved
image quality of the TE image ITE(x) to filter the respective
(HE, LE) image under guidance at position x. The bilateral
filtered image I ′b(x) from the non-filtered image Ib(x), where
b ∈ {HE,LE} can be computed by

I ′b(x) =
1

c(x)

∑
u

gs(x,u)gI(x,u)Ib(x), (1)

c(x) =
∑
u

gs(x,u)gI(x,u), (2)

gs(x,u) = e−
||x−u||22

2σs (3)

gI(x,u) = e
− (ITE(x)−ITE(u))2

2σI (4)

Here, σs denotes the spatial standard deviation and σI denotes
intensity standard deviation used for the joint bilateral filter.

C. Material Decomposition

Due to the non-linearity of the photon count rate and since
the material decomposition is spatially quite variant, we chose
a simple linear model for material separation and assume that
this model is valid in a small patch of the image. In order
to compute a soft tissue suppressed image that only shows
contrast agent, we analyzed a small area ΩST containing only
soft tissue to compute regression coefficients m and t solving
the least-square problem:

argmin
m,t

=
∑

x∈ΩST

|| ln(I ′HE(x))− (m · ln(I ′LE(x)) + t)||22. (5)

The contrast projection IC(x) showing only iodinated contrast
agent can be computed by

IC(x) = ln(I ′HE(x))− (m · ln(I ′LE(x)) + t). (6)

D. Evaluation

1) Digital Subtraction Angiography (DSA): The PCD gen-
erated iodine images I ′HE(x) were compared to DSA-like
data. DSA is a popular method in angiographic imaging for
visualization of iodine-based contrasted vessels. For DSA-
imaging, the reference frame I ′b,ref(x), without contrast injec-
tion is acquired and subtracted to get only the contrast-filled
projection Ib,DSA(x):

Ib,DSA(x) = I ′b(x)− I ′b,ref(x). (7)

This procedure can be performed for both energy bins b
(HE, LE).

2) Contrast-to-Noise Ratio (CNR): In order to quantita-
tively evaluate the contrast within vessel structure to back-
ground, the contrast-to-noise ratio (CNR) was computed.
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III. EXPERIMENTS

Stanford Universitys Administrative Panel on Laboratory
Animal Care approved the protocol for this in-vivo animal
study. Arterial femoral access was established using percuta-
neous puncture for hemodynamic monitoring, administration
of medications, and the injection of contrast agent. For the 2D
scan a 20 mL of 100% iodinated contrast agent (Omnipaque
350 mg/mL, GE Healthcare, Princeton, NJ) was administered
over a pigtail catheter placed in the aortic root. The contrast
was delivered with a rate of 8 mL/s using a power injector
(Medtron, Saarbrücken, Germany). The 2D acquisition was
performed with requesting 81 kV, 10 ms and 800 mA from
the X-ray tube and the thresholds of the XCD were set to 8
keV for the lower and 39 keV for the higher energy bin.

IV. RESULTS

In the following section, the results of the TE-Guided
filtering and the material decomposition are presented in
comparison to conventional DSA-imaging. All algorithms were
realized using the CONRAD software package [13].

A. TE-guided Bilateral Filtering

In a first experiment, we explored whether TE-guided JBF
filtering reduces noise, improves image quality and still allows
to identify tissue clusters in a HE/LE channel scatter plot. A
1×1 cm2 patch of the image showing a contrasted vessel and
soft tissue background was selected for the scatter plot. Fig. 3
shows the LE versus HE scatter plot for a small region of in-
terest containing an iodinated contrasted vessel and water-like
background tissue. It can be seen that without smoothing, no
materials can be differentiated. Only after extensive smoothing,
material clusters for separation of different materials form even
though spatial resolution is drastically reduced. As shown in
Fig. 4, with TE-guided bilateral filtering similar tissue clusters
as seen with strong spatial smoothing appear, but preserving
the spatial resolution. Spatial smoothing with σs = 5 and a
TE-guided filtering with σs = 5 and σI = 10 were compared.
Visual comparison before and after filtering of the LE channel
which contains the most noise also confirms the effectiveness
of the TE-guided filtering, while Gaussian smoothing enables
the same differentiation and degrades severely the spatial
resolution (cf. Fig. 5).

B. Material Decomposition

Subsequently, we explored different methods to emphasize
the contrast filled right coronary vessel tree. As a first attempt
we investigated only a single detector tile as a first proof of
concept due to the large differences in energy count behavior
between the different detector modules. Fig. 6 displays the
results of the different methods. DSA of the HE channel shows
the contrast filled vessel with a CNR of 1.66. Using the TE-
guided filter improves the CNR to 2.46. On the LE channel, the
contrast is barely visible at a CNR of 0.64. There is only high
contrast at the top of the vessel, while contrast is significantly
reduced in most parts. TE-guided filtering also improves
contrast to a CNR of 1.32. The material decomposition image
also shows sub-optimal contrast compared to the denoised HE
channel. But the material decomposed image does not suffer
from any motion artifact. Its CNR is also higher than the HE

Fig. 3. Scatter plot for LE and HE photon counts. Identification of underlying
material or tissue in the non-filtered 2D HE and LE stack is not possible, due
to the excessive noise and spatially variant energy discrimination. Extensive
spatial filtering (2D-Gaussian filter) allows to form clusters for water and
iodine while decreasing spatial resolution.

Fig. 4. TE-guided filtering improves the ability to identify material and tissue
clusters in the 2D TE raw data, comparable to Gaussian filtering using a strong
spatial sigma.

raw image with 2.00 as noise is greatly reduced. The non-
uniformity of the energy counts across the single tile causes
the top part of the image and the bottom left to loose contrast.
Note that the water calibration was performed in the left center
of the tile which delivers the best signal-to-noise characteristics
in the image.

V. DISCUSSION AND CONCLUSION

In this proof-of-concept study the goal was to investigate
the first attempts towards material decomposition using in-
vivo data acquired with a large field-of-view photon-counting
detector. As a first feasibility test a simple and local method
for material separation was chosen due to the detectors spatial
variations. After pre-processing of the TE image stacks using
homogenization methods, the spatially variant energy resolu-
tion and noise still pose the biggest challenges. TE-guided
filtering reduces noise drastically while preserving spatial in-
formation. This results in increased CNR rates in DSA images
for HE and LE. However, DSA has the large disadvantage
that motion artifacts are introduced. Material decomposition
techniques are not effected, as the image is computed from
simultaneously acquired TE and HE image stacks. The current
detector shows significant differences in energy sensitivity and
energy resolution abroad detector modules. In particular at the
tile borders neighboring pixels may have significantly different
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Fig. 5. LE channel before and after TE-guided filtering: The filtering reduces
noise significantly and preserves the edges of the contrast filled vessel. Note
that also the impression of the patches between the detector elements is
reduced as these are less apparent in the TE images.

Fig. 6. Patches of the different techniques to extract iodinated contrasted
vessel from background and respective CNR.

properties in terms of spectral separation. To alleviate this, we
investigated only a single tile for material decomposition. Still,
the CNR of the decomposed image is only slightly better than
the DSA of the LE projection of the same patch. It should be
mentioned that the trimming of the detector is not sufficient
and will be addressed in future work. Overall, we believe that
further investigations using more sophisticated methods found
in literature [14], [15], [16], [17] will help to improve material
decomposition that will finally enable applications as single
shot DSA.

Disclaimer: The concepts and information presented in
this paper are based on research and are not commercially
available.
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Abstract—This work is to investigate the feasibility of improving
the imaging quality for low-dose multislice helical computed to-
mography (CT) via iterative reconstruction with tensor framelet
(TF) regularization. We develop the TF-based iterative image
reconstruction algorithm for multislice helical CT. The imaging
model takes the flying focal spot into account, and the GPU
computing is adopted for efficiently implementing a fast parallel
algorithm of X-ray forward and backward projections. The image
regularization for noise and artifact reduction is enforced by
TF, as a high-order generalization of isotropic total variation
regularization. The solution algorithm for image reconstruction
is based on the alternating direction method of multipliers
or the so-called split Bregman method. The proposed method
was validated using the experimental data from a Siemens
SOMATOM Definition 64-slice helical CT scanner, in comparison
with FDK and the Katsevich algorithm. To test the algorithm
performance with low-dose data, an ACR phantom was scanned
and the data was equally undersampled with various factors.
The proposed method was robust for the low-dose data with 25%
undersampling factor. An effective iterative image reconstruction
algorithm has been proposed for low-dose multislice helical CT
with improved image quality from FDK and the Katsevich
algorithm.

I. INTRODUCTION

X-ray computed tomography (CT) has been one of the most
widely used medical imaging techniques since Hounsfield
invented the first commercial medical X-ray machine in 1972
[1]. The Helical CT was first invented by I. Mori [2] in the
late 1980s and was developed by W. Kalender [3] in the
1990s. The number of detector rows has been increased to
achieve larger volume coverage with a reduced scan time and
improved z-resolution.

Helical CT reconstruction algorithms can be categorized into
two groups: Analytic reconstruction and iterative algorithm,
and analytic reconstruction can be sub-divided into exact and
approximate reconstruction methods. The Feldkamp-Davis-
Kress algorithm (FDK) is a well-known approximate analytic
reconstruction algorithm [4] and it can be generalized for
helical scan trajectories [5], [6]. However, FDK generates
helical artifacts due to data insufficiency. A conventional
filtered backprojection (FBP) algorithm can be implemented
with data interpolation [7] to soften helical artifacts, but
this may generate another type of artifact caused by data

approximation. In 2002, Katsevich introduced an exact FBP-
type reconstruction algorithm based on the PI-line and Tam-
Danielsson window [8], and details for the numerical im-
plementation of the Katsevich algorithm are given in [9],
[10]. An alternative derivation of the Katsevich algorithm is
provided by Chen [11]. Meanwhile, another exact method of
backprojection-filtration (BPF) has been developed by Zou and
Pan [12], and these ideas have inspired several subsequent
exact reconstruction methods [13], [14], [15].

In this article, we propose an iterative reconstruction al-
gorithm to improve multi-slice helical CT based on tensor
framelet (TF) [16], [17] regularization. The method belongs
to a sparsity-regularized model-based iterative reconstruction,
which is inspired by compressive sensing [18]. This paper
is organized as follows: Section II provides the method de-
tails, including the minimization problem, TF regularization,
and optimization algorithm for iterative multislice helical CT
image reconstruction. Section III presents the validation of
the proposed method for low-dose multislice helical CT in
comparison with FDK and the Katsevich algorithm, with
sparse-view data. Section IV summarizes this work.

II. METHODS

A. Minimization Problem

The mathematical formulation of an iterative CT reconstruc-
tion can be expressed by a least-square minimization problem
as

x = argmin
x

1
2
‖Ax− y‖2

2+λ R(x), (1)

where x is the three-dimensional image to be reconstructed
with given projection data y and the projection matrix A.
The first term indicates the data fidelity in the L2-norm. The
second term consists of R(x) as a regularization function with
regularization parameter λ . For example, the TV norm is
a popular regularization choice for sparsity-based CT image
reconstruction [19], [20].

In this paper, we solve equation (1) with the given data y

from the multislice helical CT system. The projection matrix
A contains the helical geometry with the flying focal spot [21].
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For the forward projection A and its adjoint AT , parallelized
algorithms with an infinitely narrow beam are used with GPU
implementation [22].

B. Tensor Framelet Regularization

Consider a 3D image x as a tensor,

x = {xi jk, i≤ Nx, j ≤ Ny, k ≤ Nz}

where xi jk is the (i, j,k)-th voxel in three-dimensional image
space, Nx,Ny, and Nz are the number of voxels in the x, y and
z−axis respectively. We define xx, xy, and xz as 1D unfolded
matrices of x along the x, y, and z−axes, respectively. The
TF transform is constructed using the standard 1D framelet
transform [23], e.g., the 1D piecewise linear tight frame with
the following refinement masks.

ω0 =
1
4
[1 2 1], ω1 =

√
2

4
[1 0 − 1], ω2 =

1
4
[−1 2 − 1].

The operator ω0 is an averaging operator, and the two other
operators ω1 and ω2 are the first and second differential
operators, respectively. Note that ω0 smoothes the image,
while ω1 and ω2 enhance the edges. Define

M jx =
1√
3

⎡⎣ ω j ∗ xx
ω j ∗ xy
ω j ∗ xz

⎤⎦ ,∀ j = 0,1,2,

where ∗ denotes the convolution operator. The TF regulariza-
tion function W and its adjoint WT are respectively defined
as below.

Wx = [M0x, M1x, M2x]T , (2)

and

WT y = MT
0 (M0x)+MT

1 (M1x)+MT
2 (M2x), for y = Wx.

(3)
The TF norm is defined as λ‖Wx‖1 = λ0‖M0x‖1 +
λ1‖M1x‖1 +λ2‖M2x‖1, where
‖M jx‖1 =

√
|ω j ∗ xx|2 + |ω j ∗ xy|2 + |ω j ∗ xz|2, for all j = 0,1,

and 2. TF transform W is left invertible and WT W = I, by the
simple calculation [16]. If λ0 = 0,λ1 �= 0, and λ2 = 0, ‖Wx‖1
corresponds to the isotropic TV norm of x. In other words,
TF regularization is a high-order generalization of TV.

With the TF regularization, equation (1) becomes

x = argmin
x

1
2
‖Ax− y‖2

2+λ‖Wx‖1. (4)

The TF regularization term is defined as the isotropic shrink-
age TF norm [16]:

λ‖Wx‖1 =
L

∑
l=1

2

∑
j=1

λl, j‖Ml
jx

l‖1 +λL,0‖xL‖1. (5)

C. Optimization Algorithm

The TF regularization (5) is the summation of L1-norm.
To solve the non-differentiable L1 minimization problem (4),
we choose the alternating direction method of multipliers
(ADMM) [24] or the so-called Split Bregman method [25].
In general it is difficult to solve the L1-regularized minimiza-
tion problem because it has non-differentiable L1 term. The
basic idea of ADMM is to split L1 and L2 components by
introducing auxiliary variables and split into three decoupled
steps. Becuase of decoupling, we can efficiently solve it from
its optimal condition by the conjugate gradient method. Note
that TF is more computationally efficient than TV due to
WT W = I.

D. Quantitative Metrics

To evaluate the performance of the proposed algorithm quan-
titatively in comparison to FDK and the Katsevich algorithm,
four different quantitative metrics are selected.

1) Image Similarity - Universal Quality Index (UQI): The
Universal Quality Index (UQI) [26] was measured to evaluate
the similarity between the reconstructed and true images. We
considered the image from the scanner to be the true image.
Given the ROI within the reconstructed and true images, the
associative mean of the image μ , the variance and covariance
of μ with the true image μtrue over the ROI are denoted as
μ̄ , σ2, and Cov(μ ,μtrue), respectively. The definition of UQI
is

UQI=
4 Cov(μ ,μtrue)

σ2+σ2
true

μ̄ · μ̄true

μ̄2+ μ̄2
true.

The UQI measures the intensity similarity between two im-
ages, and its value ranges [0,1]. A UQI value close to 1
indicates a better level of similarity between the reconstructed
and true images.

2) Image Noise - SNR and CNR: To evaluate the quantitative
noise level of the reconstructed images, we chose two different
metrics, SNR and CNR. The definitions are as follows.

SNR=
μ̄ROI

σROI

CNR=
|μ̄ROI− μ̄ROIair |√

σ2
ROI+σ2

ROIair

where σROI and σROIair refer to the standard deviations and
μ̄ROI and μ̄ROIair refer to the mean pixel value in a ROI inside
and the background of the phantom, respectively.

3) Image Resolution - MTF: To evaluate the resolution of
the reconstructed images, MTF is calculated based on [26],
[27]. An Edge Spread Function (ESF) was obtained along the
profile of the red line on Figure 1. The Line Spread Function
(LSF) was achieved by differentiating the ESFm and the MTF
was obtained from the Fourier transformation of the LSF.
Normalization was performed as MTF(0)=1.
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Fig. 1. Reconstucted images with various sampling step sizes. The image on
(a0) shows the three ROIs, and the red line is set for the computation of LSF
for MTF. ROIAIR , ROI of air, is defined to compute the CNR for ROI1-ROI3.

III. RESULT

A. Data Acquisition

The multislice helical CT reconstruction quality was evalu-
ated using the American College of Radiology (ACR) CT
accreditation phantom (Data Spectrum Corporation. Model:
ECT/DLX/P). Siemens SOMATOM Definition 64-slice helical
CT scanner was used to generate the helical CT projection
data. Details of the scan parameters were as follows: 100 kV
voltage with 165 effective mAs, CTDIvol 6.51 mGy, and DLP
130.8 mGy-cm. There was a 3.05 s scan time, 0.5 s gantry
rotation time, and 64∗0.6 mm collimation with z-flying focal
spot. The helical pitch is set to be p= 1, with 2304 projections
per rotation. Image volume resolution is: 2 mm slice thickness
and 0.9766× 0.9766 mm2 axial resolution. The whole image
volume has 512×512×88 voxels. A 21.6 cm inside diameter
cylindrical ACR phantom is used.

B. Evaluations with sparse-view data

To evaluate with sparse-view performance, we fixed the dose
level at 100kV. Images were reconstructed at four different
sampling steps, 1, 4, 8, and 16. The full view data has 2304
views per 360o. Sampling step 4 was achieved by taking 576
data uniformly per 360o. Similarly, sampling steps 8 and 16
were achieved with 288 and 144 views per 360o, respectively.
The results of the reconstruction images with different view-
angles are shown in Figures 1 and 2. The images (a0) and
(b0) are from the scanner on both figures. From the top to the
bottom rows, images are reconstructed CT images by sampling
steps 1, 4, 8, and 16. Each column shows images from a
different reconstruction algorithm. From left to right, each
column consists of images by scanner, FDK, Katsevich and
the TF algorithm. As shown in the first row, reconstruction
images at sampling step 1 are streak-free for all reconstruction
algorithms. However, streaks appeared on the images with
FDK and Katsevich for sparse-view data. The TF algorithm
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Fig. 2. Reconstucted images with various sampling step sizes. The image on
(a0) shows ROI4 and ROIAIR .
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Fig. 3. Image similarity measure: UQI results for various sampling step size.
(a): UQI bar plot for the 10-th slice. (b): UQI bar plot for the 50th slice.

was the least influenced by sparsity. The last column of the
Figures 1 and 2 showed that visually the TF reconstruction
outperformed the other reconstruction methods. On Figure 1
(a0) and Figure 2 (a0), ROI’s are defined as in the previous
section.

For the evaluation of similarity between the reconstructed
image and the scanner image, we computed the UQI for each
slices 10 and 50. The ROI for the UQI is set as the whole
phantom area on a given slice. Figure 3 shows the result of
UQI with various sampling step sizes. Both plots (a) and (b)
show that the TF algorithm achieved the highest value, which
means that the image reconstructed using the TF algorithm
was the most similar to the scanner image.

For the quantitative evaluation of the noise level of the
reconstructed images, we computed the SNR and CNR on
ROIs 14. Figure 4 shows the SNR and CNR results. The first
row consists of the SNR results for ROI1-ROI4. The second
row is the result of the CNR of ROI1-ROI4. Both SNR and
CNR indices have a similar pattern. The TF algorithm achieved
the highest SNR and CNR except for a few points in ROI2 and
ROI4. For the quantitative evaluation of the image resolution,
MTF is computed as described in subsection II-D3. The LSF
is computed with the ROI indicated in Figure 1 (a0). The
TF algorithm achieved the highest MTF, especially when the
fewest sample generated the highest MTF difference among
other reconstructed methods.
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Fig. 4. Image noise measures: SNR and CNR results for the various sampling
step sizes. First row: SNR result, second row: CNR results.
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Fig. 5. Image resolution measure: Results of MTF curves with different
reconstruction algorithms over various sampling levels.

IV. CONCLUSIONS

To summarize, we have successfully developed a GPU-based
TF iterative image reconstruction algorithm for low-dose mul-
tislice helical CT, and have shown that the TF method provided
improved image quality over the FDK and the Katsevich
algorithms when dealing with sparse-view data, using UQI,
SNR, CNR, and MTF measurements as evaluation metrics.
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Impact of Image Constraints and Object Structures
on Optimization-Based Reconstruction

Zheng Zhang, Dan Xia, Xiao Han, Emil Y. Sidky, Charles Pelizzari, and Xiaochuan Pan

Abstract—Image constraints play an important role in the
design of optimization-based reconstruction in cone-beam com-
puted tomography (CBCT). In this work, we investigate the
impact of image constraints on optimization-based recon-
structions, including constraints on image-total-variation (TV),
image-�2 norm, and image-�1 norm. Furthermore, the impact
is likely to be dependent upon other factors such as the
anatomies of the objects to be reconstructed. Therefore, we also
investigate how the impact varies for objects with distinctively
different anatomies. We consider convex optimization programs
with the aforementioned image constraints. In an attempt to
minimize the effect of the potential algorithm variability on
the investigation, we utilize the same primal-dual algorithm
to solve all of the convex optimization programs considered.
As expected, results show that different image constraints
can impact considerably differently image reconstructions for
objects with distinct anatomies.

I. INTRODUCTION

Image constraints play an important role in the design of
optimization-based reconstruction in cone-beam computed
tomography (CBCT). Among numerous image constraints,
image-total-variation (TV), image-�2 norm, and image-�1
norm are used widely as image constraints in the design
of optimization programs. It is of theoretical as well as
practical interest to investigate how image constraints im-
pact optimization-based reconstructions. In this work, we
investigate specifically the impact of constraints on image-
total-variation (TV), image-�2 norm, and image-�1 norm
on their respective reconstructions. Furthermore, the impact
is likely to be dependent upon other factors such as the
anatomies of the objects to be reconstructed. Therefore,
we also investigate how the impact varies for objects with
distinctively different anatomies.

We form, without loss of generality, three optimization
programs consisting of a data fidelity term, which is the
L2 norm of the discrepancy between measured data and
the image model, and one of the three aforementioned
image constraints. Therefore, the programs are convex, and
image reconstructions are accomplished through solving the
programs. In an attempt to minimize the effect of the
potential algorithm variability on the investigation, we utilize
the same primal-dual algorithm developed by Chambolle
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and Pock (CP) [1] to solve all of the convex optimization
programs considered. The CP algorithm has been shown to
be capable of handling effectively system matrix of large
size of practical CT interest [2].

In an effort to investigate the impact of the image con-
straints on reconstructions of objects with distinct anatomies,
we have performed reconstructions for a digital-subtraction-
angiography (DSA) image and a Rando-phantom image. As
expected, results show that different image constraints can
impact considerably differently image reconstructions for
objects with distinct anatomies.

II. MATERIALS AND METHODS

A. CBCT Imaging Systems and Data Acquisition

In this work, we collect data from two objects with
different levels of sparsity by using two cone-beam CT
(CBCT) scanners.

a) Rando-Phantom Study: We first investigate reconstruc-
tions from data of a Rando phantom collected with an
onboard CBCT imager in a radiation therapy system. The
CBCT imager consists of a flat-panel detector composing
of 1024×768 bins of size 0.388×0.388 mm2. The distances
from the source to the rotation axis, and to the flat-detector
surface, are 100 cm and 150 cm, respectively. The data were
collected at 353 projections, uniformly distributed over a
short-scan angular range of 196 degrees.

b) DSA-Data Study: For demonstration purpose, we also
reconstruct images a set of existing DSA data collected
with a clinical C-arm CBCT system. The detector of the
C-arm CBCT system composes of 1024×1024 bins of size
0.194×0.194 mm2, and the source-to-rotation-axis distance
is about 70 cm, and the source-to-detector distance is about
110 cm. The DSA data set contains 108 projections acquired
over an angular range of approximately 200 degrees.

B. Optimization-Based Reconstruction

In the optimization-based reconstruction considered, the
model data g0 and image f are vectors with M pixels and N
voxels, respectively, and they are related through a discrete-
to-discrete (D-D) linear model, i.e.,

g0 = Hf. (1)

H denotes the system matrix of size M× N.
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In an optimization-based reconstruction, the optimization
program specifies a set of feasible solutions (i.e., the im-
ages,) which may be obtained by use of algorithms to
solve the optimization program. In this work, let D�2(f) =
||g − Hf ||22 denote the data-�2 norm, where g indicate
the measured data; and we consider optimization programs
in which the data-�2 norm is minimized under different
image constraints, respectively. Specifically, the programs
considered include

a) Program D�2-||f ||TV : image-TV-constrained data-�2 min-
imization

f∗= argmin
f

D�2(f) s.t. ||f ||TV ≤ t1 and fj ≥ 0, (2)

where ||f ||TV = || |∇f | ||1 denotes the image TV,∇ a matrix
representing a finite differencing approximating to the image
gradient, and t1 ≥ 0 a pre-selected image-TV-constraint
parameter.

b) Program D�2-||f ||�2 : image-�2-constrained data-�2 mini-
mization

f∗= argmin
f

D�2(f) s.t. ||f ||�2 ≤ l2 and fj ≥ 0, (3)

where ||f ||�2 =
N∑
j=1

f2
j denotes the image-�2-constraint, and

l2 a pre-selected image-�2-constraint parameter.

c) Program D�2-||f ||�1 : image-�1-constrained data-�2 mini-
mization

f∗= argmin
f

D
�2
(f) s.t. ||f ||�1 ≤ l1 and fj ≥ 0, (4)

where ||f ||�1 =
N∑
j=1

|fj | denotes the image-�1-constraint, and

l1 a pre-selected image-�1-constraint parameter.
The optimization programs described above are convex,

and they can thus be solved with numerous algorithms,
including the CP algorithms. In this work, we apply the
CP algorithm to reconstructing images through solving the
programs.

C. Reconstruction Parameter Selection

In a practical reconstruction, numerous parameters can
impact the final reconstruction. Program parameters are
needed for specifying the optimization program; algorithm
parameters are used for determining the convergence path;
and and convergence parameters are considered for design-
ing practical convergence conditions.

Program parameters: Image-voxel size, system matrix
H, and image-constraint parameters t1, l2, or l1 are key
to specifying the programs, among the numerous program
parameters necessary for specifying the programs. The se-
lection of program parameters can significantly affect the
properties of reconstructions. In this work, we employ a
ray-driven projection model to calculate elements of the
system matrix H. In the Rando-phantom DSA-data studies,

we reconstruct images with isotropic voxels of sizes 0.488
mm and 0.247 mm, respectively. Parameters t1, l2, and l1
are selected based largely on visual evaluation. Due to the
limited space, we show reconstructions obtained only with
one value of t1, l2, or l1 used in optimization program in Eqs.
2-4, respectively, and will report reconstructions obtained
with additional program parameters at the conference.

Algorithm parameters: Algorithmic parameters in the CP
algorithm affects the convergence path and rate. Due to the
limited space, we will discuss the algorithm parameters in
the conference.

Convergence parameters: Convergence parameters are
used to check whether the final reconstruction satisfies the
convergence conditions of the designed optimization pro-
gram. In this work, the convergence conditions considered
include the estimated D�2, conditional primal-dual gap [2],
and estimated image-TV, or image-�2 and image-�1. Details
will be reported in the conference.

III. RESULTS

a) Rando-Phantom Study: We first perform image recon-
structions from Rando-phantom data and show the results
in Fig. 1. It can be observed that the reconstruction with
an image-TV constraint in the left panel of of Fig. 1 shows
suppressed noise in the background and sharper bony struc-
tures. While the reconstruction with the image-�2 constraint
appears to be similar to the image-TV reconstruction, it
contains a considerably noisy background and bony struc-
tures with somewhat degraded the spatial resolution. On the
other hand, reconstruction with image-�1 constraint, shown
in the right panel, possesses noisy, sprinkled-salt texture.
This is likely duo to the fact that the structure of the Rando-
phantom image is substantially non-sparse, because it is
well-known that image-�1 constraint promotes solutions with
sparse structures. For cases considered, image constraints
appear to impact reconstruction textures significantly when
the object is non-sparse.

b) DSA-Data Study: Using the CP algorithm, we also recon-
structed images from the DSA data, and show the results in
Fig. 2. Images in the top row are displayed with a window
[0.0, 0.5] cm−1 for showing the background detail, whereas
images in the bottom row are shown by using a window [0.1,
0.5] cm−1 for visualizing the blood vessels only. We observe
that reconstructions obtained by use of image-TV, image-
�2, and image-�1 constraints show visual differences much
less significant than those in reconstructions of the Rando-
phantom images, which have much less sparser anatomies
than the DSA images. The image reconstructed with image-
TV constraint seems to have cleaner background than the
other two. However, as shown in the bottom row, when the
background noise is thresholded out, reconstructions with all
three image constraints become comparable to each other
with vessels well illustrated.
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D�2 -||f ||TV D�2 -||f ||�2 D�2 -||f ||�1
Figure 1. A transverse slice in the Rando image reconstructed by use of the CP algorithm solving optimization programs D�2 -||f ||TV , D�2 -||f ||�2 ,
and D�2 -||f ||�1 . Display windows: [0.2, 0.35] cm−1.

D�2 -||f ||TV D�2 -||f ||�2 D�2 -||f ||�1
Figure 2. A transverse slice in the DSA image reconstructed by use of the CP algorithm solving optimization programs D�2 -||f ||TV , D�2 -||f ||�2 , and
D�2 -||f ||�1 . Display windows: [0.0, 0.5] cm−1 (top row) and [0.1, 0.5] cm−1 (bottom row).
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IV. DISCUSSIONS

In this work, we have investigated optimization-based
problems with different designs of image constraints, and
studied how the image constraints may impact the recon-
struction for objects with different levels of sparsity. We em-
ploy a primal-dual algorithm, which has been proved math-
ematically to solve many convex optimization programs,
especially for those under consideration in this abstract. Vi-
sual inspection of study results reveals that, reconstructions
based upon D�2-||f ||TV show suppressed noise/artifacts and
enhanced resolution, for both sparse and non-sparse objects;
while reconstructions based upon D�2-||f ||�1 seem to be able
to reconstruct images with reasonable visual quality only
when the object is sparse. Conversely, reconstructions based
upon D�2-||f ||�2 appear to be comparable to that obtained
with D�2-||f ||TV , but with higher noise level and degraded
spatial resolution.

The study suggests that different image constraints in
optimization-based reconstructions may yield images with
distinct properties for the same object. Moreover, impact of
image constraints on reconstructions may vary for objects
with different anatomies. It is worth noting that, the behavior
of the optimization-based reconstruction may also depend on
other factors, such as program parameter selection and data
condition.
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Abstract—We present a new, inherently discrete type of tra-
jectory for cone-beam CT in which the goal is to improve
quality and efficiency by sampling the space of possible source
locations in the most uniform manner possible. Such trajectories
are optimal in the sense of producing projection sets with the
highest level of mutually independent data, and in being as
isotropic as possible when considering viewing angles from within
the object. Critically for applications, the trajectories also allow
for fast iterative reconstruction, accelerated by shift-invariant
filtering applied to the reconstruction volume. The new approach
provides high acquisition efficiency and reduced artifacts while
bring the flexibility of iterative reconstruction to very large
datasets. A combination of the new trajectory with fast iterative
reconstruction is demonstrated on very large datasets of greater
than 30 billion reconstructed voxels.

I. INTRODUCTION

In many forms of cone beam tomography it is desirable to
work at a high cone angle to maximise the flux emerging from
the point source. While low cone-angle tomography can be
performed via approximations such as the Feldkamp-Davis-
Kress method for circular scanning [1], the circle trajectory
is fundamentally incomplete and does not provide sufficient
information for reconstruction from high cone-angle data. Per-
forming high cone-angle reconstructions demands a scanning
trajectory that involves motion of the source in two dimensions
relative to the scanned object, commonly achieved by allowing
object translation perpendicular to the plane of rotation. Such
scanning trajectories are considered complete if they satisfy
Tuy’s sufficiency criterion [2], which states in essence that a
trajectory is complete if all planes which cut the object also
intersect the scanning trajectory.

One important class of trajectories that satisfy Tuy’s condi-
tion are helical trajectories, for which a theoretically exact
reconstruction formula of the filtered backprojection (FBP)
type was found by Katsevich in 2001 [3]. The Katsevich
formula was utilised in an X-ray micro-tomography instrument
developed at the Australian National University that incorpo-
rated helical scanning with very high cone-angles [4]. Nu-
merous issues needed to be overcome to produce high-quality
images from that instrument, and work at this facility also
highlighted certain fundamental shortcomings of the helical
trajectory [5]. One shortcoming is that, for a helical trajectory,

the average magnification experienced by each voxel is not
constant, leading to blurry regions in the reconstructed object
and nonuniform levels of noise. This is a consequence of the
fact that at any given moment the parts of the object that are
closer to the sample are subject to a much higher geometric
magnification than those parts that are further away. At the
cone angle of 60◦ in standard use at the abovementioned
facility, the maximum difference in magnification is a factor of
three. This issue was ameliorated through the use of a ’double’
helix trajectory [6]. Other issues with helical scanning trajecto-
ries include: low detector utilisation, since at high cone angles
more than half of the detector falls outside the Tam-Danielsson
window [7], [8] and is therefore redundant data that needs
to be masked away [6], and a high sensitivity to geometric
misalignment of the apparatus, with slight misalignment and
trajectory errors manifesting as “streak” artifacts. [9]

These problems are largely a consequence of the fact that
a helical scanning trajectory is anisotropic, i.e. highly nonuni-
form when viewed from the perspective of a point within the
object [6]. The double-helix trajectory improves symmetry and
thus reduces anisotropy, and other more isotropic trajectories
include lower-pitch helices such as the 3PI trajectory [10].
Both methods lengthen the required scanning path and there-
fore increase the number of projections that must be acquired
to produce artifact-free reconstruction through FBP.

Tuy’s sufficiency condition only makes sense by considering
scanning trajectories as lines in which the sampling density
along the line is high enough to satisfy the Nyquist sampling
condition - i.e. the angular spacing between adjacent source
points is comparable to the angular spacing between adjacent
detector pixels. Theoretically exact reconstruction schemes
(e.g. of the FBP type) require such dense sampling along the
acquisition path, but iterative reconstruction methods liberate
us from this constraint. Iterative reconstruction offers great
possibilities for artifact reduction and for new imaging modali-
ties [11], particularly the incorporation of a-priori information
about the object [12], [13]. To date, iterative reconstruction
methods have been aimed primarily at allowing tolerable
reconstruction quality from noisy or sparse data as is obtained
from PET, SPECT or electron tomography [14]. In these
situations, it is necessary to use extremely robust but slowly
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Fig. 1. The depiction of a traditional helical x-ray source trajectory [blue]
compared with a space-filling trajectory [red] in the space of possible source
locations for a (z, θ) scanning apparatus.

converging reonstruction algorithms such as the Simultaneous
Iterative Reconstruction Technique (SIRT). The focus of the
current work is the production of detailed, high quality images
from very large industrial- and micro-CT data sets, which de-
mands a more computationally efficient iterative reconstruction
scheme. In this context, speed of convergence can be priori-
tised over robustness. Recent increases in affordable compute
power, particularly through the use of graphical processing
units (GPUs) that may contain over 10,000 processor cores,
are making iterative reconstruction practical in many contexts
[14], [15], although, to our knowledge, there has been no
application to full-scale multi-Gigavoxel images up to this
time.

II. SPACE FILLING SCANNING TRAJECTORIES

This work considers scanning pathways not as a continuous
line but as a set of distinct points placed in the space through
which the source point can move. For the common instrument
configuration where the sample can be translated parallel to
the axis of rotation, the space of possible source points is the
surface of a cylinder that we parameterise by (z, θ) or (z, rθ),
where z is the position parallel to the rotation axis, θ is the
rotation angle and r is the focus-object distance.

Within this framework it is natural to consider trajectories
that uniformly fill this two-dimensional space, i.e. trajectories
for which the source points are distributed in a uniform manner
throughout the space. We call this type of trajectory a space
filling trajectory (SFT); there are numerous practical ways
to achieve this type of trajectory; one example is shown in
figure 1. In this case the basic path is still helical, although
with a much reduced pitch and increased spacing compared to
the helical trajectory shown in blue in figure 1. To maximise
coverage of the source point plane, source points are arranged
to form an approximately hexagonal tesselation of the plane.

Such a trajectory has several inherent advantages over
finely-sampled linear paths. Firstly, due to the increased spac-
ing between adjacent viewing angles, and since no large areas

of source space are unpopulated, SFT yields data with a larger
amount of mutually independent information about the sample.
In terms of ray paths, SFT projection data is maximally
independent given the constraints of the imaging apparatus.
Space-filling is optimal in the absence of information about the
object, in contrast to the method of Stayman and Siewerdsen
[16] that aims to optimise the trajectory for a particular object.

From this property it is reasonable to expect reconstructions
with lower levels of noise and geometric artifacts for a
given acquisition time. Secondly, the trajectory is maximally
isotropic when viewed from a point within the object, so that
the directions of the rays passing through each point are as
uniformly distributed on the unit sphere as is possible.

The isotropic nature of the rays passing through each object
point means that an unfiltered backprojection of projection
data results, to a good approximation, in uniform blurring of
each object point by comparison with the true object [17].
This property is critical for the rapid iterative reconstruction
method described in the following section.

III. ACCELERATED ITERATIVE RECONSTRUCTION

As mentioned above, one advantageous property of SFT is
that unfiltered backprojection produces data that is uniformly
blurred, quite distinct from other trajectories where the blur-
ring is directional and location dependent. SFT thus allows
for shift-invariant spatial filtering after backprojection, such
as a deconvolution kernel applied in Fourier space. This natu-
rally allows for reconstruction methods of the backprojection-
filtering (BPF) type, where the filtering step is applied in
the object volume space, following backprojection. In 1980,
Colsher [17] analysed the case of idealised positron emission
tomography (PET) data and proposed an exact reconstruction
algorithm of the BPF type with a new type of shift-invariant
spatial filtering. SFT data is similar to PET, except that SFT
contains a discrete set of source positions rather than the quasi-
continuum of PET. Due to the large spacing along the acquisi-
tion pathway, iterative methods are required to reconstruct SFT
projection data. Therefore we incorporate post-backprojection
filtering into iterative reconstruction method to accelerate
convergence, and use a simpler, faster spatial filtering than the
Colsher filter. Multi-grid BPF (MG-BPF) iterative schemes are
ideal in this context; indeed, a multi-grid scheme with spatial
filtering was proposed by Press in 2006 for inversion of the
discrete Radon transform [18]. Our method closely follows the
full multigrid method described in Press [18], with the Radon
and inverse Radon transform replacd by cone-beam projection
and backprojection, and with high-pass filtering based on
Fourier deconvolution. The algorithm begins with a low-
resolution approximation that can be obtained from coarsened
projection data with little computational expense, using a
standard iterative method. This initial guess is then refined
at progressively higher resolutions by repeated applications
of BPF. Unlike many iterative reconstruction techniques, in
MG-BPF the corrections applied at higher resolutions simply
add information at higher spatial frequencies; figure 2 shows
how an image is refined at higher resolution. The nature of
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Fig. 2. A cropped slice through the reconstructed image of a rock sample
showing the progressive refinement during MG-BPF reconstruction. Top:
coarse image at one-quarter resolution; middle: half resolution; bottom: full
resolution.

the spatial filtering means that it is possible to configure the
filtering applied at each resolution so that the total filtering
applied over all resolutions closely approximates the total
required deconvolution. Finally, the entire detector provides
usable data and each detector pixel contributes a relatively
uniform level of information to the reconstruction.

IV. RESULTS

We present the results of preliminary data acquisition
and reconstruction. The sample is 5 mm in diameter and
comprises Berea sandstone and Edwards limestone joined
together in an aluminium tube. A double helix and a space
filling trajectory dataset were both acquired using a detec-
tor containing 3072x3072 pixels, then reconstructed using
helical FBP and MG-BPF respectively. For both trajectories
the acquisition time was 5 hours, however the double-helix
trajectory comprised four times more projection data: 300 GB
vs. 75 GB. Data was reconstructed at 2640x2640x5000 and
2640x2640x6000 voxels at a voxel size of 2.0 μm. Results
of the reconstruction are shown in figures 3 and 4. The

Fig. 3. The central vertical slice of reconstructed data of the combined
5mm sandstone-limestone sample showing the application of an iterative
reconstruction method on a dataset of unprecendented size. Left: Helical
scannning, reconstructed by FBP; Right: SFT, reconstructed by two itera-
tions of MG-BPF. The images contain, respectively, 2640x2640x5000 and
2640x2640x6000 voxels at a voxel size of 2.0 μm.

SFT reconstruction is larger since it includes some slightly
degraded data in the overscan regions at the top and bottom.

For computational speed, projection and backprojection
operations were implemented for GPUs in CUDA. The recon-
struction hardware consisted of a small cluster of four ’super’
workstations, each with two 12-core Intel Xeon processors,
512 GB of RAM and three NVIDIA Titan X GPUs (1 GHz
clock, 12 GB RAM and 3072 cores). Reasonable convergence
was achieved after just two iterations at the finest resolution.
Since lower resolutions impose a negligible computational
expense, overall computation time is roughly four times longer
than an FBP method. Total reconstruction time for MG-BPF
was 13 hours, showing that the method is computationally
expensive but feasible. To our knowledge, this represents
a significant advance in efficiency and scale compared to
existing iterative reconstruction algorithms.

V. CONCLUSION

We have introduced scanning trajectories that are inherently
discrete and which sample the space of the possible viewing
angles in the most uniform manner possible. Such trajectories
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Fig. 4. A close-up of a small region of reconstructed data from figure 3 con-
taining both sandstone and carbonate. Top: Helical scannning, reconstructed
by FBP; Bottom: SFT, reconstructed by two iterations of MG-BPF. The MG-
BPF method yields sharper, slightly noisier data.

should yield improved data acquisition efficiency, and pro-
duce data that can be reconstructed efficiently via multi-grid
backprojection-filtering type methods, allowing iterative re-
construction of extremely large datasets for the first time. High
quality reconstructions are obtained for very large datasets for
which the reconstructed volume contains tens of Gigavoxels.
This approach lays a foundation for the wider application
of iterative reconstruction techniques to improve acquisition
efficiency and image quality.
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Abstract—The application of single photon counting x-ray 

imaging arrays to breast computed tomography (CT) imaging 
can potentially improve image quality, reduce dose, and allow 
new methods using spectral information. We are developing 
spectral breast CT based on the development of stacked curved 
one dimensional (1D) arrays of edge illuminated silicon (Si) strip 
detectors. The Si strip detectors directly convert X-ray energy 
into charge collected and readout with low noise mixed signal 
application specific integrated circuits. The Si wafer is edge 
illuminated to provide a large detective quantum efficiency 
(DQE) within the dynamic range required for breast CT. The Si 
strips are oriented towards the X-ray focal spot to avoid depth of 
interaction (DOI) errors. For clinical in vivo use, a breast CT 
imaging system based on photon counting detectors must show 
efficacy justifying the disruptive replacement of existing methods. 
This can be done by showing improved image quality and or new 
applications while maintaining or reducing patient dose. For this 
application the photon counting detectors require high intrinsic 
spatial resolution, high dynamic range, and a high linear output 
count rate (OCR). To take full advantage of spectral methods, the 
detectors require low noise performance with good energy 
resolution across both the dynamic and OCR range of the 
application. The detectors presented here produce 5 lp/mm2 
spatial resolution, 80% DQE at 65 kVp, and a linear OCR up to 
40 million cps/mm2. The energy resolution is maintained at ~ 2 
keV full width at half maximum (FWHM) across the dynamic 
and OCR range. The imaging methods presented here use a stack 
of 1D curved arrays to scan the breast helically in a pendant 
geometry with collimator based scatter rejection. Phantom breast 
CT imaging studies with simulated micro-calcification (μCa) and 
mass lesions demonstrate improved results compared to 
mammography and cone beam CT using energy integrating 
detectors. The system is expected to offer superior image quality 
to detect μCa at a clinically relevant dose level while improving 
lesion detection by energy weighted reconstruction using four 
energy bins.       
 

Index Terms—Engineering in medicine and biology, 
biomedical engineering, biomedical imaging, medical diagnostic 
imaging, cancer, X-ray tomography, phantoms, semiconductor 
materials, silicon, ionizing radiation sensors, X-ray detectors, 
application specific integrated circuits, mixed analog digital 
integrated circuits. 
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I. INTRODUCTION 
REAST cancer is one of the most frequently diagnosed 
cancers among US women.i Its early and reliable 

detection remains a challenge using current imaging 
techniques. So far mammography is the only breast screening 
modality that has been shown to reduce breast cancer 
mortality.ii Recently digital mammography (DM) systems with 
increased dynamic range using pixellated flat panel detectors 
are replacing film screen systems due to contrast resolution 
advantages among women who are pre- or peri-mentopausal 
and/or have dense breast tissueiii. Contrast enhanced DM is 
being developed using iodine. Yet despite DM’s impressive 
advantages in detection performance, imaging time, and cost-
effectiveness, intense debate has addressed its limitations.iv As 
a two-dimensional (2D) projection technique, the main 
challenge for mammography is the superimposition of the 
breast anatomy, which results in reduced contrast resolution.  
Overlap of the normal breast parenchyma may obscure tumor 
identification, which is exacerbated when dense breasts are 
imaged.v As a result, mammography’s sensitivity in detecting 
lesions has been considered questionable, especially for 
specific patient groups.vi It is estimated that mammography 
screenings miss as many as 50% of breast cancers.vii In 
addition, mammography’s positive predictive value remains as 
low as 0.20,viii which contributes to the large number of false 
positive findings in biopsies recommended after 
mammography. Such limitations have increased the interest in 
developing three-dimensional (3D) breast imaging techniques, 
which can eliminate the anatomical noise induced by 
overlapping of the breast tissue, and thereby improve the 
sensitivity and specificity in lesion detection, especially for 
dense breasts. 

In an effort to improve breast cancer detection a number of 
alternatives have been developed to replace mammography 
including magnetic resonance imaging (MRI)ix , molecular 
breast imaging (MBI)x, breast ultrasound (US), breast optical 
metabolic imaging (OMI)xi, digital breast tomosynthesis 
(DBT) with limited information in depthxii, and dedicated 
breast computed tomography (BCT)xiii. BCT based on flat 
panel detectors scans in the coronal plane around the breast in 
its pendant geometry.xiv This technique has been reported to 
have improved sensitivity due to its ability to provide 3D 
information about breast tissues. System parameters, including 
optimized spectra and gantry geometry, have been extensively 
investigated by several research groups.xv,xvi,xvii  An initial 
clinical study suggests that cone beam BCT provides 
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significantly better visualization of soft tissue lesions than 
mammography.xviii  A recent study has also shown that BCT 
has significantly lower anatomical noise than mammography 
and breast tomosynthesis, providing the ultimate solution to 
minimize the anatomical noise induced by overlap of the 
breast tissue.xix 

Despite the substantial advances and demonstrated promise 
of BCT, several challenges remain with respect to its clinical 
implementation.  A major barrier is the limited ability to detect 
μCas, due to the intrinsic spatial resolution of the detector and 
insufficient noise suppression at the clinically relevant dose 
level. In a clinical study, results suggest that standard 
mammography outperformed cone beam BCT in visualizing 
μCas.xx A recent study reported μCa detection of 150 μm at a 
dose level of 11 mGy using a flat panel detector with reduced 
pixel pitch of 75 μm.xxi A reduction in detector pixel pitch 
results in a quadratic decrease in the measured signal in each 
pixel and when imaging at a low dose level for screening the 
measured signal must compete with the electronic noise from 
the flat panel detectors, and the image quality will be 
substantially compromised due to the low contrast-to-noise 
ratio (CNR). Another challenge for cone beam BCT systems is 
the presence of scatter radiation, which substantially reduces 
contrast resolution. Scatter is a critical issue that impacts 
image quality in cone beam CT. Scatter rejection grids are 
impractical in a cone beam geometry and even if realized 
would create poor dose efficiency by blocking active area of 
the detector. 

II. METHODS 
These two limitations, namely the electronic noise and 

scatter, are eliminated in the development of a low dose 
spectral breast CT system based on photon counting detectors 
(PCDs) in a multi-slit, multi-slice geometry. With PCDs the 
electronic noise can be effectively eliminated, regardless of 
detector pixel pitch and dose. The scatter is eliminated by 
using a multi-slit, multi-slice geometry. Both edge illuminated 
PCDs (Philips/Sectra MicroDose™ recently with two energy 
windows) and line energy integrating detectors (Adani 
Mammoscan™) are used in a scanning slit geometry for 
mammography and have been shown to eliminate 97% of the 
scatter. Scatter is much more of a problem in BCT which is 
performed on the uncompressed breast as compared to 
mammography where the breast is compressed to reduce 
scatter. Thus the low dose spectral BCT system developed 
here brings the advantages of scatter elimination to BCT.  
Additionally, the PCDs developed here have excellent energy 
resolution (2 keV across the entire dynamic range) and a very 
high output count rate (OCR) allowing us to lower dose by 
optimal energy weighting while simultaneously increasing 
tissue specific contrast and quantifying iodine concentration. 
Unlike conventional flat panel detectors which measure the 
integrated electrical charge (total current) induced by radiation 
(photocurrent) and the detector’s bias (dark current), energy 
resolved photon counting detectors count individual x-rays 
and bin them according to their energies. It has previously 
been shown that the CNR of BCT can be improved by 30% to 
90% using a PCD with optimal energy-weighting,xxii resulting 

in at least 40% decrease in patient dose.xxiii 

A. Development of PCDs for BCT 
The main challenge in applying PCDs in CT is the high 

photon flux required in clinical imaging. For spectral CT it is 
also a challenge to maintain good energy resolution at high 
flux. Achieving the required OCR while maintaining energy 
resolution requires very low noise preamplifiers operating at 
very fast peaking times which are connected to pixels with 
good charge collection over short length scales. We achieve 
this for BCT using custom designed application specific 
integrated circuits (ASICs) wire bonded directly to contact 
strips on a fully depleted Si junction wafer and supported by a 
common printed circuit board (PCB) substrate used in an tilted 
edge illumination geometry. The edge illumination provides 
rapid charge collection across the narrow junction independent 
of energy within the dynamic range of BCT. The direct wire 
bonding introduces little stray capacitance to the inputs of the 
preamplifier and can be accomplished on short length scales. 
The fast peaking time of the preamplifier eliminates the dark 
current’s contribution to the electronic noise allowing room 
temperature operation of Si as an x-ray detector. The edge 
illumination can also provide sufficient DQE when using the 
relatively low-Z Si as a direct converter. Although 
mammography is performed with typical tube voltage settings 
ranged between 25 and 35 kVp, which is sufficient to transit 
the compressed breast, we are using 65 kVp to perform CT on 
uncompressed breasts. All of this combines together to 
produce good energy resolution across the entire dynamic 
range at high OCR and DQE for BCT in an all solid-state low-
cost design using standard Si wafer processing, PCB 
manufacturing, and wire bonding. 

Figure 1 shows a schematic of the side view of a single Si 
strip module edge illuminated at a 3º angle providing a 1 cm 
DOI in the incident direction. We have simulated the DQE of 

a direct conversion Si detector at various x-ray tube voltages 
from a tungsten anode with 2.2 mm Al filtration. Studies 
suggested that the soft tissue lesion CNR can be enhanced 
with a tube voltage in range of 40 to 70 kVpxxiv,xxv,xxvi. The 1 
cm thick attenuation length of the 3° edge illuminated Si 
detectors used in our system is expected to have a DQE of 
80% at 65 kVp. The ASICs are mounted on the PCB substrate 
and fit within the active area of the sensor and a slit collimator 

 
Figure 1.  Schematic of a side view along the edge of the edge illuminated
detector. 
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with an opening between 100 μm and 500 μm can be used to 
adjust the slice thickness. A substrate PCB with tiled modules 
in an arc with the strips pointed to the x-ray focal spot is used 
to scale to the required FOV with no DOI errors. A gap 
between each module such that the same board when stacked 
and shifted by one module width will overlap the dead space 
produced by the guard rings on the lateral sides of each 
module. The substrate PCBs could contain any number of Si 
strip modules in principle and are symmetric so that identical 
PCBs can be stacked. This geometry avoids absorption 
underneath the guard ring in the incident direction, overlaps 
dead space under the lateral guard rings, avoids DOI errors, 
provides sufficient DQE for BCT, and eliminates all of the out 
of plane scatter all at once. 

The output count rate (OCR) as a function of input count 
rate has been measured by setting one threshold just above the 
electronic noise floor and recording all the counts with energy 
above the threshold setting as a function of time. A 50 watt X-
ray tube (CMX005, Source 1 X-Ray, Campell, CA) was set to 
50 kVp and the tube current was increased from 1 μA to 600 
μA with a thick 0.1 mm wide slit collimator 1 cm above the 
detector. This collimator geometry creates a 1D row of 100 
μm by 100 μm pixels. A 0.5 mm thick Cu filter was used with 
a source to detector distance of roughly 20 cm. 

The energy resolution was measured by using characteristic 
X-ray peak of Ag at 22keVwhich produced by109Cd source 
decays.  A dose of 9.229 μCiof 109Cd sourceplaced on a thick 
0.5 mm wide slit brass collimator 1 cm above the detector. 
This collimator geometry creates a 1D row of 100 μm by 500 
μm pixels with a 100 μm pitch along the long axis. The counts 
above a single threshold set to 100 keV are recorded during a 
fixed frame time and then the threshold’s setting is lowered by 
0.25 keV and the exposure is repeated covering a range from 
100 keV to 0 keV. The function of the number of counts above 
the threshold setting is digitally differentiated by a forward-
backwards method to a pole of order 5 to generate the 
spectrum. The photopeak at 22 keV fitted to a Gaussian 
function whose full width at half maximum (FWHM) is used 
to determine the energy resolution. 

B. BCT Imaging with PCDs 
 Experimental images were acquired on a bench-top BCT 

system using a Si strip PCD shown in Figure 2. A tungsten 
anode x-ray tube with a focal spot size of 0.8 mm (XRB101, 
Spellman, Hauppauge, NY) was used as the x-ray source. A 
high precision direct drive rotary motor (Kollmorgen Goldline 
DDR D062M, Danaher Motion, Wood Dale, IL) offered the 
rotational mechanism, and the phantoms were placed on top of 
a platform, which was positioned over the motor. Two slit 

collimators, fore and aft with respect to the phantom, were 
used to provide fan beam geometry to minimize scatter. Lead 
and brass were used for the fore and aft collimator, 
respectively. The slice thickness (0.46 mm) was determined 
by the 0.5 mm width of the aft collimator and magnification. 
A minimum magnification setup, approximately 1.1, was used 
to overcome the limitations from the relatively large x-ray 
tube focal spot size. 

The x-ray tube voltage was set to 65 kVp and a 2.7 mm 
aluminum (Al) filter was used yielding a half value layer 
(HVL) of 2.18 mm Al, suggesting dose efficiency and 
feasibility for a dedicated breast CT.15, 27 The electronic noise 
was eliminated without any loss of signal by setting the lowest 
threshold above the noise floor, 4 keV. The rotation speed of 
the motor was approximately 0.976 RPM for 360°, resulting in 
1229 frames per scan at 20 frames per second. The images 
were acquired at five different dose levels corresponding to an 
ESAK of 0.6, 1.2, 3, 6, and 8 mGy per CT scan. The exposure 
level was determined by matching the noise level in the 
reconstructed image with respect to the 14 cm phantom image 
with simulated MGD range. Different dose levels were 
adjusted by changing the tube current. A calibrated ionization 
chamber (20×6-0.6, Radcal, Monrovia, CA) was used to 
measure the dose level to the phantom in air kerma (mGy). 
The middle of the charge-collection volume of the ion 
chamber was positioned at the same level with the center of 
fore collimator aperture. The radiation field size was larger 
than the active volume of the ion chamber at the isocenter. 
The sensitivity variation across the pixels was compensated by 
implementing a flat-field correction technique, which used 
open flood field images. The images were reconstructed by 
using a filtered back projection (FBP) algorithm with a ramp 
filter and the voxel size of 23 × 23 × 23 μm3. Two hundred 
fifty μCa images (5 sizes of μCas × 5 doses × 10 images for 
each setting) were combined with 250 control images without 
μCa to ultimately form 500 images for an observer study. 

III. RESULTS 
Figure 3 shows the output count rate as a function of tube 

current which is proportional to the input count rate, for a 
typical 100 μm pixel of the Si strip detector. The output is 
linear to 40Mcps/mm2 and saturates just below 100Mcps/mm2. 

 
Figure 2.  Schematic diagram of the bench-top photon counting breast CT 
system. 
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Figure 3.  Graph of the output count rate as a function of X-ray tube current. 
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Figure 4 shows a 109Cd spectrum as a function of energy for 
a 100 μm pixel of the Si strip detector. The FWHM energy 
resolution is approximately 1.7 keV or 8.5 % at 22 keV.  

IV. CONCLUSION 

We investigated the detectability of μCas with a photon 
counting BCT system using Si strip photon counting detectors. 
The simulation and experimental results both showed reduced 
detectability for the μCas smaller than 140 μm with an ESAK 
of 3 mGy. The results of an observer study for the average-
sized breast phantom with the proposed system showed an 
average AUC of the μCas larger than 120 μm were greater 
than 0.89 ± 0.07 at a MGD of 3 mGy. The proposed photon 
counting BCT system based on a Si strip detector is expected 
to offer superior image quality to detect μCas with a dose 
level equivalent to standard two-view mammography.   
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Multi-scale Circular Conebeam Interior
Tomography using Bedrosian Identity: Verification

with Real Data
Yo Seob Han1, Minji Lee1, John Paul Ward2, Michael Unser3, Seungryoung Cho4 and Jong Chul Ye1,∗

Abstract—Circular trajectory is quite often used in conebeam
CT (CBCT) such as C-arm CT, dental CT and so on. However, if
the cone angle is wide, the FDK algorithm suffers from conebeam
artifacts. Moreover, it exhibits severe truncation artifacts if
the detector is truncated in transverse-ways. To mitigate these
artifacts, we propose a reconstruction method that consists of
two steps: multi-scale interior tomography using 1D TV in both
horizontal and vertical virtual chord lines, which is followed by
spectral blending in Fourier domain. For spectral blending, we
develop a Fourier domain analysis technique to identify the miss-
ing frequency regions and design a bow tie window for weighting.
Experimental results with a real head phantom confirm that
the proposed method significantly improves the reconstruction
quality and reduces the computational time significantly.

Index Terms—Conebeam artifact, Interior tomography,
Bedrosian theorem, Multiscale decomposition, Spectral Blending.

I. INTRODUCTION

C
IRCULAR CBCT trajectory has been widely used in
practice since the trajectory can be easily implemented

in hardware compared to other geometries such as helical [1]
or saddle [2] trajectories. In the circular trajectory, the FDK
algorithm is the de facto standard, but it suffers from the
conebeam artifacts as the cone angle increases. These artifacts
become more severe when only part of detector is used for
imaging the region-of-interior (ROI) to reduce the radiation
dose.

Specifically, interior tomography approaches reduce the x-
ray dose by preventing x-ray illumination outside of the ROI.
However, due to the detector truncation, the conventional
filtered back projection type algorithm cannot be used. To
address this problem, the authors in [3] showed that if the ob-
ject is essentially piecewise constant, then ROI can be solved
uniquely and stably via the total variation (TV) minimization.
However, this methods requires 2D or 3D total variation min-
imization and iterative applications of forward and backward
projections, which is computationally very expensive.
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3Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne
(EPFL), CH-1015, Lausanne, Switzerland. (michael.unser@epfl.ch).

4Medical Imaging & Radiotherapeutic Lab., Dept. of Bio and Brain
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In interior tomography problems from circular trajectory,
two types of artifacts reside: one from truncated detectors and
the other from missing frequency regions. To address the first
artifact, our group recently proposed the multi-scale interior
tomography algorithm using 1D TV [4]. Then, to reduce the
second type artifacts, we also extended the Fourier blending
idea proposed for half-scan FBP algorithm [5] to our multi-
scale interior tomography approach, and provided a novel
Fourier domain two-way weighting scheme [4]. Unlike the
original Fourier blending idea in [5], our method is based
on rigorous analysis of Fourier components. The resulting
algorithm is computationally so efficient that it can be easily
used in a clinical environment.

The main goal of this paper is, therefore, to demostrate the
effectiveness of this algorithm using real data. For this, we first
review the recent theory of multi-scale circular conebeam inte-
rior tomography using Bedrosian identity and spectal blending
[4] and provide experimental results using real data.

II. THOERY

A. Conebeam artifact problem

1) Fourier analysis of DBP on virtual chord lines: In the
3-D CBCT problem, let the variables θ denote a vector on the
unit sphere S2 ∈ R3. Then, the x-ray transform is formally
define as

Df (a,θ) =

∫ ∞

0

f(a+ tθ)dt , (1)

where f corresponds to the linear attenuation coefficients and
θ ∈ S2 denotes the x-ray photon propagation direction and
a ∈ R3 refers the x-ray source location in a actual source
trajectory a(λ), λ ∈ [λmin, λmax].

For the given source trajectory a(λ), we now define the
differentiated backprojection (DBP):

g(x) =

∫ λ+

λ−
dλ

1

‖x− a(λ)‖
∂

∂ν
Df (a(ν),θ)|ν=λ (2)

where [λ−, λ+] ⊂ [λmin, λmax] denotes the appropriate inter-
vals from the source segments between λmin and λmax, and
1/‖x− a(λ)‖ denotes the distance weighting. The chord line
on the DBP data can be representated as a Hilbert transform
relationship [1], [6], [7]. Unfortunately, in CBCT, the Hilbert
transform relationship is established only on the actual chord
line. As our novel contribution, we generalized the Hilbert
transform relationship from the actual chord line to a virtual
chord line [4].
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Actual trajectory

Virtual trajectory

Actual chord line

Virtual chord line

Actual source

Virtual source

Fig. 1. Source trajectories and virtual chord lines. The dark circle is an actual
trajectory and the dark line is an actual chord line. The set of gray-dot circle
are virtual trajectory and the dark-dot line is a virtual chord line.

The virtual coordinate system can be explained by three
unit vectors which are the z-axis ez , the chord line direction
(i.e., filtering direction) e, and their perpendicular axis e⊥.
Using the coordinate system, a new coordinate (x′, y′, z) is
representated from a primary Cartesian coordinate such that

x = x′e+ y′e⊥ + zez . (3)

At the new coordinate, the corresponding spatial frequency
is defined by (wx′ , wy′ , wz). Then, we have the following
gerenalized Hilbert transform relationship.

Theorem II.1. [4] Let the source trajectory a(λ), λ ∈
[λ−, λ+] have no discontinuities. Suppose, furthermore, posi-
tion x is on the viritual chord line that connects the two virtual
source positions av(λ

−) and av(λ
+), and has the coordinate

values (x′, y′, z) on the virtual chord line coordinate system
(3). Then, the differentiated backprojection data in (2) can be
represented as

g(x) =
1

2π

∫ ∞

−∞
dωx′ φ̂(ωx′ , y′, z)j sgn(ωx′)ejωx′x′

(4)

where

φ̂(ωx′ , y′, z) :=
1

(2π)2

∫
dωx′

∫
ωz∈{(ωx′ ,ωy′ ,ωz)/∈N (z)}

dωz

f̂(ωx′ , ωy′ , ωz)e
j(y′ωy′+zωz) ,

and the missing frequency set N (z) on z is given by

N (z) =

{
(ωx′ , ωy′ , ωz) | −A ≤ ωx′

zωz
≤ B

}
, (5)

where

A =
1

x′ +
√

R2 − (y′)2
, B =

1√
R2 − (y′)2 − x′ .

which trivially becomes an empty set when z = 0.

2) Missing frequency regions: Thanks to Theorem II.1, we
can identify the missing frequency region. Fig. 2 shows various
missing frequency regions depends on the filtering direction.
If all of the chord lines head for the horizontal direction (blue

(a)

(b) (c)

(d) (e)

Fig. 2. The missing frequency region. (a) The top view of a point x =
(x, y, z) and an source trajectory. The blue line indicates the horizontal
directional virtual chord line between av(λ

−
1 ) and av(λ

+
1 ) and the red

line denotes the vertical directional virtual chord lines between av(λ
−
2 ) and

av(λ
+
2 ). (b)(c) The missing frequency region for horizontal and vertical

directions, respectively. (d) (e) The missing frequency region for the diagonal
directional virtual chord lines that correspond to the yellow and green lines,
respectively.

line at Fig. 2(a)), then the missing frequency region for a given
z can be written as{
(ωx, ωy, ωz) | −

zωz

x+
√

R2 − y2
≤ ωx ≤

zωz√
R2 − y2 − x

}
, where zωz ≤ 0; on the contrary, for the vertical direction
(red line at Fig. 2(b)), the missing frequency region can be
explained such that{
(ωx, ωy, ωz) | −

zωz

y +
√
R2 − x2

≤ ωy ≤
zωz√

R2 − x2 − y

}
.

The missing frequency region is illustrated in Fig. 2(b)(c)
for x � z, y � z, respectively. In addition, Fig. 2(d)(e) rep-
resents the missing frequency regions related to the diagonal
filtering directions.

B. Multi-scale Interior Tomography using Bedrosian Identity

In interior tomography problems, an available DBP data on
a virtual chord line is truncated within FOV xπ ∈ (e1, e2). Ac-
cordingly, when Hilbert transform is applied to the truncated
data, we can expect truncation artifacts since there exists a
null space:

HhN (xπ) = 0, where xπ ∈ (e1, e2). (6)

Here

hN (xπ) =
1

π

∫
R\(e1,e2)

dx′
π

ψπ(x
′
π)

x′
π − xπ

, (7)

for some function ψπ(x). Thus, we are interested in imposing
1D TV to correct any data hN (xπ) belong to the null space.

By decomposing interior tomgoraphy problems based on the
1D TV formulations, the computational cost is much lower
than it is for high-dimensional TV [3], [8], [9]. Moreover, we
can significantly reduce the computational complexity based
on the Bedrosian identity of Hilbert transform.
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(a) (b) (c) (d)
Fig. 3. The common missing frequency region according to the filtering
directions. (a), (b), and (c) indicate the missing frequency region according
to the number of missing frequency regions with different filtering directions.
The dark region denotes a common missing frequency region, respectively.
(d) Overlapped illustration of the common missing frequency regions.

Theorem II.2. (see [10]) Let w, f ∈ L2(R) be low-pass and
high-pass signals such that the Fourier transform of w(x)
vanishes for |ω| > ω0, with ω0 > 0, and the Fourier transform
of f(x) vanishes for |ω| < ω0. Then, we have

H{w(x)f(x)} = w(x)H{f(x)} . (8)

Accordingly, the interior tomography problem is formulated
as

min
fL
‖fL‖TV (L;E) subject to g = H(fL + fH) . (9)

where fL and fH denote the low and high freqeuncy compo-
nent of a object f , respectively. By solving Eq. (9), the low
freqeuncy component fL(x) is reconstructed under TV con-
straint. Moreover, it is possible to reconstruct low-resolution
image in the down-sampled domain, so the computational bun-
den is significantly reduced. From the reconstruncted signal
fL(x), the residual signal gH(x) is extracted by substracting
HfL(x) from g(x). If gH(x) does not overlap with the spectral
band-width of the truncation window, then Theorem II.2 is
satisfied, so, fH(x) is directly calculated by

fH(x) =
−H{w(x)gH(x)}

w(x)
, x ∈ E. (10)

The multiscale decomposition method is summarized in
Fig. 4.

C. Conebeam artifact reduction using spectral blending

However, the recovered signal is not the exact solution
due to the missing frequency regions. Indeed, the best signal
we can expect is that the signals with missing frequency
components as shown in Fig. 2. Therefore, to minimize the
cone beam artifacts that are recovered from the interior to-
mography algorithm, we need spectral blending that optimally
combines the interior tomography reconstruction in multiple
filtering directions so that the resulting missing frequency
components can be reduced to those of Fig. 3. Moreover, based

Fig. 4. Flowchart of the proposed multiscale reconstruction approach for
interior tomography problem.

(a) (b) (c)
Fig. 5. ROI tomography reconstruction results using (a) BPF, (b) the pro-
posed multiscale reconstruction method along horizontal (φ(x)) and vertical
(φ⊥(x)) filter directions, and (c) their the spectral blending results from the
two filtering directions.

on Fig. 3, the size of the missing frequency regions from two
orthogonal filtering directions is still comparable to that of
multiple filtering directions. Since additional filtering direction
requires additional applications of iterative interior topography
algorithm, the computational complexity increases; so this
paper just utilities the two filtering directions along x- and
y- axis and apply the optimal spectral blending.

More specifically, as shown in the Fig. 3, it is possible
to minimize the missing frequency region by blending
appropriate frequency components of the reconstruction from
the two orthogonal filtering directions. The shape of missing
frequency region is described as Fig. 2(b) owing to the
horizontal filtering direction, then it can be minimized by
applying the row-wise bow tie window like Fig. 5(c) blue
window. On the contrary, the shape is described as Fig. 2(c)
owing to the vertical filtering direction, then it can be also
minimized by applying the column-wise bow tie window like
Fig. 5(c) red window. Finally, by blending both the weighted
spectrums, the missing frequency region can be minimized
in the 2D Fourier domain in each slice. Therefore, we apply
2D Fourier transform for each z-slice and use the spectral
blending, which significantly reduces the computational
burden. The concept of spectral blending simply is illustrated
in Fig. 5. The multiscale decomposition interior tomography
algorithm is used for both horizontal and vertical directions,
respectively. Then, using spectral weighting with a bow-tie
window, they are blended into one image.

III. RESULTS

The reconstruction domain resolution of the real head
phantom was 512× 512× 512 voxles with voxel size 0.589×
0.589 × 0.684 mm3, and the phantom size is (−150, 150) ×
(−150, 150) × (−175, 175) mm3. The resolution of the de-
tector is 1024 × 250 array matrix with detector pitch of
0.4× 0.4 mm2 and the number of views is 720. The distance
from source to rotation axis is 1700 mm, and the distance
from source to detector is 2250 mm. The radius of FOV was
about 36 mm. Since a transverse-ways offset is applied as 5.0
pitch, when the projection data was acquired, the ROI of the
reconstructed head phantom is biased toward the right-bottom
side.

The 4th International Conference on Image Formation in X-Ray Computed Tomography

505



912.0/
0.403

370.2/
0.164

83.7/
0.037

917.7/
0.339

385.2/
0.142

103.1/
0.038

1773.5/
1.979

497.2/
0.555

97.2/
0.109

full-beam BPF FDK BPF TV Profile

89.2/
0.039

96.1/
0.036

120.7/
0.135

Proposed

−20 0 20
−1000

0

1000

2000

3000

4000

y position (mm)

H
ou
se
fie
ld
 U
ni
t

 

 

Phantom
FDK
BPF
TV
Proposed

−20 0 20
−1000

0

1000

2000

3000

4000

x position (mm)

H
ou
se
fie
ld
 U
ni
t

 

 

Phantom
FDK
BPF
TV
Proposed

−20 0 20
−1000

0

1000

2000

3000

4000

z position (mm)

H
ou
se
fie
ld
 U
ni
t

 

 

Phantom
FDK
BPF
TV
Proposed

Fig. 6. The reconstruction results of real head phantom. From top to bottom, the each row denotes the cross section for the transection at z = −11.3 mm
(i.e. off-mid-plane), the coronal at y = −3.8 mm, and the sagittal at x = −0.9 mm. The profiles corresponds to the CT numbers along the white lines of
the reconstructed results. The profiles of full-beam BPF, FDK, BPF, TV and proposed method are represented by gray-dot, green, blue, and red, respectively.

In Fig. 6, reconstruction results for a real head phantom are
shown in the region (−36, 36)× (−36, 36)× (−36, 36) mm3.
Although the proposed method is truncated as about 70%,
the results in Fig. 6 are very similar to that of the full-
beam result. Unlike the TV reconstruction, the noise textures
could be recovered by the proposed method, and confirmed
that the algorithm does not result in unnatural smoothing.
This is because TV is only applied at the low frequency
reconstruction, and the high frequency reconstruction is done
an using analytic formula.

When the computation time is compared between the pro-
posed and conventional iterative (TV) method, a performance
of reconstruction is 2.2 slice/sec for the proposed method,
however, in the conventional case, the performance is 0.0667
slice/sec. This shows that the proposed method is 34.3 times
accelerated over the conventional.

IV. CONCLUSION

In this paper, we provided a novel analysis of the missing
frequency region using Fourier domain analysis, which is
distinct from the Radon domain approach in [5]. Based
on the analysis, an optimal spectral blending scheme that
weights the reconstruction from two orthogonal filtering
directions was proposed. We further demonstrated that the
DBP data from the circular cone beam data has a similar
Hilbert transform relationship on virtual chord lines, but
the content is different owing to the missing frequency
regions. Accordingly, our algorithm consisted of two step
reconstruction procedure: first, the multiscale decomposition
interior tomography algorithm using 1D TV penalty on the
virtual chord lines, which is followed by spectral blending of
a two reconstructions from horizontal and vertical filtering

directions. The proposed method provided the reconstruction
result with significantly reduced conebeam and missing
frequency artifacts. Furthermore, all the processing were done
in 1D virtual chord lines, which significantly reduces the
computational complexity.

This work was supported by Korea Science and Engineering
Foundation by Grant NRF- 2014R1A2A1A11052491.
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Abstract—The increasing popularity of iterative reconstruction 

algorithms has raised the attention onto how to build more 
accurate, realistic CT system models. In our work, we model the 
CT projectors based on volume integrals. The higher 
computational complexity in computing the exact volume 
integration is hidden by memory-efficient, fast, and accurate look-
up tables. For further reductions we also derive a simple linear 
regression model from the table. We demonstrate our ideas with 
data obtained with a fan-beam flat-detector CT system. We 
observe speed-ups of up to 30% while keeping a higher or at least 
similar image quality than existing advanced CT system models. 
 

Index Terms—CT system matrix, forward projection, line 
integral model, area-based model, volume integral model  

I. INTRODUCTION 
ITH the increasing popularity of iterative reconstruction 
algorithms in the field of CT medical imaging, modeling 

a realistic CT system in software is becoming more crucial than 
ever. The CT system model can be represented by a huge 
matrix, W, whose columns correspond to the voxels subject to 
reconstruction (an N×1 vector) and the rows are the projections 
(or line integrals, an M×1 vector) that are measured by CT 
scanner. Then, each element, , of the matrix indicates the 
contribution of a voxel j to a detector cell i, so called weight 
coefficient. This gives rise to the linear algebra equation: 

 

where X is the unknown image and P are the observed 
projection data. The process of calculating the line integrals is 
known as the forward projection and its reverse model, 
generally defined as the transpose of the forward projection, is 
known as back projection. As the size of the CT system matrix 
is enormous, the coefficients are usually computed on-the-fly 
during forward- and back projection. 
   The most intuitive and simplest way to compute the 
coefficient, , would be the line integral. It computes the 
intersection length between the j-th voxel and the i-th ray [1][2]. 
Here, a ray is depicted by a zero width line that connects the X-
ray (point) source and the center of the detector cell for the ray-
driven approach (or the center of a voxel for the voxel-driven 
approach). This kind of CT system modeling has low 
computational complexity but it can suffer from under-
sampling and aliasing [3].  
   The other approach, which is much closer to a real CT system 
and which overcomes the sampling problems is the volume 
integration based approach. In this model, a single ray can be 

depicted by a 3D polygon (or 2D polygon for fan-beam) that 
connects the X-ray source with a detector cell. However, 
computing the intersected volume is not a trivial task and incurs 
high computational complexity. This precludes its use in 
iterative reconstruction routines where many intersections need 
to be computed.   
   Two well reported approaches exist which approximate the 
intersection volume. The first approach is the distance-driven 
(DD) method [3] that computes the coefficient as the row or 
slab intersection length combined with the overlap coefficient. 
The overlap coefficient is computed based on the length or area 
of overlap between a voxel and a detector cell when they are 
mapped onto each other as seen by the source. The other 
approach is the separable footprint (SF) method [4] which 
approximates the voxel footprints as 2D separable functions. 
This approximation not only greatly simplifies the computation 
of the coefficient but has also been shown to be more accurate 
than the DD methods, while keeping similar computational 
cost.  
   Recently, Ha et al. [5] introduced a method that computes the 
intersection volume exactly, and they also proposed three 
strategies that can approximate the volume at good accuracy. 
The approximate approaches aimed to make the volume 
integration process suitable for GPU-acceleration [6][7], using 
their massively parallel architecture to overcome the high 
computational cost of the exact ray-voxel intersection.   
   In this paper, we chose to go a different route with better 
computational efficiency while maintaining high accuracy. 
Here we were inspired by an established technique in computer 
graphics and texture mapping, called summed-area tables [8]. 
Our proposed method precomputes sampled intersection 
volumes and stores them in a summed area table such that 
unknown samples can be mapped into the table and be 
calculated using simple bilinear interpolation.  
   Our second approach derives a simple linear regression model 
from the table. While this method reduces accuracy, it is 
significantly faster. However, interestingly we can show that 
the reduced accuracy tends to occur in rays less frequently 
encountered and therefore reconstruction quality does not seem 
to suffer. We tested both methods with fan-beam X-ray flat-
detector CT data and observed a computational cost reduction 
of up to 30% with a loss in image quality.  
   The remainder of our paper is organized as follows. Section 
II discusses details, Section III presents results. Finally, Section 
IV presents conclusions. 

Efficient Area-Based Ray Integration Using 
Summed Area Tables and Regression Models  

Sungsoo Ha, Heyi Li, and Klaus Mueller 

W 
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II. METHODOLOGY 

A. One-side Area Look Up Table (LUT) 
We define a ray as a zero-width line that connects the X-ray 
point source to a point on a detector. Then, one side area is the 
area between a ray and unit square in one side either left or right. 
We parameterize the area by the ray incident angle, , which is 
measured from the x-axis to the ray, and an intersection point, 
P. The point is computed as an intersection point with the y-axis 
if the angle is less than or equal to 45 degrees. Otherwise it is 
computed with the x-axis to always have a single intersection 
point. The one-side area Look-Up Table (LUT) is a table that 
contains all possible one-side areas ranging from 0 to 360 
degrees and -1 to 1 for the ray incident angle and intersection 
point, respectively. Then, given two parameters,  and P, one 
side area is fetched from the LUT using bi-linear interpolation. 
The intersection area between a pixel and a fan-beam modeled 
by two rays can be efficiently computed by fetching two one 
side areas from the LUT and subtract one from the other. Figure 
1 shows the schematic view of this with an example usages of 
the LUT.   

Due to symmetry given the square area of a voxel, we only 
need to store from 0 to 90 degrees. We use step sizes of 1 degree 
and 0.05 mm to construct the LUT. The size of the LUT is, thus, 
41×91 which takes up only about 15 K Bytes, which is trivial 
amount memory for most of modern computer. The accuracy of 
the LUT is measured by comparing it with analytical solutions 
of 1,000 random pairs of the two input parameters,  and P. We 
find an accuracy of roughly 99% with a maximum error of 
0.004.      

B. One-side Area Regression Model 
Figure 2 shows curves of the one side area LUT along the P-
Area axis. Note that each curve corresponds to a column vector 
of the LUT constructed in previous section. We observe that all 
curves vary within the range of the curves extracted at 0 and 45 
degrees. Approximation can be obtained by abstracting the 
curves with a piece-wise non-linear regression model. Here, we 
take a simple piece-wise linear regression model that can cause 

at most 0.1207 error (about 12% with 45° ray incident angle and 
 0.5 mm) to take advantage of low computational complexity 

as follows. 

 

We analyze the effect of the error by simulating a realistic set 
of forward projections over 360 degrees spaced by 1 degree. 
Note that in the area-based approach the forward and back 
projection are symmetric operators and so we only examine 
one. We draw an error map by computing the errors our 
regression model can make. In the LUT matrix view, we 
subtract the first column vector (0° ray incident angle) by the 
others. Then we measure the occurrence of each element in the 
LUT during projections, yielding a frequency map. This map 
represents how often each element is used during projections in 
a given CT system. The total number of fetches will be (# 
projections) × (# pixels) × (# detector cells affected by each 
pixel) × (at most 4 LUT elements for bilinear interpolation). 
The average error that can occur during projections is 
estimated by multiplying the error map and the frequency map. 
The total expected error is then computed by summing all 
values in the average error map. Figure 3 shows the three maps 
computed with the fan-beam flat-detector CT system and the 
average error is 1.0891 %.  

(a) (b) 
Figure 1. One side area look-up table. (a) Schematic view to compute intersection area between fan-beam and a unit pixel 
and (b) look-up table constructed with 1 degree and 0.05 mm step size resolution (99% accuracy). 

(a) (b)

Figure 2. One side area piece-wise linear regression model  
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III. RESULTS 
We tested the two proposed CT system models with a fan-beam 
flat-detector X-ray CT system with a detector size of 1024 cells 
spaced by 0.384 mm. The source to detector distance is 1147.7 
mm and the source to rotation center distance is 647.7 mm. The 
fan-angle is about 19.4 degrees. For the forward/back 
projection analysis, we used a 512×512 Shepp-Logan phantom 
data with 0.415 × 0.415 mm2 pixel size. All experiments use 
360 views uniformly distributed over 360 degrees and the 
forward/back projection operators are implemented using the 
pixel driven method. Note that all implementations are 
accelerated by an NVIDIA Tesla K40c.     

A. Forward projection 
In area-based CT system models, forward- and back-projection 
operators are symmetric. We measure the accuracy of our 
regression model for forward projection by comparing it with 
the LUT-based approach. We define the normalized root mean 
square error (NRMS) as 

 

where  returns normalized forward projected value at a 
detector cell i at a projection angle, , such that 

 

Here,  is a j-th pixel value, and N and M represent the 
number of detector cells and pixels. The  is the contribution 
of a pixel j to a detector cell i that computes either by look-up 
table or regression model and  superscript, LUT and REG, used 
to indicate them, respectively. Figure 4 shows the NRMS 
measurement over 360 views. As the same pattern is repeated 
every 90 degrees, we only show 0° to 90° projection angles. As 
the projection angle increases, there are more chances that a ray 
can have the incident angles, , around 45°, and it reaches the 
maximum occurrence around 30° and 64° projection angles as 
the combination effect with fan-angles (19.4°). At this time the 
error is about 0.002106 (about 2% error). After the peak point, 
the error goes down as the occurrence reduction of erroneous 
ray incident angles.   

B. Within iterative CT reconstruction 
The proposed methods were plugged into a simultaneous 
algebraic reconstruction technique (SART) framework that 
updates each projection at a time. 

 

where  is reconstructed j-th pixel at k-th iteration and  is i-
th projection data. The constant factor, , is update step size. 
Using the SART, we measure the performance in terms of time 
and reconstruction quality. We used Shepp-Logan phantom 

(a) (b) (c) 
Figure 3. One side area piece-wise linear regression model. (a) error map, (b) frequency map and (c) average error map. 

Figure 4. NRMS error comparison between look-up table 
and regression model approach as forward projectors. 

N
R

M
S 

Projection angle,  
Figure 5. Convergence comparisons among three different 
projectors, LUT-, Regression model- and Footprint-based. 

# iterations 

R
M

S 
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data for this, and the projection data were simulated using the 
LUT based approach as it has about 99% of accuracy to 
compute the intersection area compared to an analytical 
solution. Finally, we compared our methods with the state-of-
the-art footprint-based approach [4]. In the following, the 
experimental results were obtained by running 200 iterations 
with 0.01 update step size.  
 
Convergence: We measure the convergence rate among three 
different projection methods. Two are the proposed ones and 
the other is the separable footprint. To maintain fairness among 
different approaches, we define the root mean square (RMS) 
errors as follows: 

 

where  is the reference phantom data we used to generate 
projection data and  is reconstructed image normalized 
by the maximum value. Figure 5 shows the result. All methods 
have similar convergence rate and converge to similar solution. 
(at 45 iterations, 25.58, 25.72 and 27.05 for LUT, Regression 
and Footprint, respectively). 
 
Visual Assessment: Figure 6 presents visual comparisons of 
reconstructed images after 200 iterations. As all methods are 
converged to a similar solution, the visual look is also similar 
to each other.  
 
Time Performance: The SART consists of 4 kernels, Forward 
Projection (FP), Correct, Back Projection (BP) and Update. We 
measure the running time of each kernel. There are 360 
projections and we run it 200 times. The average time is 
presented in Table 1. In our implementation, both projection 
operators were implemented based on the pixel-driven method. 
As the result, BP is faster than FP in all methods because it does 
not require atomic operations; while it is necessary for the FP 

to avoid race condition. For the FP, with LUT, we can achieve 
10% of speed-up due to the reduced computational complexity 
and Regression can improve the time performance another 
15%.as it does not require memory fetching operations for the 
LUT. For similar reasons, in the BP, the proposed methods are 
faster by about 15% and 30% for LUT and Regression, 
respectively.  

IV. CONCLUSION 
We described and studied two area-based methods to construct 
a more realistic and accurate CT system model. We find that 
both methods can outperform the separable footprint method in 
terms of time complexity without a loss in reconstruction image 
quality. In future work we would like to investigate this finding 
further in the context of cone-beam and helical CT.    
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Figure 6. Visual comparisons. (a) Shepp-Logan phantom, (b) Footprint, (c) LUT and (d) Regression 

 
TABLE I. TIME PERFORMANCE COMPARISON [MILLISECOND] 

 FP Correct BP Update 

Footprint 0.215 

0.025 

0.170 

0.05 LUT 0.192 0.147 

Regression 0.161 0.121 
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Analytical Statistical Reconstruction Algorithm with
the Direct Use of Projections Performed in

Fan-beam Scanners
Robert Cierniak

Abstract—The main aim of the paper presented here is strictly
concerned with the originally formulated 3D reconstruction
algorithm for spiral cone-beam x-ray tomography. The approach
proposed here is based on a fully analytical formulation of
the reconstruction problem. The method can be classed as a
statistical reconstruction method, which significantly improves
the quality of the subsequently reconstructed images, so allowing
a decrease in the x-ray dose absorbed by a patient during
examination. The analytical roots of the algorithm proposed
here permit a decrease in the complexity of the reconstruction
problem in comparison with algebraic approaches. In this paper,
I proved that this statistical approach, originally formulated for
parallel beam geometry, can be adapted for fan-beam geometry of
scanner, with the direct use of projections, and consequently for
helical cone-beam scanners. Computer simulations have shown
that the reconstruction algorithm presented here outperforms
conventional analytical methods with regard to the image quality
obtained.

I. INTRODUCTION

Currently, the most significant challenge in the field of
medical computer tomography is the development of image
reconstruction algorithms from projections which would en-
able the reduction of the impact of measurement noise on
the quality of tomography images. This kind of approach is
intended to improve high resolution image quality and, in
consequence, reduce the dose of X-ray radiation while at the
same time preserving an appropriate level of quality in the
tomography images. The concept has found its application in
the form of statistical reconstruction algorithms. One of the
most interesting from the scietific and practical point of view,
an approach, called MBIR (Model-Based Iterative Reconstruc-
tion), is presented in publications like [1], where a probabilistic
model of the measurement signals is described analytically.
The objective in these solutions was devised according to an
algebraic scheme for formulating the reconstruction problem
[2]. An algebraic scheme has been selected in this case for one
very obvious reason - the measurement noise can be modelled
relatively easily, because each measurement is considered
separately. Nevertheless, as is well known, such a scheme adds
significant calculative complexity to the problem. The time for
image reconstruction becomes unacceptable from the practical
point of view. For instance, if the image resolution is assumed
to be I × I pixels, the complexity of the algebraic problem
is of the level of I × I × number of measurements ×

Corresponding author: Robert Cierniak, Institute of Computational Intel-
ligence, Czestochowa University of Technology, Armii Krajowej 36, 42-200
Czestochowa, Poland, e-mail: cierniak@kik.pcz.czest.pl

number of cross−sections (in 3D tomography); a multiple
of I to the power of four in total.

The difficulties mentioned above connected with the use of
an algebraic methodology can be limited by using an analytical
strategy of reconstructed image processing. In previous papers
I have shown how to formulate the analytical reconstruction
problem consistent with the ML methodology for parallel
scanner geometry [5]. This strategy has been used for fan-
beams [3], and finally for the spiral cone-beam scanner [6].
However, an approach to the reformulation of the reconstruc-
tion problem from parallel to real scanner geometries, called
rebinning, was applied there. The rebinning approach in the
3D spiral version involves a nutating slice CT image recon-
struction method described in the literature by its abbreviation
ASSR (Advanced Single Slice Rebinning) [7]. Much more
popular 3D reconstruction methods, which are implemented
in practice, are FDK (Feldkamp)-type algorithms that the use
projections obtained from spiral cone-beam scanners directly
(see e.g. [8]). In this paper, we present a mathematical
derivation of a method for the direct (i.e. without rebinning)
adaptation of fan-beam projections to the statistical analytical
reconstruction algorithm originally formulated by me. This
solution is directly applicable to 3D spiral cone-beam scanner
geometry.

II. ADAPTATION OF THE 2D ANALYTICAL APPROXIMATE
RECONSTRUCTION PROBLEM TO FAN-BEAM PROJECTIONS

The 2D analytical approximate reconstruction problem was
originally formulated for a parallel scanner geometry [3], as
follows:

μmin = argmin
μ

⎛⎝n0

2

I∑
i=1

J∑
j=1

·

·

⎛⎝∑
ī

∑
j̄

μ
(
xī, yj̄

)
· hΔi,Δj − μ̃ (xi, yj)

⎞⎠2
⎞⎟⎠ , (1)

where coefficients hΔi,Δj are

hΔi,Δj = Δα

Ψ−1∑
ψ=0

int (Δi cosψΔα +Δj sinψΔα) , (2)

and μ̃ (i, j) is an image obtained by way of a back-projection
operation; int (Δs) is an interpolation function used in the
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back-projection operation; every projection is carried out after
a rotation by Δα.

This concept can also form the starting point for the
design of a 3D reconstruction algorithm for spiral cone-beam
scanner geometry. One of the principal reconstruction methods
devised for the cone-beam spiral scanner is the generalized
FDK algorithm. The FDK algorithm is a development of a
conventional fan-beam reconstruction approach with direct use
of measurements performed in a fan-beam scanner (see e.g.
[4]). In the traditional FDK approach, the fan-beam projections
are filtered in two dimensions and then back-projected in
three dimensions. This methodology is adapted to our original
iterative model-based reconstruction concept.

Taking into consideration the definition of the two-
dimensional inverse Fourier transform, and the frequential
form of the relation between the original image of a cross-
section of an examined object represented by function μ (x, y)
and the image obtained after the back-projection operation
μ̃ (x, y), we obtain:

μ̃ (x, y) =

∞∫
−∞

∞∫
−∞

1

|f |M (f1, f2) e
j2π(f1x+f2y)df1df2, (3)

which, after converting to polar coordinates and using the
projection slice theorem (taking into account a full revolution
of the projection system), takes the form:

μ̃ (x, y) =
1

2

π∫
−π

∞∫
−∞

P̄ (f, αp) ej2πf(x cosαp+y sinαp)dfdαp.

(4)
Then, after transferring the projections into the spatial domain,
we have the formula:

μ̃ (x, y) =
1

2

π∫
−π

∞∫
−∞

(5)

∞∫
−∞

p̄p (s, αp) ej2πf(x cosαp+y sinαp) · e−j2πfsdsdfdαp.

Arranging the right hand side of the above formula and
changing the order of integration, we get:

μ̃ (x, y) =
1

2

∞∫
−∞

∞∫
−∞

π∫
−π

p̄p (s, αp) ej2πf(x cosαp+y sinαp−s)dαpdsdf.

(6)
Next, after converting the attenuation function into polar
coordinates, we obtain:

μ̃ (r cosφ, r sinφ) = (7)

1

2

∞∫
−∞

∞∫
−∞

π∫
−π

p̄p (s, αp) ej2πf [r cos(αp−φ)−s]dαpdsdf.

Note here that the substitution x cosαp + y sinαp =
r cos (αp − φ) refers to the point (r, φ), to which the re-
construction process applies, and the variable s specifies the
location on the screen.

Of course, we should also take into account the application
of the interpolation function used during the back-projection
operation, which should be placed appropriately (a frequency
representation of this function) in the formula above to finally
obtain:

μ̆ (x, y) =
1

2

∞∫
−∞

∞∫
−∞

π∫
−π

(8)

INT (f) pp (s, αp) ej2πf [r cos(αp−φ)−s]dαpdsdf.

After suitable transformation we obtain a relationship, which
is fundamental for the fan-beam image reconstruction method:

μ̆ (x, y) =
Rf

2

∞∫
−∞

βm∫
−βm

2π−β∫
−β

(9)

INT (f) pf
(
β, αf

)
cosβej2πfu̇ sin(β̇−β)dαfdβdf,

and further

μ̆ (x, y) =
Rf

2

2π∫
0

βm∫
−βm

pf
(
β, αf

)

cosβ

∞∫
−∞

INT (f) ej2πfu̇ sin(β̇−β)dfdβdαf . (10)

Unfortunately, there is a serious drawback associated with the
use of the fan-beam reconstruction method formulated like
this. It stems from the dependence of equation (10) on the
parameter u̇, which poses certain practical problems when
carrying out the calculations during the reconstruction process.
Instead of a simple formula for the convolution kernel, it now
becomes necessary to determine a different form of the kernel
for every point of the object’s cross-section. This is because
u̇ represents the distance of the point (r, φ) from the radiation
source. Therefore, by changing the angle αf , we also change
u̇. The appropriate adjustment is based on a term in equation
(10), which is reproduced here in a suitably amended form:

int (s) =

∞∫
−∞

INT (f) ej2πfu̇ sin(β̇−β)df. (11)

In this equation, the integration is carried out with respect to
the frequency f . The next step will be to make a substitution
for f , using the following expression:

ff =
f · u̇ · sinβ

Rf · β
. (12)

If at the same time we change the limits of integration, the
convolving function will be modified to:
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intf (β) =
Rf · β
u̇ · sinβ

∞∫
−∞

INT

(
ff · f0
ff
0

)
ej2πf

fRfβdff ,

(13)
where

ff
0 =

f0 · u̇ · sinβ
Rf · β

. (14)

Unfortunately, even here we encounter problems caused by the
dependence of the cut-off frequency ff

0 on the parameter u̇.
On the other hand, if we were to establish a constant value
for ff

0 it would mean that the reconstruction process for the
point (r, φ) would have a different resolution (determined by
the value of the cut-off frequency f0) for every angle αf .
However, if we put aside the assumption of uniform resolution
for the resulting reconstructed image, then, by manipulating
the values u̇ and f0, the varying value of ff

0 can be fixed as:

ff
0 = ff0 =

1

Rf ·Δβ
. (15)

Let us assume that we apply a linear interpolation function in
formula (9), i.e. the following form of this function:

intL (s) =

{
1
Δs

(
1− |s|

Δs

)
for |s| ≤ Δs

0 for |s| ≥ Δs

. (16)

The frequency form of the interpolation function shown in
equation (16) is given by this formula:

INTL (f) =
sin2 (πfΔs)

(πfΔs)
2 . (17)

Taking into account in the formula (13) the proposed interpo-
lation function given by (17), we obtain the following relation:

intfL (β) =
Rf · β
u̇ · sinβ

1

Δ′
s

∞∫
−∞

Δ′
s

sin2 (πfΔ′
s)

(πfΔ′
s)

2 ej2πfRfβdf,

(18)
where

Δ′
s =

f0

ff
0

. (19)

It is easy to show that it gives

intfL (β) =
Rf · β
u̇ · sinβ

{
1
Δ′

s

(
1− Rf |β|

Δ′
s

)
for |β| ≤ Δ′

s

0 for |β| ≥ Δ′
s

,

(20)
and next, bearing in mind relations (15) and (19), it leads
immediately to:

intfL (β) =
β

u̇ · sinβ

{
Δs

Δβ

(
1− Δs|β|

Δβ

)
for |β| ≤ Δβ

Δs

0 for |β| ≥ Δβ

Δs

.

(21)
Finally, if we assume that Δs = 1, it gives

intfL (β) =
β

u̇ · sinβ intL (β) , (22)

where

intL (β) =

{
1

Δβ

(
1− |β|

Δβ

)
for |β| ≤ Δβ

0 for |β| ≥ Δβ

. (23)

In consequence, returning to the formula (10), we obtain

μ̆ (x, y) =
1

2

2π∫
0

βm∫
−βm

(24)

pf
(
β, αf

) Rf cosβ

2u̇

Δβ

sinΔβ
intL (Δβ) dβdαf .

Fortunately, we can linearize relation (25) by considering
expressions inside the integration, namely Δβ

sinΔβ .
In the case of linear interpolation I use only line of integrals

from the neighborhood of a given pixel (x, y), then Δβ ≤ Δβ ,
and sinΔβ � Δβ. Additionally, it is possible to omit the term
Rf cos β

2u̇ taking into account the fact that each projection value
pf
(
β, αf

)
has its equivalent pf

(
−β, αf + π + 2β

)
, as shown

in Figure 1.

Fig. 1. Selecting complementary projection values

Because of this we can notice that the sum of this pair of
projections is proportional to u̇1+u̇2

4u̇1
+ u̇1+u̇2

4u̇2
= (u̇1+u̇2)

2

4u̇1u̇2
. This

means that for u̇1 � u̇2 this factor is equal to 1, and finally,
we can write

μ̆ (x, y) �
1

2

2π∫
0

βm∫
−βm

pf
(
β, αf

)
intL (Δβ) dβdαf , (25)

which is consistent with a form of the formula of the back-
projection operation for parallel beams. Therefore, formula
(25) can be used directly to obtain a reference image for the
analytical statistical iterative reconstruction algorithm which
was originally formulated for parallel beam scanner geometry.
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III. EXPERIMENTAL RESULTS

In my experiments, I have used projections obtained from
a C-arm scanner. Parematers: SDD = 1025mm (Source-to-
Detector Distance); Rf = 825mm (SOD (Source-to-AOR
Distance)); number of views per rotation Ψ = 538; number of
pixels in detector panel 756; detector side 307.2mm. During
the simulations, the size of the processed image was fixed
at I × J = 512 × 512 pixels. The coefficients hΔi,Δj were
precomputed before we started the reconstruction process and
these coefficients were fixed for the subsequent processing.
I started the actual reconstruction procedure and perform the
back-projection operation to get a blurred image of the x-
ray attenuation distribution in a given cross-section of the
investigated object. The image obtained in this way was then
subjected to a process of reconstruction (optimization) using
an iterative statistically-tailored procedure. The starting point
of this procedure we can choosen as a result of using any
standard reconstruction method, for example a reconstruction
FBP algorithm. It is worth noting that our reconstruction
procedure was performed without any regularization regarding
the objective function described by (1).

View of the reconstructed images after 70000 iterations
are presented (Table 2(a).b. For comparison, the image re-
constructed by a standard FBP reconstruction method (Table
2(b).b) is also presented.

IV. CONCLUSION

I have shown in this paper fully feasible statistical re-
construction algorithm for fan-beam projections. It is proved
that this statistical approach, originally formulated for parallel
beam geometry, can be adapted for fan-beam geometry of
scanner, with the direct use of projections. In consequence,
merely after a few additional transformations, this algorithm
can be used for helical cone-beam scanners. Simulations have
been performed, which prove that our reconstruction method
is very fast (thanks to the use of FFT algorithms) and gives
satisfactory results with suppressed noise, without introducing
any additional regularization term.
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(a)

(b)

Fig. 2. View of the images reconstructed image using the standard FBP with
Shepp-Logan kernel (a); reconstructed image using the method described in
this paper after 30000 iterations (b)
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Dual-band projection alignment applied in X-ray
microscopy

Sebastian Allner, Andreas Fehringer, Jonathan Schock, Franz Pfeiffer, and Peter B. Noël

Abstract—In many cases one tomographic X-ray investiga-
tion does not suffice to answer a specific question. Therefore,
multi-modal (e. g. dual-energy CT) imaging can be used to ob-
tain all necessary information about the sample. One frequent
problem arising from multiple datasets is that they have to
be registered in order to analyze the volumes appropriately.
Usually, a volume registration is performed which has several
disadvantages. Here, we propose an alternative method to align
the volumes intrinsically in the tomographic reconstruction
process. We enforce the tomographic consistency of a dual-
energy scan by performing a combined reconstruction and
align the projections according to their projection estimate.
We show that this combined alignment approach intrinsically
registers a dual-energy scan and does not degrade the separate
reconstructions.

I. INTRODUCTION

In the last years, multi-modal (e. g. dual-energy CT)
imaging has gained a lot of interest because it offers more
information about the sample than a simple CT scan. But
even if the two scans are performed subsequently in one
device alignment imperfections can occur. This is even
worse if the datasets were acquired on different devices with
different detectors, pixel sizes, and various other differences
in the setups. An additional source of error would be a
sample drift within one of the scans. This corrupts one scan
completely and usually the measurement has to be performed
again. To still obtain a consistent reconstruction there are
several alignment approaches to improve the alignment of
one dataset. A rather simple approach is the center-of-mass
alignment [1] which is based on a common center of mass
in all projections. This algorithm neglects beamhardening
and does not work for samples moving partly out of the
beam for some projections, and is therefore hardly viable
for most tomographic scans and scan geometries. Another
frequently used method is to register opposing images [2]
(φ, φ + 180◦) which also does not work for half-scan
measurements or geometries with large opening angles. In
addition, it neglects that also the opposing projection might
suffer from misalignment. Both of these techniques hardly
work for a single tomographic scan. Other alignments based
on the redundancy of the measured data [3] may also just
work for a single tomographic scan, as the correlation e.g.
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Figure 1. Scheme of iterative tomoconsistency alignment.

for a dual-energy scan do not match well enough. A different
approach is based on enforcing the intrinsic consistency of a
tomographic scan [4] (referenced as tomoconsitency) which
relies on calculating a projection estimate from the currently
assumed scan geometry with the given projections. Subse-
quently, the projections are matched onto these projection
estimates.

In this work we applied tomoconsistency to a dual-
energy scan of a stone drilling core and performed the
projection alignment based on a combined reconstruction
of both energies. We show that the combined alignment
does not corrupt the reconstructed images of each energy
but intrinsically registers both volumes with respect to
each other. Additionally, we display the improved alignment
with difference images of both energies to show the FBP
mismatch and plot 2-D histograms of the dual-energy scan
to support our findings.

II. MATERIALS AND METHODS

A. Tomoconsistency alignment

The alignment method of tomoconsistency [4] is based
on calculating a reconstruction estimate from all projections
with their initial (mis-)alignment. The projection estimates
indicate how the original projections should be aligned as
the reconstruction is more consistent than the projections
itself, because the low-frequency components of many ad-
jacent projections are similar according to the Fourier slice
theorem [5]. Therefore, the original projections are matched
onto the reprojections for which the low-frequency features
are most crucial. This matching is done by cross-correlating
the measured and simulated projections. The overall quality
of the alignment is improved.
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Figure 1 displays the iterative alignment scheme. From the
volume estimate reconstructed with filtered backprojection,
reprojections are simulated with the corresponding geometry.
The shifts of the projections with respect to the projection
estimates are recovered by cross-correlation and fed into the
the FBP of next iteration. This is done until the resulting
image is sufficiently aligned.

B. Correlation analysis

We used a cross-correlation of projections and reprojec-
tions for determining projection shifts. The position of the
maximum of the cross-correlation is interpreted as projection
shift to improve the initial reconstruction because the images
appear most similar with this shift. To ensure a robust
alignment the background should be flat. Also the impact
of the very outer parts of the projection should not have a
large influence as they contain the most artifacts. Therefore,
the matching is performed with the projection line integrals,
combined with a mask focusing on the interior.

C. Scale equalization

Due to the energy dependence of the attenuation coeffi-
cients the total scale of high and low-energy FBP are not
comparable. In order to perform a combined alignment with
the same impact of both measurements, their scales have to
match. Therefore, the line integral projections of one of the
scans are scaled. For our application, a linear scaling factor
suffices. The factor is extracted by performing two separate
FBP reconstructions and divide one of them through the
other. The outcome is then plotted into a histogram from
which the highest peak corresponds to the scaling factor. To
avoid numerical instabilities and a large influence of noise,
a region inside the sample is chosen for the procedure.

D. Scanning parameters

The dual-energy scan of the stone drilling core was
performed with a ZEISS Versa XRM and both energies
were acquired in direct succession. For both scans 1600
angles were equidistantly acquired over a total range of 360◦.
The exposure times were 30 s for the low, and 3 s for the
high energy. The acceleration voltage was set to 60 kVp and
160 kVp, respectively. The scans were performed in direct
succession to show the case of best possible pre-alignment.

III. RESULTS

In order to perform the combined alignment via tomocon-
sistency we calculate the FBP necessary for the projection
estimate from both projection sets into one volume. There-
fore, the reconstructed image is afflicted by the projections
and misalignment of both low, and high energy measure-
ments. As the quantitative values of both separate recon-
structions are on a different scale because of the changing
attenuation coefficient with different energies they should be
normalized to guarantee an equal impact of both energies on
the alignment. The key feature of the combined alignment

is, that the projections of both energies are reconstructed
within one FBP volume. With a projector using projection
matrices [6] the projections of both scans are just appended
and projected with their respective geometry information.
Therefore, the FBP is a mixture of the attenuation values
of both energies and influenced by all projection shifts. For
this application the projections look similar enough that the
shift recovery is not influenced by differences in attenuation
values of both energies. For the alignment of this dual-energy
dataset, 3 iterations of tomoconsistency were performed with
decreasing blurring of the reconstructed volume to enable a
smooth shift recovery.

Figure 2 shows the FBP reconstruction without additional
alignment, with tomoconsistency alignment of one separate
scan and the result of the reconstruction after combined
alignment. These images look very much alike. Therefore,
the alignment for the low energy measurement alone is
good. Separately considered, the reconstructions for the
high-energy (no figure) also show no degradation. The
misaligment of the dual-energy scan can be seen in figure 3.

The difference images of low and high energy reveal a
total volume mismatch as all features in the unaligned and
separately aligned FBP show a margin to the left and right.
Therefore, a sample movement between the two separate
scans must have happened. The difference of reconstruc-
tions after combined alignment do not show these margins.
Therefore, the volumes are registered with respect to each
other.

One application of dual-energy CT is extracting mate-
rial information of a sample from the energy dependent
attenuation coefficients of the reconstruction. This can be
accomplished by counting the pixels with a certain atten-
uation in both energy bands and plotting the information
in a two-dimensional histogram. This method fails, if the
reconstructed volumes are not registered with respect to each
other.

Figure 4 shows the two-dimensional histograms of the
attenuation coefficients of low and high-energy FBP. The
background in the left and central images is created by
image pixels directly on the misalignment margin. They
exhibit a specific attenuation in one image band and a
(not material-specific) value in the other FBP, depending
on the adjacent material. For the combined alignment, this
background disappears as the volumes are registered with
respect to each other.

IV. CONCLUSION

We showed that the combined tomoconsistency alignment
of a dual-energy scan registers the reconstructed volumes.
This is accomplished by performing a combined FBP of both
energies into one volume and matching the projections on
the projection estimates emerging from this FBP. Therefore,
the following individual reconstructions of each energy
with the respective alignment information from combined
tomoconsistency alignment are intrinsically registered with
respect to each other. In this work, we realigned a dual-
energy scan of a stone drilling core where both energies were

The 4th International Conference on Image Formation in X-Ray Computed Tomography

516



before alignment separately aligned combined aligned
lo

w
en

er
gy

re
co

ns
tr

uc
tio

n

Figure 2. FBP reconstructions from the low-energy dataset. The left image shows the FBP without alignment. The sharp image impression suggests that
there is no mis-alignment present in the low energy dataset. The central reconstruction is aligned with tomoconsistency by itself, and the right image
shows the FBP aligned aligned with the help of both datasets. The two post-aligned FBP appear very similar, which indicates that tomoconsistency does
not degrade the well-aligned image.
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Figure 3. Difference of FBP reconstructions from low and high-energy scan. The projections were multiplied by an equalization factor to be on the same
scale. The features appearing in the images are due to misalignment or polychromatic characteristics of the materials in the sample. As before, the left
image was reconstructed without additional alignment, for the middle one both images were aligned separately, and right FBP was aligned in a combined
manner.
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Figure 4. Two-dimensional histograms of the dual-energy scan. On the x-axis the attenuation values of the high energy are plotted against the low-
energy attenuation on the y-axis. The histograms are displayed with a logarithmic scale to improve the visualization of the background originating from
misalignment.
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measured in direct succession. Nevertheless, this alignment
is not limited to scans from one device and can in principle
also register scans from different devices with e. g. different
detectors.

The improved alignment allows to perform further image
analysis like for example material segmentation or multi-
band filtering.
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Abstract—In X-ray CT imaging, a basic assumption is that an 
imaging object has no motion. However, a patient who has a
mental or behavior disease cannot hold his/her head still during 
the scan, and thereby severe motion artifacts occur in the 
reconstructed image. In order to reduce the artifacts due to the 3D 
rigid motion of the patient’s head, we propose a FDK-based 
motion compensated reconstruction algorithm. The algorithm is 
based on the motion parameter estimation by maximizing the 
quality of motion compensated reconstructed image. We evaluate 
the validity of the proposed motion estimation and compensation 
algorithm by using a numerical phantom with motion. 

Index Terms—FDK algorithm, X-ray CT, image 
reconstruction, motion estimation, motion compensation, 3D rigid 
motion, head imaging

I. INTRODUCTION

X-ray CT is actively utilized for the diagnosis of head injury
or organic lesion of the brain. However, unexpected or 
uncontrolled patient head motion is one of the major problems 
in CT image based diagnoses. For example, infant patients or 
even adult patients who have a mental or behavior disease can 
hardly control their heads. Those head movements during the 
CT scan cause motion artifacts such as blurring or streaks in the
reconstructed images, which lead to false diagnosis or 
re-scanning.

In order to alleviate the artifacts due to the patient’s motion,
many approaches have been tried. One of them is based on the 
improvement on the gantry rotation time of the scanner, which 
is very expensive. As another approach, J-H Kim et al. recently 
presented a motion correction method using an optical motion 
tracking system [1]. It needs, however, an accurate 
synchronization between the scanner and the external tracking 
system and thereby increases the system complexity. As the 
other approach, B. Herbert et al. presented a reconstruction 
algorithm for motion correction of non-cardiac organs such as
skull [2]. In their approach, a rebinning process from the
cone-beam geometry to the cone-parallel beam geometry is 
used, which reduces the temporal accuracy of the projection 
data. In addition, a rather simple 2D motion model is adopted
for describing the motion problem, which is not considered
very practical.

S. Jang, S. Kim, M. Kim, and J. B. Ra are with the School of Electric 
Engineering, Korea Advanced Institute of Science and Technology (KAIST), 
Daejeon 34141, Korea (e-mail: shjang@issserver.kaist.ac.kr;
sekim@issserver.kaist.ac.kr; makim@issserver.kaist.ac.kr; jbra@kaist.ac.kr).

Fig. 1. The proposed ME/MC algorithm for 3D head motion

In this paper, we propose a FDK-based motion compensated 
(MC) reconstruction algorithm. In the algorithm, the 
compensation is performed on the basis of accurate 3D rigid 
motion estimation of an object, which is achieved via the 
maximization of the quality of the MC reconstructed image. To 
verify the performance of the algorithm, we simulate realistic
patient motion on a numerical phantom and attempt to 
compensate the motion.

The paper is organized as follows. In Section II, the proposed 
MC reconstruction algorithm for 3D rigid motion is described.
Experimental results are shown in section III. Finally, we 
conclude the paper in section IV.

II. METHOD

Figure 1 shows overall structure of the proposed algorithm. 
In the algorithm, FDK-based MC reconstruction is first
performed by using motion corrupted sinogram with initialized 
motion parameters. We then calculate an image quality metric 
of the MC image and the motion parameters are updated so as 
to minimize the quality metric. This procedure is iteratively 
performed using the updated motion parameters until the 
updated amount becomes sufficiently small. The finally
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reconstructed image is obtained via the MC reconstruction with 
the converged or the estimated motion parameters.

A. 3D rigid motion model 
A pose of a 3D rigid body can be modeled with parameter 

vector , which consists of three rotations, , , and along the 
x, y, and z axes, respectively, and three translations, tx, ty, and tz.
The pose of an object is then represented as a transformation
matrix of

tRP . (1)

Here, R denotes a 3×3 orthonormal rotation matrix and t 
denotes a 3×1 translation vector. Note that matrix P has a size 
of 3×4 and represents three rotations followed by three 
translations.

An object motion during the scan can be described by ’s at
a small number of adjacent control points, by assuming that the 
whole object motion is continuous and smooth. The object 
motion can thereby be obtained via B-spline interpolation of

’s of the control points distributed along the time axis. For
motion compensation in the reconstruction, a moving object for 
a pre-defined stable source/detector trajectory may be
interpreted as a static object with a re-defined source/detector 
trajectory. The corresponding new trajectory, or the poses of
the source and detector, can be determined by using the inverse 
of the poses of the moving object. Namely,

tRRP TT1 . (2)

B. FDK-based motion-compensated reconstruction
We adopt a FDK-based MC reconstruction algorithm to

compensate the motion of an imaging object. Since a 
cone-beam projection data at a certain view is affected by the 
object motion at that view, in the FDK algorithm, the motion 
can be compensated view by view by transforming the 
geometry of source and detector using the estimated motion and 
applying the filtered backprojection [3]. 

To apply this motion compensation procedure to the FDK 
algorithm without degrading the MC image quality, we modify 
two parts of the FDK algorithm to be suitable for the 
transformed geometry: pre-weighting factor wd and redundancy 
weight wr. The FDK-based MC reconstruction procedure can
then be written as

duduuhvupvuww

L
Rf

)~(),,();,,(),(

);(
);(

2
1);(ˆ

dr

2

0

2

x
x

,

(3)

where p(u,v, ) is the cone-beam projection data and h
denotes the ramp filter.

In Eq. (3), the pre-weighting factor is originally derived from 
the Jacobian of the 2D parallel to fan beam transformation. For
rather than a circular one, radius R from the origin to the source

Fig. 2. Illustrations of (a) the ordinary FDK reconstruction algorithm 
and (b) the proposed FDK-based MC reconstruction algorithm

point varies as the view changes. Therefore, the Jacobian can be
expressed as

R
uRR

u
uR

R
22

J . (4)

Note here that if R/ =0, Eq. (4) becomes the same 
pre-weighting factor as in the fan beam reconstruction of a
circular trajectory.

In the proposed algorithm, the pre-weighting factor needs to 
be extended to 3D. Using Eq. (4), the factor can be derived as
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where (u ,v ) represent the coordinates of the virtually
transformed detector, as shown in Fig. 2(b). Note also that Eq.
(5) becomes the same as the weight in the ordinary FDK if the 
variation of R is zero.

Meanwhile, the proposed MC reconstruction algorithm 
adopts an extended Parker weight [4, 5] as the redundancy 
weight. In the re-defined source/detector geometry to 
compensate the object motion, we may extend the field-of-view 

v̂ û
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Fig. 3. Re-definement of and for MC reconstruction. (a) Scan 
trajectory with object motion, (b) object MC and (c) virtual scan 
trajectory after object MC

of a sinogram using a virtual fan angle. Then, the extended 
Parker weight on a ray specified by ( , ) can be written as

m
m

m2

m

m
m

2

r

22,2
4

sin

222,1

220,
4

sin

),(w , (6)

where 2 m is a virtual fan angle. 
Since a pair of source and detector can be out of a circular 

trajectory in the MC reconstruction, however, the extended 
Parker weight defined in a circular trajectory cannot be used
directly. For example, to compensate the object motion shown 
in Fig. 3(a), if the pose of a source and detector pair is 
transformed as shown in Fig. 3(b), ( , ) should be re-calculated
according to the re-defined geometry. We hence assign the
position of a virtual source to sv, as shown in Fig. 3(c), where an
extended ray passing the transformed source position, st,
intersects the circular trajectory. We then obtain new and , or 

and , for determining the extended Parker weight in the
circular trajectory.

C. Optimization for ME/MC
In the proposed ME/MC algorithm, we utilize the Shannon’s 

entropy of the reconstructed image as the cost function [6, 7].
We thereby try to qualify the artifacts due to object motion,
which is to be minimized. The downhill simplex method is 
adopted for the optimization to estimate the motion parameters
and consequently to obtain MC reconstructed images.

Fig. 4. (a) The 3D Shepp-Logan phantom and (b) the simulated 
variation of  motion parameters during the scan 

Fig. 5. Reconstructed images using the sinogram of the phantom with 
motion: (a) the ordinary FDK algorithm and (b) the proposed MC 
algorithm obtained by using the true motion parameters. (c) FDK 
reconstructed image using the sinogram of the phantom with no 
motion, for comparison. (level/window: 1.02/0.05)

III. EXPERIMENTAL RESULTS

A. FDK-based MC reconstruction
To evaluate the proposed MC reconstruction algorithm, we 

use the projection data obtained from the 3D Shepp-Logan 
phantom moving with smoothly varying motion parameters
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Fig. 6. Reconstructed images (a) before and (b) after ME/MC. (c)
Estimated and true motion parameter changes along the time or the 
view number

during the scan, as shown in Fig. 4. The data are obtained from 
a hypothetical scanner with 128 channels. The size of
reconstructed images is set to 256×256×100 with a voxel size 
of 0.8×0.8×0.8 mm3 in this experiment.

Figure 5 (a) shows that the image reconstructed using the 
ordinary FDK algorithm includes considerable motion artifacts.
In contrast, we can note in Figs. 5(b) and (c) that the proposed 
MC algorithm can produce a well-reconstructed image if the 
true motion parameters are given.

B. Proposed ME/MC algorithm
To examine the proposed ME/MC algorithm, we adopt a

moving phantom with the true motion parameters as in Fig. 6(c). 
For the estimation of motion parameters, each of them is 
assumed to have five control points equally distributed in the 
time axis. Thereby, the parameters of 30 dimensions are 
estimated. The total number of iterations to estimate the 
parameters is about 400. The size of reconstructed images is set 
to 256×256×100 with a voxel size of 0.8×0.8×0.8 mm3.

Figure 6(a) shows that the reconstructed image obtained 
using the ordinary FDK algorithm includes considerable
motion artifacts. On the other hand, in the MC image obtained 
using the proposed ME/MC algorithm, the artifacts are 

noticeably reduced, as shown in Fig. 6(b). In addition, the 
estimated motion parameters appear similar to the true ones, as 
shown in Fig. 6(c). As further work, we plan to consider a
ME/MC reconstruction problem for larger movements of the 
object.

IV. CONCLUSION

In this work, we propose a FDK-based MC reconstruction 
algorithm for 3D rigid motion, which can be represented using
six motion parameters. The trajectory of a pair of source and
detector is virtually transformed according to the object motion 
so that the object can be considered to have no motion in the 
transformed trajectory. Applying the FDK algorithm along the 
transformed trajectory with some modifications, we reconstruct 
a MC object image based on extended Parker weights. Via the 
simulation using a numerical phantom with movement, we 
prove the proposed MC reconstruction algorithm can 
compensate the object motion effectively by estimating the 
rigid phantom motion.
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1
Abstract—Spectral detectors open new possibilities in medical 

applications, both for radiography and tomographic systems. 
They potentially permit to decrease noise, to improve material 
differentiation, and to remove artifacts. Beam hardening effect, 
resulting in artefacts in CT and bias in radiography, is due to 
poly-chromaticity of tube spectra and to detector response. We 
illustrate in this paper the non-linearity induced by a spectral 
detector due to its non-perfect response, even for pure 
spectrometric detector. We propose an iterative linearization 
method, using a detector model. Examples are presented using 
simulation.  

Index Terms — Spectral Detector, Linearization, Beam 
Hardening artifacts, Tomography, Spectral CT. 

I. INTRODUCTION

ulti energy counting mode detectors are to become a 
serious alternative to the standard integrating systems, 
and should open up new possibilities for medical 

applications. Compared to typical dual energy applications 
such as bone-tissue separation, the use of multi-energy 
detectors should allow to improve the separation of materials 
with close attenuation properties (such as adipose and soft 
tissue), to differentiate between more than two materials 
including K edge materials, and to reach accurate 
quantification of concentrations (contrast agent, calcification 
ratio).  
Additionally, spectral detectors should help in the correction 
of beam hardening (BH) artifacts. The removal of BH artifact 
is a great challenge.  It induces the so-called cupping and 
streaking artifacts in CT, bias in radiographic imaging, and 
cannot be neglected for quantitative measurements. 
When using standard integrating detectors, many beam 
hardening removal methods have been proposed and some of 
them are currently used. In the case of a single material object, 
an experimental material calibration is efficient. Dual material 
decomposition, whatever the method is used, allows a 
significant reduction of beam hardening effect at the price of 
noise increase. Dedicated to CT geometry, a class of methods 
benefits from a first reconstruction to get information. Others  
perform a few iterations of alternative steps <reconstruction / 
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correction of projections>. Also, modified algebraic 
reconstruction algorithms integrate a non-linear projection 
model. Statistical algorithms directly use a non-linear direct 
model in the inversion processing [1]. 
Non-linearity of radiographic data in terms of material 
thickness is due to the spectral distribution of the tube, 
coupled with the detector response. Spectral detectors could 
reduce the corresponding non linearity by taking into account 
the detector model. If detector imperfections, such as charge 
sharing and pile-up effects at high photon fluxes, are ignored, 
the benefit of energy resolved detectors clearly falls down. 
Material decomposition techniques have been adapted to these 
new detectors which provide several energy bins. Generally, 
they are based either on a polynomial approach [2], or on a 
maximization of the likelihood function of the measurements 
[3]. In CT geometry, material decomposition can be applied 
before or after the reconstruction process, or jointly such as in 
recently publications. Broadly speaking, these methods reduce 
beam hardening effects, but often increase noise, and some of 
them are time consuming.  
In this paper we propose a rather simple approach that 
processes spectral data. Thus it can be applied in radiography, 
or tomography when using a projection-based approach. A 
data linearization is performed, and is applicable for any 
number of energy bins. We first present a typical spectral 
detector and model it. The response effect on spectral 
measurement is illustrated. Then the proposed method is 
detailed. Results are presented on elementary spectra, 
radiographic and CT images.  

II. MATERIALS AND METHODS

A. Spectral Detector Modelling 
Recently emerged semiconductor based X-ray detectors 

offer new capabilities in counting mode with energy
discrimination. Thanks to a direct conversion from photon to 
collected charges, they are able to count the photons in several 
energy channels at high count rates. Some of them may even 
reach hundred channels [4,5]. 
An accurate model of a semiconductor detector [6] has been 
developed in our lab to predict the detector response at any 
energy. This model has been validated with experimental 
prototypes. Based on a Monte Carlo code, physical 
interactions of photons and electrons inside the crystal are 
simulated. Drift transport, diffusion, and charge sharing are 
taken into account. Finally, electronics modelling provides the 
final pulse waveforms and noise.  
The detector response is calculated over all energies and the 
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result stored in a matrix format (Detector Response Matrix, 
DRM, generalization of the usually named Detector Response 
Functions, DRF). Fig. 1 presents the DRM of a detector 3mm 
thick, 500μm pitch, and the response to an 80keV pulse (one 
column of the matrix). This detector model was integrated in 
Sindbad, a software able to produce realistic radiographs of 
any object in any geometry [7].

Detector Response Matrix (DRM)

80 keV

Incident X-ray energy (keV)

D
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�� �� !� �� "� �� #� �� &� ���

Energy (keV)

Response to a 80 keV pulse

Fig. 1.  Detector response matrix for a CdTe detector, 3mm thick, 500 μm 
pitch. On the right, response to a 80 keV pulse. 

B. Modelling Spectral Measurement 
For an incident spectrum N0(E) the expected number of 
transmitted photons at energy E through an object of 
attenuation att(E) is given by:    

( ) ( ) ( )EatteENEN −= 0    with    ( ) ( )dlElEatt �= ,μ               (1) 

where the linear attenuation coefficient μ  is material specific. 
When using the DRM previously introduced, and assuming a 
linear discrete formalism, the number of photons effectively 
measured in one energy channel k is: 

( ) ( ) ( )Eatt
EN

E
Ek
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E
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�� == 0

1
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1
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             (2) 

),( EkDRM is the contribution of energy E to channel k. For a 

pure spectroscopic detector with narrow bins – about 1keV 
width – such as [4], channel k corresponds to an energy Ek and

),( EkDRM  is the corresponding element of the DRM matrix. 

Most of multi-energy detectors provide larger bins. We note 
NC the channel number. The log-measurement (NC-
dimensional vector) is finally defined by: 

( )
CNk mesmesmesmes ,..,..1= , ( )kkk NNmes ,0log−=               (3) 

Finally, let us introduce the following normalized matrix, 
called System Weighting Matrix (SWM):  
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We get:   
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Equation (5) shows that measurement non-linearity is due to 
poly-chromaticity especially for large channels k, but also 
because of the SWM even for thin channels (“true” 
spectroscopic detector). 

Notice that the pile-up effect is not currently integrated in our 
formalism: it cannot be modelled in such a linear way. It 
should be added when considering high level fluxes.
In Fig.2, we illustrate this model by representing the length-
normalized attenuation measurement kmesl)1(  for a 
homogeneous material of various thicknesses l and NC=NE
bins. The spectral detector used is the previously presented 
one. For a perfect spectroscopic detector the result is 
independent on l:  

( )( ) ( )k
lE

k Ee
l

mes
l

k μμ == −log11  for any CNk ...,1∈

The obtained functions clearly depend on l, especially at low 
energy. The theoretical ( )Ethμ is also drawn. Experiments 
using our spectral detector have validated these measures. 

Attlin

1/l mesk for l=0.5mm
1/l mesk for l=1mm
1/l mesk for l=10mm
1/l mesk for l=50mm
1/l mesk for l=100mm
μth

'	�
�� *:�;<

=�
��

Decreasing l

μth

Fig. 2.  Length-normalized attenuation measurement for a plastic (POM), 
thickness varying from 0.5mm to 100 mm, DRM of Fig.1 is used. Theoretical 
(tabulated) attenuation is drawn. Attlin is explained hereafter (eq (8)).

Finally, we used an object model to reduce the unknown 
dimension. We can assume ([7]):  

                       ( ) ( )EfaE u

N

u
u

B

�
=

=
1

μ                     (6)

Where fu are the basis functions, typically photoelectric and 
Compton effects, or two material basis (in that case NB=2), 
and au the decomposition coefficients that depends on the 
voxel material only and not on energy (additional functions 
should be considered when K-edge materials are present). 
Using the line-integrals ( )dllaA uu �= , we get:  

                        ( ) ( )EfAEatt u
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C. The proposed linearization method 
Let us introduce the “linear” attenuation:  

                          �
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which is a first order linear approximation for mesk.. 
Effectively, a Taylor expansion around the mean value of (5) 
can be written, for a homogeneous material of thickness l : 
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(See APPENDIX).  
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It can be easily demonstrated that the normalized 
measurement kmesl)1( for each k monotonically increases 
with respect to l, is strictly inferior to lin

katt , and converges to it:  
lin
kkl

attmes =
→0

lim

Generalization to an inhomogeneous material uses the line-
integral of attenuation coefficient. In Fig 2, the linear 
attenuation curve is superimposed with the one corresponding 
to 0.5 mm and is the limit of all the curves when l tends to 0.  

The main idea of our method is the following: from kmes , let 
us recover lin

katt , instead of estimating the theoretical value 
th
katt  (dashed curve), that would correspond to the inversion of 

equation (5). The linearized value lin
katt  allows artifact-free 

reconstruction, and quantitative estimation of material 
thicknesses in radiography.

The algorithm combines the previous equations to propose an 
iterative scheme based on a fixed-point framework. Let us 
introduce the “deformation” function:       

lin
k

k
k att

mesw =

At each iteration we estimate an update of lin
katt  via an 

estimation of deformation function. We use the vectorial 
notation V for any vector kk NkV ,....1, = . 

TABLE 1. Proposed algorithm framework

Initialization:    mesatt
lin

=
)0(

For each iteration: 

- Step 1: computation of the object model (vector A ) 
by inverting : 

Afatt
lin

××Ψ= )(

- Step 2 : computation of the expected deformation 
function: 

( )
Af

eW
Af

××Ψ
×Ψ−=

×−ln

- Step 3 : estimation of the linear attenuation: 

W
mesatt

lin
=    (per component k)

The stopping criteria is a threshold on the variation between 
two iterations or a fixed number of iterations. The algorithm is 
applied on spectral data vector (one per pixel). The output is 
the vector lin

katt , of dimension NC, number of detector channels. 

Notice that in step 2, the dimension of the matrix )( f×Ψ is 
(NC, 2). The inversion can be pre-computed by mean square 
method if NC is small (typically 4 or 6). When hundreds of 
channels are available, such as in [4], then a pre-merging of 
channels in larger ones is recommended, depending on the 
noise level. In any cases, step2 (i.e. equation (8)) is linear and 

its inversion easier and better conditioned than the inversion of 
equation (5). 

III. RESULTS

A. Spectral measurement 
Let us consider the previous measurement mesk for 100mm 

of POM, acquired with the detector presented in §IIA (1keV 
width bins), a 140 kV tube spectra. The spectral vector 
corresponding to one pixel detector is processed by our 
algorithm. Result after 20 iterations is presented in Fig.4-left. 
Similar computation in Fig4_right for l=250mm. Noise is 
represented by its 10% and 90% quantiles. We can notice a 
slight increase of noise, but in both cases the resulting curve 
(“corrected”) has converged to the “linear” curve in a few 
iterations. 

'	�
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Thickness l=100 mm Thickness l=250 mm
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(c
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Fig. 4.  Measured attenuation (length-normalized) and resulting linear 
attenuation lin

katt after 20 iterations for two thicknesses: 100 mm (left) and 
250 mm (right). Here NC=NE=120 (full spectral detector).

B. Spectral radiography 
In this example, we simulated a wedge made of water (20, 60, 
120 and 180mm thick steps) with small bone cylinders upon 
the steps.  
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Fig. 5.  (a) measured spectral image, (b) after linearization, (c) true 
thicknesses, (d) profiles on image (a-red) and (b-blue), both normalized by (c). 
(e) vector along energy axis, before and after linearization, at pixel noted “x” 
on the image.
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In Fig.5, (b) is the result of the linearization of (a). (d) shows 
profiles on (a) and (b), but after normalization by the true 
water thickness (c). Non linearity, visible on the measured 
image (material steps can be distinguished) has disappeared 
thanks to linearization. (e) curves are similar to Fig.4. ones, at 
the image location pointed by the “x” mark. 

C. Spectral CT  
Using our simulation software, we simulate a cylinder made of 
water, diameter 15cm. Scanner geometry is used. Here we 
used NE=90, NC = 30, NB=2. Standard analytical 
reconstruction is performed on each energy channels, before 
and after the linearization. Fig. 6 shows the reconstructed 
volume for the 30keV channel with and without the proposed 
linearization. Corresponding profiles are shown on Fig 8, left. 
The same object with two aluminum inclusions is presented in 
Fig.7. Here the energy channel is around 40keV. Slight noise 
was added. Corresponding profiles are shown on Fig 8, right. 

Fig. 6.  Reconstruction of 15cm diameter cylinder, without (left) and with 
(right) linearization. Standard FBP is applied on linearized data. Energy 
30keV. Noise free.

Fig. 7.  Reconstruction of 15cm diameter cylinder with aluminum 
inclusions, without (left) and with (right) linearization. Standard FBP is 
applied on linearized data. Energy 40 keV.
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Fig. 8.  Horizontal profiles on cylinder of Fig.5 (left) and Vertical ones on 
cylinder of Fig.6 (right). For both, blue (resp. orange) profile is before (resp. 
after) linearization. 

IV. DISCUSSION AND CONCLUSIONS

We propose a iterative method to find a linear approximation 
of non-linear energy-dependent attenuation coefficient with 
very encouraging results on simulation examples. We do not
try to estimate the theoretical attenuation, i.e. the physical 
value, which would be a complete inversion of the system 
response. The principle is to estimate a linear value, thus 
assuring artifact removal. The provided value depends on the 
system but that can be robustly calibrated because it no more 
depends on location inside object.
For this work we assume that the flux is sufficiently low to 
avoid pile-up phenomenon. We also consider collimated 
geometry to be allowed to neglect scatter radiation.  
Additional studies are currently addressed, especially 
concerning noise behavior, and optimization of the number of 
energy channels. Future works will concern regularization. 
Also an integration into a reconstruction algorithm is 
envisaged. In the current version, it is be usable both in 
radiography and CT, with any number of energy bins 
depending on the detector used. Experimental tests will be 
conducted, with a detector prototype permitting a lot of 
possible bins configurations. 

APPENDIX

We used the following approximation: 
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Material-Based Scatter Correction for Computed 
Tomography 

Xue Rui*, Yannan Jin, and Peter M. Edic 

 
1Abstract— Scatter in computed tomography (CT) 

measurements can result in bias of the Hounsfield Unit (HU) 
values in the reconstructed images. This effect cannot be ignored 
especially with wider collimation configurations and larger 
patient size. For dual-energy CT, the impact of scatter needs to 
be studied carefully to avoid bias in the quantitative estimates of 
the contrast agent concentration. Previous studies for scatter 
correction were derived from a physics-based model and fitted 
with measurement data. However, this approach is limited to an 
object that contains a single, homogenous material. The accuracy 
degrades in the presence of high-Z (high atomic number) 
materials like bone or iodine. Our proposed approach accounts 
for these materials by utilizing the basis material path lengths 
after material decomposition (MD) of dual-energy projection 
data.  The scatter model we developed is not only dependent on 
the detected X-ray intensity but also material path lengths 
acquired from the MD process. This scatter model is more 
accurate, especially for an object containing high-Z materials. 
This leads to more quantitative CT numbers (HU values) in the 
final dual-energy images (density images and monochromatic 
images). 

Keywords—Computed Tomography, Contrast Imaging, Cardiac 
Imaging, Dual Energy, Scatter Correction. 

I. INTRODUCTION  
Coronary artery disease (CAD) is the leading cause of 

morbidity and mortality in the United States, accounting for 
more than $500 billion in costs annually in the U.S. [1]. 
Coronary CT angiography (CCTA) is an emerging test that 
evaluates CAD by direct anatomic visualization of stenoses to 
identify individuals who may benefit for invasive coronary 
angiography (ICA) [2]. Nevertheless, previous studies [3] have 
demonstrated that angiographic methods alone are sometimes 
deficient in identifying stenoses that cause ischemia. One novel 
approach to improve the physiologic assessment of CAD is to 
utilize the dual-energy CT (DECT) and DECT perfusion 
(DECTP) [4] to augment anatomic CCTA with surrogates of 
blood volume to provide a physiological measure of ischemia. 

Dual-energy CT differentiates and classifies materials by 
utilizing data acquired using two different energy spectra. The 
two main categories of dual-energy CT technologies available 

                                                           
1 Xue Rui and Yannan Jin are researchers with the Image Reconstruction 
Laboratory, GE Global Research, Niskayuna, NY. Peter M. Edic is a Principal 
Engineer in the CT, X-ray and Functional Imaging Organization at GE Global 
Research, Niskayuna, NY. 

 

today are projection-based approaches [5-9] and image-based 
approaches [10-12]. Projection-based dual-energy CT 
incorporates energy-dependent models for basis material 
decomposition (MD) within tissue, and properly removes the 
beam-hardening effect for both water and high-Z (high atomic 
number) materials such as bone and contrast agents.  However, 
the performance of cardiac DECT can be further improved to 
provide quantitative estimates of iodine density in the 
myocardium using CT perfusion techniques. The basis material 
images generated as a result of projection-based material 
decomposition is only the first step towards the quantitative 
estimation of the distribution of the iodine density in the 
myocardium – a surrogate for blood volume. The proper 
correction of other physical effects, especially scatter, also 
plays an important role. 

Scatter correction is crucial for Hounsfield Unit (HU) 
accuracy and has been intensively studied for many years [13-
16]. One solution is a forward-scatter convolution model which 
estimates the scatter intensity based on the measured data in 
the projection domain [13]. This fast and efficient approach has 
utility for clinical CT scanning, but it is based on the 
assumption that the object comprises a homogeneous material 
(e.g. water). In cardiac CT, a more accurate model is required 
to generate quantitative, physiologically-relevant distributions 
of absolute iodine density within myocardial tissue. The impact 
of scatter in energy-resolved CT has been studied by Wiegert 
et al., which is based on Monte Carlo simulation; they report 
on the bias in material decomposition accuracy [17]. In this 
study, we propose to utilize the material decomposition results 
of projection-based dual-energy CT as input for scatter 
correction and develop a scatter correction model that is 
adaptive for different materials. 

II. MATERIAL AND METHOD 
The proposed scatter correction algorithm incorporating 

material information is shown in a flowchart in Figure 1. We 
selected water and iodine as the basis materials.  An initial 
scatter correction algorithm based on the assumption that the 
object contains a homogeneous material is used to correct the 
scatter in the high- and low-energy sinograms,  and , 
respectively.  A polynomial-based material decomposition 
process is performed to obtain the water and iodine sinograms,  

 and  respectively, which includes beam-hardening 
correction. The material-specific information is then input into 
the proposed scatter model to estimate the scatter intensity in 
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the high- and low-energy sinograms separately. The scatter 
intensity is then removed from the measurement signal. The 
corrected high- and low-energy sinograms are again used for 
more accurate material decomposition and subsequent 
reconstruction.   

A forward scatter model based on the measured X-ray 
intensity and the line integral of the linear attenuation 
coefficeint can be used to estimate the scatter intensity. For a 
single material, the scatter intensity produced by a pencil beam 
can be modeled as [13], 

  
where,  is the scatter intensity,  is a constant which 

depends on the scatter cross section and system gain,  is the 
intensity of the X-rays incident on the detector in the absence 
of an object,  is the measured intensity of the corresponding 
projection ray with an object present,  and  are the 
parameters that can be tuned according to measurements to 
control the power of the intensity and the projection value.  

To incorporate the material information into the scatter 
model, for each projection ray, the line integrals of the density 
distribution for each basis materials are used, which in our 
analysis, are the water projection value  and the iodine 
projection value . The ratio of the iodine and water 
projection values, which reflects the amount of high-Z material 
in the projection path, is utilized to modulate the power of the 
intensity and the total projection value contributions to the 
scatter estimate. Therefore, the scatter intensity can be 
calculated as,  

  
where, ,  and  are the parameters that can be 

tuned separately according to the measurements from a given 
CT system for a given imaging application – cardiac CT, in 
this case.  

The total scatter intensity distribution generated by the 
object includes all projection rays and can be calculated by 
convolving the scatter from each projection ray with a 
smoothing kernel, which incorporates knowledge about the 
frequency content in the scatter profile. In our analysis, a 

Gaussian convolution kernel  is used for this purpose.  
 

The estimated scatter signal incorporating the material-
specific information is used to correct the high- and low-
energy sinograms. The material decomposition process is 
performed to generate the images for each basis material. 
Monochromatic images can be generated from the improved 
basis material density estimates for a selected energy.    

III. Phantom Measurement 
We assessed the impact of scatter on the fidelity of 

reconstructed HU value. The anthropomorphic phantom 
selected for this investigation includes a heart model (Gammex 
Inc., Middleton, WI) inserted into a thorax phantom (QRM-
Thorax, QRM GmbH, Germany) which is surrounded by a 
large patient ring in order to model large patients, increasing 
the amount of the scatter signal in the measurement data. The 
heart model comprises regions with differing nominal values of 
iodine density: (A) myocardium – 5 mg I/mL, (B) perfusion 
deficit – 2.5 mg I/mL, (C) aorta – 17.5 mg I/mL, and (D) left 
ventricle – 17.5 mg I/mL.  

Phantoms were scanned at GE Global Research on a 
clinical CT scanner (LightSpeed VCT, GE Healthcare, 
Waukesha, WI). The dual-energy scan data were acquired in a 
rotate-rotate acquisition mode: two scans at two different 
operating voltages of the X-ray tube (80kVp/140kVp) were 
taken sequentially. The projection data were angularly aligned 
before applying projection-based material decomposition. To 
evaluate the impact of the scatter, each phantom was scanned 
using two different collimation settings: 5 mm and 40 mm. The 
scatter intensity approximately increases linearly with 

Figure 1. Scatter correction scheme for dual energy CT using material-specific information.   

The 4th International Conference on Image Formation in X-Ray Computed Tomography

528



increasing collimation. For 40 mm collimation, significant 
scatter is expected in the measurement. The 5 mm collimation 
measurement is used as a reference image with minimal 
amount of scatter. All of the scans were performed at 500 mA 
with 984 views per rotation. Here we want to make it clear that 
the phantom we measured is stationary, and there is no cardiac 
motion in our measurement. Figure 2 shows the heart model 
with different regional inserts with differing iodine 
concentration, and the phantom used for data acquisition.  The 
aorta was positioned within the heart model so as to fit within 
the 10 cm cylindrical open region in the thorax phantom. 

 
Figure 2. Anthropomorphic Phantom Configuration. Phantom configuration 
includes:  heart inserts and a thorax with a large patient ring. The heart model 
contains regions of interest with various iodine concentrations: (A) 
myocardium – 5 mg I/mL, (B) perfusion deficit - 2.5 mg I/mL, (C) aorta – 
17.5 mg I/mL, and (D) left ventricle – 17.5 mg I/mL.  

We selected three regions of interest (ROIs) in the heart 
model of the phantom which have different iodine 
concentrations to assess the accuracy of the HU values in the 
reconstructed monochromatic images. The ROI selection is 
shown in Figure 3. ROI 1 and 2 are located in the regions with 
high concentration of iodine contrast agent (17.5 mg I/mL), 
aorta and left ventricle models, respectively. ROI 3 is allocated 
at the location of a perfusion deficit with relatively lower 
iodine concentration (2.5 mg I/mL).  

 
Figure 3. Region-of-interest location within for the heart insert. ROI 1, 2 and 
3 correspond to the aorta region, the  left ventricle region, and the perfusion 
deficit, respectively.  

IV. RESULTS AND DISCUSSION 
The scatter correction algorithm was implemented and the 

model tuned using the data acquired on the clinical CT system. 
The phantom measurement with 5-mm collimation was used as 
the reference image with minimal scatter signal. The “ground 
truth” scatter profile is obtained by taking the difference 
between the measurement from 40 mm collimation and the 5 
mm collimation data. The scatter model is tuned according to 

the “ground truth” scatter intensity.  The parameters used in the 
results reported in the study are as following: 

 
 

. 
 Figure 4 shows the scatter profile estimated by the proposed 
scatter correction algorithm for low-energy scan at a tube 
voltage of 80 kVp.  

 
Figure 4. The scatter intensiy estimated by the proposed scatter correction 
algorithm for low-energy (80 kVp) scan. 

Figure 5 shows the central slice of the reconstructed 
monochromatic images at 70 keV for the data acquired at 40 
mm collimation with scatter correction. The reference image 
for the data acquired at 5-mm collimation is also shown for 
comparison. No obvious shading artifact is observed for the 
scatter corrected image. 

 
Figure 5. Recontructed monochromatic images at 70 keV. The images show 
the central slice of the reconstructed image volume with a display [window, 
level] of [600, 1400] HU. Image A is the scatter-corrected image of the 
measurement taken with 40-mm collimation. Image B is the reference image 
of the measurement taken with 5 mm collimation.  

We also implemented the scatter correction algorithm 
reported in [13] for homogenous material. We used the 
parameters reported in the reference with  and . 
The constant was tuned according to our measurement with 
the value of 0.013. Monochromatic images at 70 keV were 
generated for (1) uncorrected data, (2) the scatter correction 
model proposed in [13] for single material, and (3) the 
proposed scatter correction model. Quantitative ROI 
measurements on the monochromatic images were recorded 
and compared to the reference images with 5 mm collimation.  

The bias of the quantitative ROI measurements is reported 
in Figure 6. For ROI regions 1 and 2 with high iodine 
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concentration, the uncorrected data has significant negative 
bias due to the scatter. With a single-material scatter correction 
algorithm, the accuracy of the HU value is improved for these 
regions. With the proposed scatter correction algorithm, the 
accuracy of the measurement in the region of high iodine 
concentration is further improved. There is slightly over-
correction for ROI 2. For the deficit region (ROI 3), there is 
slight improvement of the HU accuracy with the proposed 
method, mostly because the iodine concentration for this 
region is the lowest in our heart insert, and the proposed scatter 
correction algorithm has minimal impact for this region when 
considering the full 360o acquisition. The accurate modeling of 
the scatter required more than just the material information.  

 
Figure 6. The bias of the ROI measurement for (1) uncorrected data, (2) the 
data corrected by a single-material scatter correction algorithm, and (3) the 
data corrected by the proposed scatter correction algorithm.  

V. CONCLUSION  
We developed and implemented a material-specific scatter 

correction model for dual-energy CT. Previous research efforts 
for scatter correction were derived from a physics-based 
model. However, this approach is limited to an object that 
contains a single, homogenous material. The accuracy 
degrades in the presence of high-Z materials like bone or 
iodine. Our approach estimates the scatter profile from 
projection data, the measured X-ray intensity, as well as the 
material-specific path lengths. We demonstrated that we can 
improve the HU accuracy significantly after incorporating the 
material-specific information in the scatter model, using our 
heart phantom. To further improve the accuracy of the scatter 
model, more measurements for better tuning of the algorithm 
will be performed. More sophisticated scatter models can also 
be developed to better address the scatter caused by different 
materials within the X-ray beam. The phantom we measured 
does not have any cardiac motion; for clinical imaging, 
simultaneous sampling can be employed where patient and 
involuntary organ motion is present.  
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Abstract— CT scanners are deployed world-wide to detect 
explosives in checked baggage. While similar to single- and dual-
energy multi-slice CT scanners used today in medical imaging, 
some recently developed explosives detection scanners employ 
multiple sources and detector arrays to eliminate the mechanical 
rotation of a gantry, provide photon counting detectors for 
spectral imaging, and produce limited number of views to reduce 
cost. For each bag scan, the resulting reconstructed images are 
automatically processed by threat detection algorithms to screen 
for explosives and other threats. Human operators review the 
images only when these automated algorithms report the 
presence of possible threats. The US Department of Homeland 
Security (DHS) has requirements for future scanners that include 
dealing with a larger number of threats, higher probability of 
detection, lower false alarm rates and lower operating costs.  One 
tactic that DHS is pursuing to achieve these requirements is to 
augment the capabilities of the established security vendors with 
third-party algorithm developers.  A third-party in this context 
refers to academics, national laboratories, and companies other 
than the established vendors.  DHS is particularly interested in 
exploring the model that has been used very successfully by the 
medical imaging industry, in which university researchers 
develop algorithms that are eventually deployed in commercial 
medical imaging equipment.  The purpose of this presentation is 
to discuss opportunities for third-parties to develop advanced 
reconstruction algorithms using publically available databases.

Index Terms— Explosive detection, aviation security, CT, 
reconstruction algorithms, automated threat detection.

I. INTRODUCTION

HE use of advanced reconstruction technologies may soon 
enable airports to detect more explosive threats and 
reduce the costs associated with explosives detection. 

Explosives detection imaging systems based on computed 
tomography (CT), a technology that is commonly used in 
nondestructive evaluation, medical imaging as well as 
baggage screening, uses algorithmic schemes to produce 
images of baggage and to apply automated threat detection 
algorithms to these images to determine if threats are present 
in baggage.

Harry Martz is the director of the Nondestructive Characterization Institute 
with the Lawrence Livermore National Laboratory, Livermore, CA 
(martz2@llnl.gov).

John Beaty is the director of technology development at the ALERT DHS 
Center of Excellence at Northeastern University, Boston, MA 
(J.Beaty@neu.edu).

The Department of Homeland Security (DHS) Science and 
Technology (S&T) [1] Center of Excellence [2] for Awareness 
and Localization of Explosives-Related Threats (ALERT) [3]
at Northeastern University engaged scientists in 
nondestructive evaluation, security and the medical fields
from academia, industry and national laboratories to work 
with vendors on developing new reconstruction, segmentation 
and automated target recognition (ATR) algorithms. As a first 
step, datasets and metrics in the public domain were used. At 
least one method was assessed as promising and is currently 
being integrated with a commercial product. 

The medical imaging field has used academic research to 
significantly improve medical imaging equipment. Following 
this model, the participants at the Advanced Development for 
Security Applications (ADSA) [4] workshops convened by 
ALERT showed that third-party party researchers could 
develop applicable reconstruction algorithms using 
unclassified data obtained by scanning objects containing 
benign materials such as saline, rubber and clay on medical 
CT scanners [5]. Tests based on image and detection metrics 
were developed to assess reconstruction performance in lieu of 
taking more expensive and restricted government tests [6].

A sample of the reduction of artifacts in an original (left) 
and new (right) image is shown in this figure [6].

The tests also demonstrate the improved performance 
because the detection features have been compacted from the 
original images (left) to the improved images (right) [6].

The advanced reconstruction methods may allow for the 
following: (1) detecting a larger population of threats with 
lower masses and thinner thicknesses; (2) reducing labor costs 

Explosive Detection in Aviation Security Using 
CT: Advanced Reconstruction Algorithms and 

Publically Available Datasets 
Harry E. Martz, Jr., and John Beaty
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associated with resolving false alarms; and (3) enabling CT to 
be deployed at the checkpoint and for cargo inspection.

In addition to the researchers who worked on this project,
other researchers may use the publically available dataset and 
metrics to develop improved algorithms by building on the 
research performed by this project.
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Whitening transform based noise reduction for 
spectral CT  
Yan Liu and Zhou Yu  

 
��Abstract – Independent basis material image denoising in 

spectral computed tomography (CT) has been found insufficient 
due to strong noise correlations between different bases.  To 
account for the correlations, one common approach is to model an 
accurate covariance matrix in a cost function and solve the 
corresponding optimization problem.  However, directly solving 
such a problem often requires an accurate covariance model and 
could be difficult for parameter optimization.  To mitigate these 
drawbacks, we proposed an alternate solution by using a 
whitening transform.  In the presented method, firstly, the noisy 
basis images were decorrelated by whitening transform.  Then an 
independent denoising method was applied in the whitening 
domain for noise reduction. Finally, the denoised basis images 
were calculated by the inverse whitening transform.  Since the 
whitening transform decorrelates a joint denoising problem into 
independent denoising problems which can be handled easily, the 
denoising efficiency is improved. The preliminary results show 
that the proposed method can yield lower noise images at a fixed 
bias and resolution level as compared to the conventional 
independent basis image denoising techniques.  Moreover, the 
results also indicate that denoising parameters selection in 
whitening basis are more intuitive than in the material basis. 

 
Index Terms – spectral CT, denoising, whitening transform, 

correlations. 

I. INTRODUCTION 

pectral computed tomography has enabled in many clinical 
applications such as kidney stone classification, renal 

lesion diagnosis and tumor detection etc. [1]  Since spectral 
CT relies on multiple acquisitions from different energy 
spectrums, without increasing the overall radiation dose the 
SNR for each energy spectrum can be reduced  Up to now, 
various image processing and reconstruction methods with 
noise suppression capability have been investigated to reduce 
spectral CT noise.  As one of the major strategies, restoring the 
poly-energetic measurements from different energy 
acquisitions has been explored. For example: E. Roessl and R. 
Proksa investigated a method to denoise the energy-resolved 
projection data for improving the SNR [2]. H. Bruder, et al 
proposed a frequency blending technique for both low and 
high energy image denoising [3]. One drawback of these 
methods would be the noise levels and noise textures in final 
basis images or mono-energetic images are not predictable due 
to the reconstruction and decomposition.  

Another major strategy, which could be applied for spectral 
CT noise reduction, is to apply an image restoration in mono-
energetic images.  For example, J. Fan, et al proposed a mono-
energetic image based denoising method to suppress the basis 
material image noise at two selected keVs [4]. Although this 

                                                           
Y. Liu and Z. Yu are with the Toshiba Medical Research Institute USA, 

Vernon Hills, IL, 60061 USA  

method can reduce the mono-energetic image noise, the 
drawback of this framework is that the noise of two selected 
mono-energetic images are correlated.  Therefore, this method 
might not be an optimal solution. 

The third strategy for spectral CT noise reduction is to apply 
restoration or reconstruction techniques in decomposed 
material basis. Specifically, in the spectral CT, the attenuation 
coefficient of each pixel can be expressed as a linear 
combination of different material attenuations, that is: 

1

( , , ) ( , , ) ( , )
M

i i
i

E x y E x y c x y� �
�

8 � ,             (1) 

where ( , , )i E x y�  are the energy dependent attenuation 
coefficients for ith basis materials at indices ( , )x y , 

( , )ic x y denotes the pixel value of different basis images at 
indices ( , )x y , M is the number of energies.  Unlike the first 
and second strategies, instead of reducing poly-energetic 
images or mono-energetic image noise, this strategy 
suppresses the noise of decomposed basis material images.   
However, the inverse of Eq. 1, which is also called material 
decomposition, indicates strong noise correlations between 
different basis materials images are introduced during the 
material decomposition procedure.  To compensate this 
correlated noise and improve the image quality, one common 
strategy is to model an accurate covariance matrix in a cost 
function and solve optimization problem. For example, many 
iterative reconstruction methods have been proposed to 
include the noise covariance model in a cost function [5, 6, 7] 
and use joint regularizations for image quality control [8].  
However, solving such correlated optimization problems often 
requires time consuming optimization algorithms. 

In this paper, to overcome the drawbacks and limitations 
mentioned above, we proposed a novel spectral CT denoising 
method by using whitening transform.  In our method, the 
poly-energetic sinograms were firstly decomposed to basis 
material sinograms and reconstructed by FBP algorithm. Then 
a whitening transform followed by an independent noise 
reduction method was applied to the reconstructed basis 
material images for noise reduction in whitening domain. 
Finally, the inverse whitening transformation was applied to 
transform the denoised whitening domain images to basis 
material images. As compared to other methods mentioned 
above, two major advantages have been found: 1) the noise 
reduction in whitening domain is more efficient than in basis 
material domain; 2) since the whitening transform can 
decorrelate noise and represents the desired images on 
orthonormal basis, the denoising parameters selection are more 
intuitive as compared to the other techniques.  

S 
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The reminder of this paper is organized as follows. Section 
2 briefly reviews the general whitening transform concept, 
covariance estimation and denoising algorithm. Section 3 
presents the experimental results. Finally, discussion and 
conclusion are given in Section 4.  

II. METHODS 

A. Whiting transform 
The eigenvalue decomposition of noise covariance matrix 

iy9 can be represented as: 

,
iy9 : � :;                                      (2) 

where matrix :  is a square matrix, whose ith column is the 
eigenvector of covariance matrix, ; is a diagonal matrix whose 
diagonal elements are the corresponding eigenvalues.  The 
whitening transform matrix can be represented by: 

1/2 ,TW �� ; :                                  (3) 
Applying the whitening transform W to basis images can 
decorrelate noise and transform basis images to a new 
orthonormal basis. Since the noise in whitening domain is 
independent, it can be reduced seperately.   
 
B. Covariance matrix estimation  

According to our previous publication in [8], the noise 
covariance matrix of basis material sinograms can be 
accurately calculated.  However, the derivation of the noise 
covariance of basis images would be complicated and relies on 
reconstruction algorithms. Although it might be possible to 
estimate an image covariance with known reconstruction 
technique, the accurate covariance derivation is beyond the 
scope of this study.  In this study, instead of deriving the 
analytic expressions of the image space covariance matrix, we 
assume the covariance is shift invariant and can be 
approximately estimated from local image patches selected 
from uniform areas. The results indicated this approximation 
works properly for noise reduction. 

C. Denoising algorithm 
Since the whitening transform can decorrelate a joint 

denoising problem into several independent denoising 
problems and the covariance matrix 1

f̂
�� becomes an identity 

matrix in whitening domain, many denoising filters or 
algorithms can be used to suppress image noise in whitening 
domain. For example, we can use spatial filters or frequency 
filters with low pass capability to suppress high frequency 
noise. In this study, we use a penalized weighted least squares 
(PWLS) method for iterative image denoising. The general 
cost function for PWLS can be represented as: 

1
ˆ

1 ˆ ˆmin ( ) ( ) ( )
2

T
ff f f f R f��� � � 
                  (4) 

where f̂ is the input noisy image, f is the desired noise-free 

image, 1
f̂
�� is the inverse covariance matrix of the noisy 

image, � is a regularization parameter to control the denoising 
strength, ( )R f  denotes the regularizers.  In this study, without 

loss of generality, we use an isotropic quadratic regularization 
for whitening domain denoising.  Finally, the denoised basis 
material images were calculated by inverse whitening 
transform. 

III. RESULTS 

A. Image acquisitions 
A dual-energy phantom data was acquired at 80 and 135 

kVp. The tube current was set to 400 and 100mAs respectively 
to match the total dose. The sinogram space material 
decomposition method [9] followed by filter-back projection 
reconstruction were applied to generate water and bone basis 
material images.  

B. Visual comparison 
The denoised 50keV, 75keV and 135keV mono-energetic 

zoom-in images are shown in Fig. 1. The conventional 
independent basis material based denoising results at matched 
resolution level are also showed for comparison purpose. From 
the resulting images we can observe that both whitening 
transform based denoising method and independent basis 
material based denoising method can reduce image noise at 
three keV levels.  In addition, in 50 keV and 135keV case, the 
whitening transform results have better image quality in terms 
of lower noise as compared to the independent basis material 
denoising results. 

    Noisy         WTD            BMD 
 
 
 
 
  
 

      

          
Fig. 1. The visual comparison between the noisy images (left column), 
whitening transform based denoising (WTD) images (middle column) and 
independent basis material based denoising (BMD) images (right column). 

C. Quantitative comparison 
To quantify the image quality improvements as compared to 

the conventional independent basis material based image 
denoising method, we calculated the standard deviation of 
selected ROI (as indicated in Fig. 1) at matched resolution 
scenario. The profiles go across the same inserts as indicated 
in Fig. 1 were plotted in Fig.2 to confirm the images 
resolutions.  
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Fig. 2. The profiles of the insert at (a) 50 keV, (b) 75 keV and (c) 135 keV. 
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Fig. 3. The standard deviation versus keV curve in the clinically relevant 
diagnostic energy range (40keV – 140keV). 

The standard deviation versus keV curves were ploted in 
Fig. 3. From the curve we can observe inmatched resolution 
scenario, the whitening transform denoied image have lower 
noise as compared to basis material denoised images at higher 
and lower keV levels.  

D. Denoising parameters study 
In general, the image noise are monotonically decreased as 

we increase the regularization strength in conventional CT 
denoising or reconstruction.  However, this assumption might 
not be true for spectral CT. To validate this hypothesis, we 
fixed the water basis denoising regularization strength and 
gradually increased the bone basis denoising regularization 
strength. Table 1 shows the standard deviation of the selected 
ROI at 75 keV. From Table 1 we can observe the 75 keV 
image noise was decreased until β=18 and gradually increased 
as we continued to increase the regularization strength of bone 
basis.  
 
Table 1. The STD of mono-energetic image at 75keV at fixed water basis 
regularization strength 

bone�   3 6 18 54 108 

75keV STD 65.847 37.896 14.212 25.247 34.320 
 
The non-monotonic noise trend in Table 1 can be explained 

by Fig.4.  In this figure, the noisy basis coefficients at uniform 
area are plotted by blue dots and the denoised basis 
coefficients are plotted by red dots, black dash line was drawn 
along 75keV direction. The image noise at 75keV can be 
quantified by projecting the dots cloud to the dash line, as 
shown by the black solid line. From the figure we can observe 
as we increased the bone basis regularization strength, the 
denoised coefficients cloud was rotated and compressed along 
bone direction. The projection length (i.e., black solid line) 
along 75 keV direction was decreased until reaching the 
“minimum point” and then increased as we continued to 
“rotate” the coefficients cloud. Therefore the noise of the 
mono-energetic image would not be monotonically decreased. 
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Fig. 4. The basis material coefficients covariance clouds at fixed 
regularization strength in water basis. The regularization strength in bone 
basis are (a) 3bone� � ; (b) 18bone� � ; (c) 108bone� � . 
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Fig. 5. The basis material coefficients covariance clouds for proposed 
Whitening transform based denoising algorithm. (a) Denoising along the long 
axis (one direction of eigenvectors). (b) Denoising along the short axis 
(another direction of eigevecotrs). (c)  Denoising along both directions. 

In contrast to the conventional independent basis material 
image denoising method mentioned above, the proposed 
whitening transform method can decorrelate the noise 
covariance and the denoise strength always consistent with the 
eigenvectors’ directions. Figure 5 shows an example for 
coefficients changes for the proposed whitening transform 
based denoising. Since the denoising strengths are always 
consistent with the long and short axis orthogonal directions, 
the image noise are always monotonically decreased as we 
increased regularization strength. In addition, the resulting 
images show better textures as compared to the basis material 
denoising method.  

In addition to the advantage mentioned above, another 
benefit of suppressing image noise along orthogonal direction 
is that the noise level of the mono-energetic images are easier 
to be controlled as compared to other techniques mentioned in 
the introduction section.  By giving different denoising 
strength to different whitening basis, the trend of noise versus 
keV curve can be controlled. For example, in figure 6, we 
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observe the noisy images have higher noise at 40 and 140 keV 
and lower noise at 70 keV.  To maintain the image quality at 
70 keV and reduce noise at 40 and 140 keV, strong denoising 
strength was applied in long axis direction (one of whitening 
transformation basis which has higher image noise)  as shown 
in Fig. 5 (a). The benefit is that the image noise at 40 and 140 
keV can be reduced without affecting the image quality at 70 
keV, as shown by the green curve in Fig. 6.  If we want to 
reduce the overall image noise (blue curve in Fig. 6), the noise 
should be suppressed on all whitening transformation bases as 
shown in Fig. 5(c). The flatness of the noise versus keV curve 
can be controlled by giving different denoising strength to 
different whitening basis, as shown by the red and blue curve 
in Fig. 6.  
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Fig. 6. The standard deviation versus keV curve in the clinically relevant 
diagnostic energy range (40keV – 140keV). 

IV. DISCUSSION AND CONCLUSION  
In this paper, we proposed a whitening transform based 

denoising method for spectral CT.  The results show the 
proposed method can efficiently suppress image noise as 
compared to the conventional independent basis image 
denoising technique. In image quality comparison study, we 
fixed the image resolution and compared the noise level in the 
clinically relevant diagnostic energy range (40keV – 140keV). 
We found the proposed method can achieve up to 80% noise 
reduction. In addition, we demonstrated the regularization 
parameters at different whitening transform basis can control 
the minimum noise level (at around 75 keV) and the flatness of 
the noise versus keV curve. Since many spectral CT clinical 
applications rely on mono-energetic images for diagnosis, the 
proposed method can provide consistent mono-energetic 
image qualities at all keV levels.  Our future work will include 
designing advanced denoising filters such as edge persevering 
regularizers for whitening transform denoising.  
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Accelerated Parallel and Distributed
Iterative Coordinate Descent (ICD) for X-ray CT

Madison G. McGaffin Jeffrey A. Fessler
Dept. of Electrical Engineering and Computer Science, University of Michigan

Abstract—This paper describes a new distributed algorithm for
accelerating model-based image reconstruction in X-ray CT using
iterated coordinate descent (ICD). The key novel component is a
majorizer whose Hessian involves a block-diagonal matrix with
triangular blocks (BDTriB). The resulting majorize-minimize
algorithm combines aspects of ICD and the distributed block-
separable surrogates (DBSS) algorithm for CT reconstruction [1].
Unlike traditional ICD, the proposed algorithm is also amenable
to acceleration using Nesterov’s momentum [2] and the optimized
gradient method (OGM) [3]. A simple preliminary experiment
indicates potential for significant acceleration over traditional
ICD and promising performance for distributed computing.

I. INTRODUCTION

Model-based image reconstruction (MBIR) in X-ray CT
may improve image quality over direct reconstruction methods
like filtered backprojection, but long reconstruction times
impede widespread clinical use. Accelerating model-based re-
constructions involves improving the mathematical structure of
the numerical optimization algorithms [3], [4] and exploiting
both modern hardware [5], [6] and distributed computing [1],
[7]. This paper describes a parallelizable version of ICD.

Consider the following penalized weighted least-squares
(PWLS) image reconstruction problem [8]:

x̂ = argmin
x≥0

Ψ(x), Ψ(x) = L(Ax) + R(Cx), (1)

with CT system matrix A ∈ RM×N , finite differences matrix
C ∈ RK×N , and data-fit and regularizer terms L and R:

L(p) =
M∑
i=1

wi

2
(pi − yi)

2
, R(d) =

K∑
k=1

βkψ(dk), (2)

with nonnegative statistical weights {wi} and regularization
parameters {βk}, where {yi} denotes the measured sinogram
(log) data. We assume the convex potential function ψ is
smooth with bounded curvature.

Suppose that we have B compute nodes that communicate
via some interconnect; e.g., multiple GPUs or processors on
a single computer or multiple computers connected by a
network. Data communication over this interconnect typically
is slower than communication and computation within each
node. Accordingly, we solve (1) by finding a majorizer con-
sisting of a sum of B components that we minimize in parallel
and then communicate the results to update the image x.

Supported in part by NIH grant U01 EB018753 and Intel equipment
donations. Email: {mcgaffin | fessler}@umich.edu .

II. METHODS

The proposed method combines the distributed block-
separable surrogate (DBSS) [1] in a majorize-minimize (MM)
framework [9] using a form of ICD for the inner minimizations
and momentum for acceleration [2], [3].

A. Distributed block-separable surrogates

We start with a majorizer based on the distributed block-
separable surrogate (DBSS) [1]. We partition the image x
into B blocks, {xb}, i.e., x = (x1, . . . ,xB), typically by
axial slabs. The corresponding components of the CT system
matrix A and the finite differencing matrix C are {Ab} and
{Cb}, respectively, where, e.g., A = [A1, . . . ,AB ] and Ab is
the submatrix of A having columns correspond to the pixels
in xb. During each outer iteration, each computational node
updates one of these sub-images, after which the sub-images
are communicated between blocks.

In each outer iteration n, we form a block separable
surrogate Φ(n) as follows:

Φ(n)(x)� 1

2

∣∣∣∣∣∣x− x(n)
∣∣∣∣∣∣2
M

+
(
x− x(n)

)′
∇Ψ
(
x(n)

)
+Ψ

(
x(n)

)
, (3)

where the iteration-invariant, block-diagonal, N×N matrix M
majorizes the Hessian of the cost function, i.e., M � ∇2Ψ.
This is a tangent majorizer [9], i.e., it satisfies

Φ(n)
(
x(n)

)
= Ψ

(
x(n)

)
,

Φ(n)(x) ≥ Ψ(x) ∀x ≥ 0. (4)

Therefore, any x(n+1) that descends the surrogate Φ(n) will
also descend the original cost function Ψ. For the MBIR
problem (1), this property ensures convergence to x̂ [9].

The DBSS [1] has the block-diagonal Hessian
MDBSS � diag{MDBSS,b}, where

MDBSS,b �A′
bΛbWAb +C ′

bKbBCb,

W = diag
i
{wi}, B = diag

k

{
βk ·max

d
ψ′′(d)

}
, (5)

where Λb and Kb are determined by the partition of x:

Λb � diag
i

{
[A1]i
[Ab1]i

}
, Kb � diag

k

{
[|C|1]k
[|Cb|1]k

}
, (6)
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where |C| denotes the element-wise absolute value of C.
This majorizer is block-separable, i.e., it decomposes into B
independent functions over different groups of pixels {xb}:

Φ
(n)
DBSS(x) =

B∑
b=1

Φ
(n)
DBSS,b(xb), (7)

The DBSS algorithm descends each block surrogate Φ
(n)
DBSS,b

using ordered subsets with momentum acceleration (OS-
MOM) [1], [3].

B. Distributed iterated coordinate descent

The DBSS algorithm does not exactly minimize each block-
separable surrogate Φ

(n)
DBSS,b because that would require too

many inner iterations of OS-MOM to be practical. Although
merely descending each surrogate is sufficient to ensure
convergence, mere descent precludes using momentum-based
techniques to accelerate the outer iterations.

To design a majorizer for which ICD can perform exact min-
imization, we propose to further majorize the block-separable
matrix MDBSS with a block-diagonal matrix having (lower)
triangular blocks (BDTriB): D + T . We invert each of the
triangular blocks of the BDTriB matrix exactly simply using
back-substitution, i.e., one sweep of ICD. By a proof similar
to the one in [3], this design allows us to accelerate the outer
iterations using momentum.

For derivation (but not implementation), define the N ×N
block diagonal matrix T = diag{Tb} where each block Tb is
lower-triangular and defined as follows:

[Tb]ij =

{
[A′

bWAb +C ′
bBCb]ij , i ≥ j

0, else.
(8)

This definition retains the block structure of MDBSS. We
choose the diagonal matrix D such that for all z ∈ RN , the
following majorization condition holds:

z′(D + T )z = z′
(
D +

1

2
(T + T ′)

)
z ≥ z′MDBSSz. (9)

In particular, in each block we design diagonal Db such that:

z′
b

(
Db +

1

2
(Tb + T ′

b)

)
zb ≥ z′

bMDBSS,bzb. (10)

Expanding the definition of T (8), we design Db such that:

Db �MDBSS,b −
1

2
(Tb + T ′

b)

= A′
bΛbWAb +C ′

bKbBCb (11)

− 1

2
(A′

bWAb +C ′
bBCb +Gb)

= A′
bW

(
Λb −

1

2
I

)
Ab +C ′

bB

(
Kb −

1

2
I

)
Cb −

1

2
Gb,

(12)

where Gb contains the diagonal of A′
bWAb +C ′

bBCb. The
entries of Λb and Kb (6) are greater than or equal to unity if

nonzero. We majorize the nondiagonal terms in (12) with the
following “SQS-like” majorizer [10]:

DSQS,b � diag
{(

A′
bW

(
Λb −

1

2
I

)
Ab

+|Cb|′B
(
Kb −

1

2
I

)
|Cb|
)
1

}
. (13)

Thus, our final diagonal component for the bth block is

Db �DSQS,b −
1

2
Gb, (14)

which one can verify is nonnegative. Computing this majorizer
requires no more time than computing the diagonal majorizer
for the SQS-MOM inner step of the DBSS algorithm. In
other applications, e.g., phase-contrast CT, the gram matrix
A′ΛbA may have negative entries. In these cases, the SQS
majorizer (13) may be very loose or difficult to compute, and
one can use another technique to find a diagonal majorizer,
e.g., the memory-efficient algorithm in [11].

C. Minimizing the new surrogate

The new surrogate for the bth block is

Φ
(n)
b (xb) =

1

2

∣∣∣∣∣∣xb − x
(n)
b

∣∣∣∣∣∣2
Db+Tb

+ x′
b∇xb

Ψ
(
x(n)

)
. (15)

The matrix Db + Tb couples the entries of xb together, but
because it is lower triangular, we minimize Φ

(n)
b exactly using

back substitution with a nonnegativity constraint. That is, we
loop though each pixel xj of xb in a predetermined order and
for each pixel solve the 1D minimization problem

x
(n+1)
j = argmin

xj≥0

ωj

2

(
xj − x

(n)
j

)2
+ xjgj ,

= max
(
x
(n)
j − 1

ωj
gj , 0

)
, (16)

where

ωj �[D]jj + a′
jWaj + c′jBcj ,

gj �
[
∇R
(
x(n)

)]
j
+ a′

jW
(
r(n) + rb

)
+ c′jBCb

(
x
(n+)
b − x

(n)
b

)
,

r(n) �Ax(n) − y, rb �Ab

(
x
(n+)
b − x

(n)
b

)
, (17)

and aj and cj denote the jth columns of A and C, respec-
tively. The vector x

(n+)
b contains the state of xb after the all

the pixels before the jth pixel have been updated. Updating
the jth pixel involves:

• computing the column vectors aj and cj ;
• computing ωj and gj , which involves finite differences

(for the second term of gj) and inner products;
• solving the one-pixel update problem (16);
• and finally updating the residual buffer

rb ← rb + aj

(
x
(n+1)
j − x

(n)
j

)
. (18)

These are the same steps as ICD [12] applied to (7) with the
minor addition of the “relaxation” [D]jj in ωj .
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TABLE I
MOMENTUM-ACCELERATED DISTRIBUTED ICD ALGORITHMS

1) Distribute
{
x
(0)
b

}
to the B computational nodes, initialize z(0) =

x(0). Compute r(0) = Ax(0) − y and {Db} (14). Set t(0) = 1.
2) Loop outer iteration n = 1, . . . , Niter:

a) t(n+1) = 1
2

(
1 +

√
1 + 4

(
t(n)

)2)

b) In parallel for b = 1, . . . , B:
i) Minimize block surrogate (15) using ICD to compute

x
(n+1)
b .

ii) Momentum update:

No momentum : z(n+1)
b = x

(n+1)
b ,

FGM : z(n+1)
b = x

(n+1)
b + t(n)−1

t(n+1)

(
x
(n+1)
b − x

(n)
b

)
OGM : z(n+1)

b = x
(n+1)
b + t(n)−1

t(n+1)

(
x
(n+1)
b − x

(n)
b

)
+ t(n)

t(n+1)

(
x
(n+1)
b − z

(n)
b

)
c) Broadcast node residuals {rb} to compute r(n+1) and edge

slices of x(n+1)
b .

3) Output: z(Niter).

Between outer iterations, we synchronize the regularizer
gradient ∇R

(
x(n)

)
and residual r(n) = Ax(n) − y between

computational nodes. The latter needs no additional projec-
tions or backprojections because

r(n+1) − r(n) =

B∑
b=1

rb, (19)

so each node needs only to communicate residual updates {rb}
and edge voxels to compute ∇xb

R
(
x(n)

)
.

D. Momentum-based acceleration

In each outer iteration, the proposed algorithm forms and
exactly minimizes a block-separable quadratic surrogate for
the original cost function. This places the proposed algorithm
in the same category as iterative shrinkage and thresholding
(ISTA) and momentum-accelerated SQS algorithms. Thus, the
distributed ICD algorithm can be improved with momentum-
based acceleration e.g., Nesterov’s fast gradient methods
(FGM) [2] or the optimized gradient method (OGM) [13].
Table I summarizes these algorithms.

Traditional ICD methods are not in general amenable to
momentum-based acceleration [14]. For example, simply run-
ning ICD on the block-separable surrogate Φ

(n)
DBSS in (7) is

equivalent to the proposed algorithm with each Db = 0.
Although this basic approach descends the surrogate Φ(n) and
converges, it is incompatible with momentum-based acceler-
ation; applying momentum-based acceleration to this basic
combination of DBSS with ICD may cause divergence. The
additional under-relaxation provided by Db (14) allows us
to use ICD for exact minimization of a quadratic majorizer,
making the algorithm compatible with momentum-based ac-
celeration. This property is the key contribution of this work.

III. PRELIMINARY EXPERIMENT

To illustrate the concept, we simplified the CT reconstruc-
tion problem (1) to a one-dimensional 512-“pixel” problem.

We formed the system matrix A using a Toeplitz matrix
with point spread function 1

r1/2
so the Gram matrix A′A

has response proportional to 1
r [15]. The data-fit weights

were uniform wi = 1, and regularizer weights βk were also
uniform. We used a quadratic regularizer potential function
ψ(d) = 1

2d
2. This is an extreme simplification of the CT

reconstruction problem for a preliminary investigation.

A. Single-node relaxation and acceleration

We compared 6 methods for B = 1: conventional ICD and
ICD with the proposed relaxation (RICD), with and without
FGM [2] ((R)ICD+FGM), or OGM [13] ((R)ICD+OGM). In
this “one-node” setting, Λ = W = I in (6) and (1).

Fig. 2(a) plots the cost function per iteration for all 6
algorithms. Clearly, applying momentum to basic ICD without
additional relaxation is infeasible.

The additional relaxation from the diagonal matrices
{Db} (14) slows the convergence of RICD compared to ICD.
However, because every loop through all the pixels in RICD
corresponds to minimizing a quadratic surrogate, we can apply
momentum. With momentum acceleration, RICD converges
faster than regular ICD. Furthermore RICD+FGM is provably
convergent.

B. Distributed accelerated ICD

We also implemented the proposed distributed ICD algo-
rithms on a simulated network of 2, 4 and 8 nodes. As
the number of nodes B in the network increases, the block-
separable majorizer becomes looser; Fig. 1(d) shows this effect
in the increasing entries of the diagonal majorizer D.

Fig. 2(b) shows the value of the cost function vs. iteration
for normal ICD and RICD+OGM for 1, 2, 4, and 8 nodes.
The ICD algorithms use the block-separable surrogate [1],
and RICD-OGM uses the proposed BDTriB majorizer. As B
increases, the larger majorizer values {Db} slow convergence
on a per-iteration basis. However the increase of the majorizer
values as the number of nodes doubles is less than a factor
of 2, so there is opportunity to accelerate the algorithm with
distributed computing provided the communication overhead
is not too high.

We simulated the time behavior of the distributed algorithms
by

Δtiter =

{
1, B = 1

αoverheadB + 1
B , B > 1.

(20)

Each node beyond the first (B > 1) adds some overhead due to
communication and synchronization, αoverhead, but reduces how
long it takes to compute the parallelizable workload, 1

B . In this
experiment, we assumed αoverhead = 0.05. This is a pessimistic
estimate; in other experiments with non-ICD algorithms, we
found αoverhead ≈ 0.01 for multiple GPUs connected to the
same computer or αoverhead ≈ 0.03 for computers connected
by Ethernet.

Fig. 2(c) plots the value of the cost function vs. estimate
time for the distributed (R)ICD algorithms. The distributed
ICD algorithms reach peak performance at only two nodes, and
is still slower than RICD on one node. The RICD algorithm
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(a) Full N ×N Hessian of Ψ (b) DBSS Hessian, B = 4 (c) T for Proposed BDTriB (d) Diagonal of Relaxation D

Fig. 1. Full Hessian of Ψ, Hessian of block-separable majorizer for B = 4, and T and D for BDTriB majorizer for the simplified reconstruction problem
in Section III.

(a) Accelerated ICD (b) Cost Ψ vs. Iteration for various B (c) Cost Ψ vs. Estimated Time

Fig. 2. Cost function curves for the experiment in Section III.

can exploit further parallelism, and convges most quickly
on four nodes; the overhead from the eight-node configu-
ration slows overall convergence. Although this preliminary
experiment suggests only modest parallelization is useful, our
selection for αoverhead is pessimistic and the time-characteristics
of a real distributed system are difficult to estimate a priori.

IV. SUMMARY

We explored accelerating ICD using momentum and dis-
tributed computing. With additional relaxation based on matrix
majorization, we can combine ICD [3] with the momentum
methods that have been effective in accelerating ordered-
subsets methods. A proof-of-concept experiment suggests that
this approach can accelerate ICD. The proposed method
also shows promising accelerations via distributed comput-
ing, by combining momentum-based acceleration with block-
separable surrogates [1]. The voxels on the boundary between
blocks might converge slower than others; this effect could be
mitigated by dithering the block boundaries [1].

The sequential nature of ICD algorithms seems not well
matched to computing hardware that becomes increasingly
parallel. Nevertheless, the general techniques for accelerating
and distributing ICD described here are also relevant to
accelerating dual coordinate ascent algorithms for CT, e.g.,
[5], that are amenable to implementation on modern hardware.
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Abstract—Friction contact materials play a major role in drive 

couplings conveying forces from the engine to the gear. 
Oftentimes cooling agents are used in order to enhance the 
lifetime of the device. This however comes at the drawback of the 
oil-based cooling agent infiltrating the pore network of the 
friction contacts and thereby diminishing the adhesion between 
friction partners. Therefore it is of paramount importance to 
characterize the degree of infiltration for various combinations of 
friction contact materials, cooling agents and runtime non-
destructively. For this purpose, computed tomography is a well 
suited method. However, it inherently suffers from a decrease of 
the field of view by increasing the image resolution. Using a 
Talbot-Lau interferometer and dark field contrast it is possible to 
integrally analyze the porosity in the friction contrast materials 
on a 100 × 100 mm2 area, as is shown in this paper. 
 

Index Terms—dark field, engineering, friction contact 
materials, lamella drive coupling, X-ray 
 

I. INTRODUCTION 
RIVE couplings are an integral part of most motor 
vehicles as they serve as connection between engine and 

gears. While there are several coupling concepts, some require 

employing a cooling agent in order to enhance the life span of 
the device. During its operation the pores of the friction 
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contact are repeatedly filled by and washed out of cooling 
agent, though after sufficient operating time, the cycle comes 
to an end. The cooling agent now infiltrating the pore network 
of the friction contact material diminishes the adhesive forces 
in the drive coupling rendering the device malfunctioning. 
Consequently, it is necessary to estimate the lifespan of 
different combinations of friction contact materials and 
cooling agents. 

In order to characterize different material combinations 
non-destructive testing has to be preferred, as it is necessary to 
screen several stages of the infiltration process. X-ray 
computed tomography (CT) seems to be a well suited method. 
It allows non-destructive testing and hence makes it possible 
to examine several time steps during the operation of the drive 
coupling. The downside is its inherent loss of field of view at 
higher geometrical magnifications. The latter are necessary 
however to resolve pore sizes in the micrometer regime. 
Furthermore, for this particular problem, reference 
measurements are necessary, as the oil-based cooling agent 
and the also carbon based friction contrast materials cannot be 
distinguished in absorption CT. 

An easier, less time consuming approach is presented in this 
contribution using grating based X-ray dark field contrast [1, 
2]. The principle of grating based dark field measurements 
using a lab source has also been introduced in [3]. In this 
paper we would like to demonstrate an application of the 
method in non-destructive qualitative porosity analysis. 

II. DESCRIPTION OF THE MEASUREMENT 
Grating based Talbot-Lau interferometers work on the 

principle of a phase grating introducing an interference pattern 
through interaction with the X-ray beam. This pattern repeats 
itself within certain Talbot-distances dT in beam direction 
given by 

 

.
8

2
1

<
pdT �   (1) 

 

X-Ray Dark Field Investigation of Friction 
Contact Materials in Lamella Drive Couplings 

Jens Maisenbacher, Friedrich Prade, Jens Gibmeier, Franz Pfeiffer and Jürgen Mohr 

D 

  
Fig. 1. Schematic of lamella drive coupling (left side) and photograph of 
a single lamella with friction contact material (right side). 
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Where, p1 denotes the period of the phase grating and < the 
wavelength. Placing a sample into the beam generally alters 
the beam propagation. Using a Talbot-Lau interferometer 
either combination of absorption, phase shift and small angle 
scattering may be analyzed. This is done by comparing 
measurements with and without sample and scanning the 
displacement of the interference pattern compared to the 
analyzer grating. Therefore either grating is moved in 
transversal direction for at least one grating period. This 
ensures that at each pixel the minimum and maximum 
intensity is detected. The intensity course in one pixel thereby 
describes in good approximation a cosine function (see Fig. 2). 
The visibility, which is a measure for the obtainable image 
quality in phase and dark field contrast, is defined as: 

 

minmax

minmax

II
IIV



�

� .  (2) 

 
Theoretically an analyzer grating is not necessary if the 

detector resolution is sufficient to resolve the interference 
pattern. 

For sufficient coherence, experiments on lab sources often 
require a source grating [3]. This way, several individually 
coherent, but mutually incoherent virtual sources are created. 

 

A. Grating based dark field measurements 
The dark field signal thereby corresponds to the decrease of 

the amplitude compared to the reference measurement. The 
decrease of the amplitude is caused by small angle scattering 
in the sample. This causes a mismatch between the 
interference pattern and the analyzer grating. Hence there is a 
decrease of the amplitude and the visibility. Furthermore the 
signal is isotropic, as only deviations perpendicular to the 

grating lamellae are detected. In turn this allows analyzing 
anisotropic scattering behavior of samples [4]. 

 

B. Experimental procedure 
The experiments in this contribution were performed at the 

Institute of Medical Engineering at the Technische Universität 
Munich. A MXR-160HP/11 X-ray tube (Comet AG) at an 
acceleration voltage of 90 kV was used at 0.8 kW Power. The 
radiation was filtered by 3 mm Al before passing the 
interferometer.  

The source grating was positioned 2 cm behind the X-ray 

 
Fig. 2. Schematic of the experimental setup (left side) and the obtained intensity course in the highlighted pixel (right side). The phase grating introduces an 
interference pattern which is discriminated against by the analyzer grating. Hence, even small deflections of the pattern can be detected even when the 
resolution of the detector is not able to resolve the interference pattern itself. 

TABLE I 
GRATING PARAMETERS 

Symbol Quantity Value 

p0 Period of the source grating 10 μm 

h0 Height of the source grating 160-170 μm 

 Duty cycle of the source grating 0,5 

 Material of the source grating Au 

p1 Period of the phase grating 5 μm 

h1 Height of the phase grating 10 μm 

 Duty cycle of the phase grating 0,5 

 Material of the phase grating Ni 

p2 Period of the analyzer grating 10 μm 

h2 Height of the analyzer grating 160-170 μm 

 Duty cycle of the analyzer grating 0,5 

 Material of the analyzer grating Au 

Grating parameters of the Talbot-Lau interferometer. The gratings were 
fabricated at the Institute for Microstructure Technology at the Karlsruhe 
Institute for Technology. The microstructures of the gratings were on Si 
wafers with a thickness of 500 μm (source grating), 200 μm (phase grating) 
and 150 μm (analyzer grating). 

 

The 4th International Conference on Image Formation in X-Ray Computed Tomography

542



tube. The distance between source and phase grating l, as well 
as the distance between phase and analyzer grating d were l = 
d = 1.15 m. The source and analyzer grating consisted of Au 
lamellae of 160-170 μm height and a period of 10 μm with a 
duty cycle of 0.5. The microstructures were on Si wafers of 
500 μm (source grating) and 150 μm (analyzer grating) 
thicknesses.  The phase grating consisted of lamellae made 
from Ni at a period of 5 μm and a height of 10 μm. The duty 
cycle was 0.5 and they were situated on a Si wafer of 200 μm 
thickness. An overview of the grating parameters is given in 
table 1. The mean visibility of the setup amounted to 25 % 
with peak values up to 38 %. 

As detector, a Varian PaxScan 2520D with a CsI-scintillator 
and a pixel size of 127 μm was used. The samples were 
mounted on an Eulerian cradle at a distance of 0.89 m to the 
source grating. This resulted in an image magnification of 2.6. 

 

III. RESULTS 
The obtained results of the measurements are presented in 

fig. 3 and fig. 4. For comparison, the signals in absorption 
contrast (in the upper row) and in dark field contrast (in the 
lower row) are given. The circular area in the images marks 
the field of view, which is in this case defined by the area of 
the analyzer grating. On the right hand side of the circular 
field of view, the dark field signal appears noisy. This is due 
to a lower visibility in that area. 

The investigated samples are made of paper (b2, d1, d2, and 
e1), paper with shell limestone (a2) or carbon (a1, b1, b3 and 
f). In addition, some are grouted (e2, f) and some are 
otherwise patterned (a2, b2, d1, d2 and e1). 

Generally, the results show an enhanced contrast in the 
patterned friction contact materials in comparison to the 
absorption measurements. For sample a2 there are also more 
details visible within one structure of the pattern. This specific 
detail however is likely to come from damage on the backside 
of the material.  

Sample b1 in fig. 3 and sample e2 in fig. 4 show granular 
structures in absorption contrast that cannot be seen in dark 
field contrast. 

 
Fig. 3.  X-Ray projections of investigated samples. In the upper row, the images are depicted in absorption contrast, in the lower row the same samples 
respectively are presented in dark field contrast. 
(a1): carbon, non-grouted I   (a2): paper with shell limestone 
(b1): carbon, non-grouted II  (b2): paper III     (b3): carbon 
(c): sample (b2) rotated by 90° 
In comparison between dark field and absorption images obvious difference are at hand. While at sample (b1) the contrast is higher in absorption contrast, at 
the samples (a2) and (b2) more details are recognizable in dark field contrast. In sample (a1) and (b3) there is no significant difference between absorption 
and dark field contrast. 
Furthermore, while (a1) and (b1) only differ in absorption contrast by some black spots in (b1), in dark field contrast the samples are different in their 
respective grey value. This indicates differences in their respective microstructure. Sample (b3) appears brighter than (a1) and (b1) in absorption, but is 
darker than (b1) in dark field contrast). 
The comparison of the dark field images of (b2) and (c) shows no significant difference concerning their contrast. Since the Talbot-Lau interferometer is 
only sensitive for scattering perpendicular to the grating lamellae (here in horizontal direction), it can be assumed, that (b2) exhibits a scattering but 
anisotropic microstructure. 
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The samples a1, b3 and f appear with seemingly no change 
of contrast in the dark field images. 

Anisotropic scattering could not be detected in any sample. 
This was studied by rotating the friction contact materials as it 
is demonstrated in fig. 3 with sample b2 and c. The same 
sample was imaged, after a rotation of 90°. However no 
noticeable change in contrast, except for a bit brighter area 
(highlighted in fig. 3 c) could be detected. 

Comparing samples a1 and b1 they appear to absorb 
similarly. However in dark field contrast, their contrast is 
clearly different. This indicates to differences in their 
microstructure. Different pore sizes could be an explanation as 
well as particles of different sizes. The same can be observed 
with samples e2 and f: similar in absorption, but clearly 
different in their dark field signal. 

IV. CONCLUSION 
Generally, a gain in information could be observed when 

investigating friction contact materials of a lamella drive 
coupling non-destructively by means of X-ray dark field 
imaging in contrast supplementary to conventional X-ray 
absorption contrast CT. 

It was shown, that the contrast within one sample could be 
significantly increased. Furthermore, other materials, that 
appeared similar in absorption, exhibit different properties in 
dark field contrast. The reason for this probably lies in a 

different microstructure i.e. regarding porosity or 
particles/fibers of different sizes/diameters. This should be 
clarified fairly easily using microscopy, which requires 
sectioning of the sample. A rather sophisticated, yet 
potentially fruitful task would be to try and quantitatively 
connect a parameter describing the microstructure (mean 
particle diameter / mean pore size / …) to the dark field 
contrast signal. In [5 and 6] a method to quantitatively 
interpret the dark field signal independent of the grating setups 
are presented, which might be the base for this endeavor. 
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Fig. 4.  X-Ray projections of investigated samples. In the upper row, the images are depicted in absorption contrast, in the lower row the same samples 
respectively are presented in dark field contrast. 
(d1): paper I     (d2): paper II 
(e1) = (d2): paper II  (e2): carbon, grouted I 
(f): carbon, grouted II 
In the same manner as above, there is a gain and a loss with the dark field images concerning the contrast. The samples (d1) and (d2) show more details in 
dark field contrast, whereas sample (e2) shows less. Sample (f) exhibits approximately identical degree of details. 
(d1) and (d2) differ in dark field contrast; however a difference is also visible in absorption. (e2) and (f) on the other hand seem similar in absorption, but 
clearly differ in dark field contrast. 
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Abstract—Dynamic cardiac imaging typically requires the use
of gating. In the case of computed tomography (CT), this results
in an angular undersampling that renders reconstruction diffi-
cult. Prior work has shown that incorporating information from
the full scan, i. e. from all cardiac phases, can be beneficial in this
regard, for instance by regularization. This paper compares three
convex temporal regularizers for 4-D cardiac C-arm CT in both
a numerical phantom and clinical patient data. Regularizations
based on the nuclear norm, temporal total variation as well as
a tight-frame wavelet transform are studied. While all of them
improve reconstruction quality notably, the former turns out to
be the least effective. The latter two yield comparable results at
near-optimal parameterization. However, temporal total variation
appears to be more forgiving w. r. t. over-regularization.

I. INTRODUCTION

In electrocardiogram (ECG) gated CT imaging, reconstruc-
tion is impeded by missing data due to angular undersampling.
Many existing approaches alleviate this problem by directly or
indirectly incorporating information from the full acquisition,
i. e. from all cardiac phases, when reconstructing an individual
phase. For instance, a regular reconstruction from all available
data, despite exhibiting motion artifacts, can serve as a prior
for regularization [1], or it can be used to identify and remove
the object-dependent artifact patterns [2].

In interventional cardiac C-arm CT, motion-compensated re-
construction has been employed to be able to use all projection
images by correcting for non-rigid motion—estimated from
intermediate reconstructions—during back-projection [3], [4].
For dynamic (4-D) imaging, i. e. reconstruction of multiple
phases, it is especially helpful to make use of redundancy
observed in the temporal dimension of the reconstructed
images [4], [5]. In the context of iterative algebraic recon-
struction techniques (ART), this can be achieved conveniently
by extending regularization to the temporal domain [6]–[10].

In this work, we investigate the use of temporal regularizers
for 4-D reconstruction of the left ventricle using angiographic
C-arm devices. In particular, we focus on convex priors as they
can readily be incorporated in most optimization methods used
in tomographic reconstruction due to their convergence prop-
erties. The convergence behavior of three distinct regularizers
is analyzed empirically and compared in a numerical phantom.
Visual results are also presented for clinical patient data.

II. MATERIALS AND METHODS

A. Gated Iterative Reconstruction

With a rectangular gating window, a subset of the avail-
able projection data is selected for each cardiac phase t ∈
{1, 2, . . . , Nphases} to be reconstructed. We denote the current
solution in image space for each t as It and forego iteration
indices for the sake of readability. We initialize with zeros,
It = 0, and in each iteration perform the following sequence
of steps: (i) A simultaneous ART (SART) update step, consist-
ing of 8 subiterations, on all It based on their respective data
determined by ECG gating. In a subiteration, each projection
image corresponds to one subset update applied simultane-
ously with a relaxation factor of 0.8 and subsequent enforcing
of non-negativity. (ii) A reduction of the spatial total variation
(TV) of all It, applied with a relaxation factor of 0.5. Spatial
TV minimization is carried out in analogy to the description in
section II-C. (iii) One of three temporal regularizers described
in the following sections.

A total of 30 iterations is performed. We choose this
simple reconstruction scheme to focus on the effect of each
temporal regularizer. For spatial regularization, TV is selected
exemplarily due to its wide-spread and successful use in
compressed sensing reconstruction, but it is not the primary
subject of our study.

B. Temporal Rank-Reducing Regularization

The It are not independent. In fact, they show the same
object in different states with the underlying variation gov-
erned by a small number of intrinsic components. Albeit a
simplification, the assumption that few linear components may
explain most of the dynamics reasonably well can serve as
a global measure of consistency along the temporal domain
[9]. In terms of linear algebra, this can be expressed as the
rank of a matrix, i. e. the number of linearly independent
rows or columns it contains. The observed rank is expected
to be higher than it should ideally be due to the influence of
artifacts and noise which also cause variations in the images.
To mitigate this influence in our current image estimates
I = [I1, I2, . . . , INphases ] ∈ RNvoxels×Nphases , arranged column-
wise in a matrix, we find the solution to the proximal operator,

prox‖‖∗,λNN
(I) = argmin

I′

1

2
‖I − I ′‖2F + λNN‖I ′‖∗, (1)
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where ‖I ′‖∗ denotes the nuclear norm, i. e. the sum of the
singular values of I ′, and ‖ · ‖F the Frobenius norm used to
calculate the squared Euclidean distance of the images. λNN
controls the strength of the regularization. While using the
rank function itself would result in an NP-hard reconstruction
problem, the nuclear norm as its best convex approximation
over the unit ball of matrices yields a proximal operator with
an analytical solution that consists in a soft-thresholding of
the singular values [11],

I ← U(Σ− 1 · λNN)+V
�, (2)

where UΣV � is the singular value decomposition (SVD) of
I , (·)+ the element-wise computation of max(·, 0), and 1 the
identity matrix the size of Σ. Regarding memory efficiency,
note that with Nphases � Nvoxels, the required dimensions of
the involved matrices reduce to Nvoxels × Nphases for U , and
Nphases ×Nphases for Σ and V �.

C. Temporal Total Variation Regularization
In contrast, temporal total variation (tTV) [6]–[8] is a more

local measure of consistency. Similar to the well-known spatial
TV approach, it is based on the idealization that medical
images are “cartoons” exhibiting large homogeneous regions
for, e. g., certain tissue types, separated by sharp edges at
organ boundaries. Considering such a model and disregarding
the effects of limited resolution, in the case of motion, the
gray values of affected voxels should “jump” when an edge
is displaced across them, i. e. instantly change the organ they
are affiliated with, and stay constant otherwise. More precisely,
while traditional TV postulates sparsity in the domain of the
spatial image gradient, the sparsifying transform used for tTV
is the temporal gradient, estimated by forward differences,

DtI = [I2 − I1, I3 − I2, . . . , I1 − INphases ]. (3)

We minimize the tTV norm of the current image estimates by
iteratively descending along its negative gradient with respect
to the image voxels,

− ∂

∂I
‖I‖tTV = − ∂

∂I
‖ vec(DtI)‖1, (4)

using a backtracking line search to find a suitable step length.
vec(I) = [I1�, . . . , INphases�]� is a vectorization operator.
The non-differentiability of |x| at the origin is avoided by
“corner rounding,” i. e. its derivative is approximated as x

|x|+ε ,
with ε = 10−4. After a fixed number of gradient descent
iterations is performed (10 in our experiments), the resulting
tTV-reduced volumes I tTV are used to update the current
images, I ← I + λtTV (I tTV − I) , with the relaxation fac-
tor λtTV controlling the regularizer strength. The convexity
of the L1-norm guarantees that after a convex combination
(0 < λtTV < 1) with I tTV, I will be smaller in terms of
the tTV norm than before [12]. Note that, in analogy to the
relationship between the nuclear norm and the rank operator,
in a d-dimensional space, L1 is the convex envelope of the L0-
quasi-norm on [−1, 1]d [13]. While L0 is a better measure of
sparsity, its use would again render the overall reconstruction
problem NP-hard.

D. Temporal Tight-Frame Regularization

Another common choice are sparsifying transforms based
on wavelet decompositions, a big advantage of which is their
invertibility. Tight frames (TF) are redundant wavelet systems
popular in image restoration problems as they provide very
sparse representations of piecewise smooth functions [10],
[14], [15]. We use the piecewise linear TF basis,

h0 =
1

4
[1, 2, 1], h1 =

√
2

4
[1, 0,−1], h2 =

1

4
[−1, 2,−1],

(5)
where h0 is a low-pass kernel while h1 and h2 correspond to
first and second order difference operators, respectively [10].
By component-wise convolution along the temporal dimension
t with periodic boundary conditions, denoted by ∗t, we com-
pute coefficient images C = {Ci : Ci = hi∗tI}. If W is the
operator performing this decomposition, C = WI , its adjoint
is W T = W−1, where W�C =

∑2
i=0 hi �t Ci = I and �t

denotes correlation in analogy to ∗t. Sparsity is enhanced by
reducing the summed up high-pass component energies [10],
‖C‖TF = ‖ vec(

∑2
i=1(Ci)

2)
1
2 ‖1, where (·)2 and (·) 1

2 are to
be understood element-wise. To this end, we find,

prox‖‖TF,λTF
(C) = argmin

C′

2∑
i=0

1

2
‖C ′

i −Ci‖2F + λTF‖C ′‖TF,

(6)
which is used in the update step, I ←W� prox‖‖TF,λTF

(WI),
and realized by element-wise vector shrinkage [14],

Ct
i,j ←

⎧⎨⎩Ct
i,j if i = 0,

Ct
i,j ·
(
1− λTF · (

∑2
i=1(Ci,j)

2)−
1
2

)
+

else,

(7)
with Ct

i,j the j-th element of coefficient image Ct
i and λTF

the regularization parameter.

III. EXPERIMENTS

A. Data

For evaluation, a numerical phantom data set was used
[16]. Projection images were generated [17] using a polychro-
matic spectrum, discretized in energy bins 5 keV wide from
10 keV to 90 keV (peak energy), and a time-current product
of 2.5mAs per X-ray pulse. For bones and bone marrow,
material properties match the mass attenuation coefficients
found in the NIST X-ray table1. Contrasted blood in the left
ventricle and aorta was simulated as iodine-based contrast
agent (Ultravist-150, Bayer AG, Leverkusen, Germany) mixed
with equal parts water. All other structures were modeled with
the absorption behavior of water for modified densities. The
acquisition protocol is identical to that of the clinical data
sets described below. Additionally, a set of projection images
with complete angular sampling for the end-diastolic phase
(static phantom) was generated to reconstruct a ground truth
image using SART with spatial TV regularization (relaxation
factor 1.0) as described above. A heart rate of 120 bpm was
simulated, resulting in 10 observed heartbeats.

1http://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html
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A clinical patient data set was acquired with an Artis zee
biplane (Siemens Healthcare GmbH, Forchheim, Germany).
133 projection images were captured at approx. 30Hz with an
angular increment of 1.5◦ during one 5 s long rotation of the
C-arm. The isotropic pixel resolution was 0.31mm/pixel (0.21
in isocenter), the detector size 960×960 pixels. The heart was
paced through external stimulation to 140 bpm, resulting in 13
heartbeats. The gating windows cover 12.5% of the heart cycle
each and use all data without overlap, such that Nphases = 8.
Contrast agent was administered in the left ventricle (42ml,
undiluted) and right atrium (50ml, 60% dilution). All images
were reconstructed on a grid of 2563 voxels covering a volume
of (25.6 cm)3.

B. Evaluation

For the phantom study, the root mean square error (RMSE)
to the ground truth is calculated over a region of interest (ROI)
tightly enclosing the heart to assess convergence. In order to
study the sensitivity of the results w. r. t. regularizer strength, a
1-D grid search is conducted for each λ�, # ∈ {NN, tTV, TF},
such that we obtain sets of parameter values covering an
“interesting” range, i. e. near-optimal as well as under- and
over-regularized settings. Visual results are shown for both
the phantom and the clinical data set.

IV. RESULTS

Figs. 1 and 3 show reconstructed image slices of the
phantom and the clinical data set, respectively, while the plots
in Fig. 2 summarize the quantitative results of the phantom
study. While both TF and tTV achieve similar RMSE values
at the optimum, the “valley” of the TF curve is much more
pronounced (Fig. 2), indicating that it is more sensitive to
the choice of λ�. This is reflected by the strongly regularized
result being blurred in the case of TF (Fig. 1f), but not
tTV (Fig. 1d). At near-optimal parameterization, both yield
visually comparable images (Figs. 1e and 1c). This also holds
for the clinical case when using the same λ� (Figs. 3c and
3b). Rank-based regularization does not achieve quite as low
RMSE values and introduces a blur even for the optimal
parameter value (Figs. 1a and 3a). All tested settings of
temporal regularization outperform spatial TV alone (λ� = 0
in Fig. 2, Figs. 1h and 3d). Universally, convergence is faster
in the first iterations for a higher λ�, but then levels out earlier.

V. DISCUSSION AND CONCLUSION

The difficulty of the reconstruction problem is illustrated
well by the poor performance of the variant without temporal
regularization; with about 10-13 distinct views available per
phase, it features a degree of undersampling that is extremely
challenging even in the context of compressed sensing.

Although tTV lacks a simple closed-form solution of its
proximal operator, requiring optimization based on, e. g., it-
erative descent or primal-dual splitting algorithms [13], its
comparatively forgiving nature w. r. t. parameterization renders
it highly useful. When this property is not critical, TF reg-
ularization is a viable alternative due to its straight-forward

(a) λNN = 2.25. (b) λNN = 4.0.

(c) λtTV = 0.5. (d) λtTV = 1.0.

(e) λTF = 0.00125. (f) λTF = 0.005.

(g) Ground truth reconstruction. (h) No temporal regularization.

Fig. 1: Reconstructed images of the phantom data set in end-
diastole. The best results in terms of RMSE achieved for each
regularizer are shown on the left (a, c, e), strongly regularized
results on the right (b, d, f). Ground truth reconstructed from
static data (g) and an image obtained without temporal regular-
ization (h) are shown for comparison. All images are displayed
with the same window at [center,width] = [300, 2600] HU.

implementation. It should be noted that TV as a spatial
regularizer could put tTV at an advantage due to synergy
effects, so it may be worthwhile to test combinations with
other spatial regularizers as well. While the results demonstrate
that rank-reduction is inferior to the other methods on its own,
it could be investigated whether its global approach, which is
capable of suppressing local outliers, might complement other
regularizers well at early stages of the optimization when used
in combination.
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Fig. 2: RMSE for reconstructed images of the phantom data set over a range of parameter values around the optimum for each
regularizer. While the solid line is the result after 30 iterations, the dotted lines correspond to previous iterations, visualizing
the varying speeds of convergence.

(a) λNN = 2.25. (b) λtTV = 0.5.

(c) λTF = 0.00125. (d) No temporal regularization.

Fig. 3: Reconstructed images of the clinical data set in end-
diastole. The best parameterization determined in the phan-
tom study was used for each regularizer (a, b, c). An image
obtained without temporal regularization (d) is shown for
comparison. All images are displayed with the same window
at [center,width] = [630, 3260] HU.

Similar results obtained in both the phantom and a clinical
case using identical parameterization are reassuring w. r. t. gen-
eralizability and applicability, although further experiments
are advised for validation. Nonetheless, we can conclude
that exploiting redundancy in the temporal domain through
regularization is a highly valuable tool for improving image
quality of 4-D cardiac C-arm CT.

Disclaimer

The concepts and information presented in this paper are
based on research and are not commercially available.
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S. Rit, F. Peyrin, P. Douek, and L. Boussel, “Cardiac C-arm computed
tomography using a 3D + time ROI reconstruction method with spatial
and temporal regularization,” Med. Phys., vol. 41, p. 021903, 2014.

[8] V. Haase, O. Taubmann, Y. Huang, G. Krings, G. Lauritsch, A. Maier,
and A. Mertins, “Make the Most of Time: Temporal Extension of the
iTV Algorithm for 4-D Cardiac C-Arm CT,” in Bildverarbeitung für die
Medizin, 2016, pp. 170–175.

[9] J.-F. Cai, X. Jia, H. Gao, S. B. Jiang, Z. Shen, and H. Zhao, “Cine cone
beam CT reconstruction using low-rank matrix factorization: algorithm
and a proof-of-principle study,” IEEE Trans. Med. Imag., vol. 33, no. 8,
pp. 1581–1591, 2014.

[10] J.-F. Cai, B. Dong, S. Osher, and Z. Shen, “Image restorations: total
variation, wavelet frames and beyond,” J. Am. Math. Soc., vol. 25, pp.
1033–1089, 2012.

[11] K.-C. Toh and S. Yun, “An accelerated proximal gradient algorithm for
nuclear norm regularized linear least squares problems,” Pac. J. Optim.,
vol. 6, no. 3, pp. 615–640, 2010.

[12] L. Ritschl, F. Bergner, C. Fleischmann, and M. Kachelrieß, “Improved
total variation-based CT image reconstruction applied to clinical data,”
Phys. Med. Biol., vol. 56, no. 6, p. 1545, 2011.

[13] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[14] X. Jia, B. Dong, Y. Lou, and S. B. Jiang, “GPU-based iterative cone-
beam CT reconstruction using tight frame regularization,” Phys. Med.
Biol., vol. 56, no. 13, p. 3787, 2011.

[15] M. Manhart, A. Fieselmann, and Y. Deuerling-Zheng, “Evaluation of a
Tight Frame Reconstruction Algorithm for Perfusion C-arm CT Using a
Realistic Dynamic Brain Phantom,” in CT Meeting, 2012, pp. 123–126.

[16] W. P. Segars, G. Sturgeon, S. Mendonca, J. Grimes, and B. M. W. Tsui,
“4D XCAT phantom for multimodality imaging research,” Med. Phys.,
vol. 37, pp. 4902–4915, 2010.

[17] A. Maier, H. Hofmann, C. Schwemmer, J. Hornegger, A. Keil, and
R. Fahrig, “Fast Simulation of X-ray Projections of Spline-based Sur-
faces using an Append Buffer,” Phys. Med. Biol., vol. 57, no. 19, pp.
6193–6210, 2012.

The 4th International Conference on Image Formation in X-Ray Computed Tomography

548



Abstract— Recent advances in imaging hardware, such as the 
development of CMOS x-ray detectors, have the potential to 
enhance spatial resolution of cone-beam CT (CBCT) systems to a 
level consistent with quantitative imaging of bone microarchitecture 
(~100 ��m detail size). This capability would be of particular value 
in dedicated extremities CBCT.  The accuracy in such applications 
will be diminished by subtle, sub-mm patient motion that cannot be 
managed with immobilization.  

We propose an image-based motion compensation method for 
high-resolution extremities CBCT that requires no fiducials or 
external trackers. The algorithm allows for the compensation to be 
applied only within a Region of Interest (RoI), so that the motion 
can be assumed to be locally rigid. Motion estimation is achieved by 
optimizing a cost-function that contains an autofocus term that 
favors sharp images and a penalty term that penalizes non-smooth 
motion. The non-convex optimization problem is solved using the 
CMA-ES algorithm. Following evaluation of several image 
sharpness metrics for application in extremities motion estimation, 
the variance of image gradient was chosen as the autofocus term. 
The effects of other parameters of the objective function (e.g. 
regularization strength) were evaluated in simulation studies of a 
hand phantom with synthetic motion patterns of variable amplitude 
(0.25-10 mm). Small motion amplitudes benefited from strong 
regularization, whereas weaker regularization was preferred for 
large motions.  

Excellent motion compensation was obtained in the simulated 
data. After compensation, the structural similarity index (SSIM) 
computed against a static reference volume was > 0.95 for motions 
up to 1 mm and >0.8 for larger motions. An 80% increase in SSIM 
compared to uncompensated image was found for the largest 
motion (10 mm). Real data of a wrist phantom acquired on a CMOS 
testbench with 0.5 – 10 mm amplitude object motion confirmed 
improved visualization of the trabeculae and increased SSIM after 
motion compensation. The method was applied to motion 
contaminated patient data from the dedicated extremities CBCT, 
yielding visible reduction of motion artifacts.  

The proposed image-based motion compensation provides robust 
correction of RoI motion in extremities imaging by using a simple, 
locally rigid motion model coupled with a penalized image 
sharpness criterion.  
 
Index Terms—High-resolution CBCT, motion compensation, 
extremities imaging, autofocus. 

I. INTRODUCTION 
uantitative metrics of bone microarchitecture have been 
extensively studied in pre-clinical micro-CT imaging and 

found to provide a sensitive biomarker with potential 

applications in early detection and staging of osteoarthritis and 
osteoporosis [1]. Clinical implementation of such metrics is 
challenged by the relatively small size of the pertinent bone 
features (e.g. ~100 �m for trabeculae). Encouraging initial 
results in in-vivo assessment of bone microarchitecture were 
obtained with dedicated Flat-Panel Detector (FPD) extremities 
CBCT (Fig. 1A) owing to the high spatial resolution of FPDs [2]. 
Further improvements in spatial resolution are necessary to 
establish extremities CBCT as a platform for clinical evaluation 
of bone morphology. This will involve improvement in 
hardware, in particular implementation of a CMOS detector, and 
algorithmic developments, including compensation of patient 
motion.  

The CMOS technology offers smaller pixel size, higher 
readout speed, and reduced electronic noise compared to FPDs. 
Fig. 1B shows an experimental testbench emulating the 
extremities CBCT system and equipped with a CMOS detector 
with 100 �m pixel pitch. Point Spread Function measurements 
showed >20% improvement in FWHM with CMOS-based 
CBCT compared to the current FPD-based CBCT (194 �m pixel 
pitch). 

 
Figure 1. (A) FPD-based extremities CBCT. The system will be upgraded to a 
CMOS detector to enhance spatial resolution and enable in-vivo quantitative 
imaging of bone microarchitecture. In addition to the improved hardware, 
compensation of small, involuntary patient motion will be essential for 
achieving the required spatial resolution. (B) Experimental testbench 
implementing the CMOS detector in the geometric configuration of the 
extremities CBCT. An additional horizontal translation stage is included to 
enable simulated sample motion. 
The application of a CMOS detector is a significant step 

toward reliable visualization of bone detail. However, even 
slight, sub-mm patient motion will challenge the accuracy of 
quantitative assessment of bone microarchitecture. For such 
small motions, patient immobilization (typically adequate for 
current applications of extremities CBCT) is not sufficient, and 
robust motion compensation will be necessary. 
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We propose a motion compensation strategy for extremities 
CBCT based on the “autofocus” concept, in which the motion 
trajectory is estimated by maximizing a metric of image 
sharpness. Variations of autofocus techniques have been 
previously employed for misalignment compensation in CBCT 
[3, 4] and in the context of motion compensation for cardiac CT 
[5] and head CBCT [6]. Compared to approaches based on 
fiducial markers [7, 8] or external trackers [9], the proposed 
method does not require changes in the imaging workflow. 
Moreover, since the autofocus approach is purely image-based, 
the motion compensation can be restricted to a specific region of 
interest (RoI) (in contrast to algorithms relying on 3D-2D 
registration [10]). In application to bone microarchitecture, the 
RoIs will often consist predominately of bone voxels. This 
supports the assumption that the local motion is rigid, greatly 
simplifying the motion estimation compared to the complex and 
deformable motion of the whole extremity.   

We introduce a new form of the autofocus objective that 
employs a novel regularization term penalizing large object 
displacements, and uses a spline-based model of rigid motion. 
The performance of a variety of image sharpness metrics in 
extremity motion estimation is investigated. The proposed 
autofocus objective is non-convex and exhibits local minima. A 
statistical optimization method is thus applied for motion 
estimation (compared to the more common choice of a simplex 
algorithm) and a restart strategy is introduced to homogenize 
performance across a wide range of motion amplitudes. The 
method is evaluated with simulated and experimental data. 
Application to patient data from current clinical CBCT prototype 
is presented.  

II. MOTION COMPENSATION FRAMEWORK 
A flowchart of the algorithm is shown in Fig 2. An initial, 

motion-contaminated reconstruction is obtained and the RoI to 
be compensated is selected. It is assumed that the motion of the 
RoI is rigid, even if the extremity as a whole undergoes a more 
complex transformation. The motion trajectory T consists of a 6 
DoF rigid transformation of the RoI at each projection angle �. 
Each DoF is represented as a cubic b-spline (B): 

 (1) 

where j enumerates the DoF (j = 1,…,6) and N is the number of 
spline knots. The motion trajectory of the RoI is estimated by 
finding the b-spline coefficients cij through maximization of the 
following objective function: 

 (2) 
where � is the reconstructed RoI, and S(T,�) is an image 
sharpness metric. In each iteration, S is computed on a volume 
obtained from a reconstruction for which the current motion 
estimate T was applied during the backprojection. R(T) is a 
penalty (regularization) term encouraging smooth motion 
trajectories, and ��is a scalar penalty strength. The regularization 
penalizes the first order difference of the positions of the RoI in 
subsequent projections: 

 (3) 

where xkq, ykq, and zkq are the coordinates of the k-th corner of the 
RoI in projection q. 

The optimization in Eq. 2 is not convex and exhibits multiple 
minima that challenge conventional gradient-based methods. 
Instead, the minimization was performed with the Covariance 
Matrix Adaptation Evolution Strategy (CMA-ES) [10]. At each 
iteration, a population of 20 RoI volumes was generated in 
parallel for a set of candidate motion trajectories using a GPU 
implementation of Feldkamp (FDK) reconstruction. Failure to 
converge or residual motion after a fixed number of iterations 
was handled by restart of the CMA-ES iterations with increased 
size of the solution space to be explored (�� [11]. 

Several image sharpness metrics have been proposed for 
autofocus compensation of motion and geometric misalignment. 
In the latter context, entropy and gradient based metrics were 
shown to be the most appropriate [12]. Here, four metrics were 
evaluated for the task of extremity motion correction: (i) image 
variance, previously used in microscopy autofocus applications 
[13], and given by , where  is the 
average attenuation value in the volume; (ii) Entropy 

  where hl is an intensity histogram with 256 
bins; (ii) the (negative) squared spatial gradient [3] 

; and (iv) the (negative) 

gradient variance . 

 The performance of the metrics was evaluated in a population 
of motion-contaminated bone images obtained by simulating 
3000 random motion trajectories over a 0-50 mm range of 
average motion amplitudes (where the average amplitude is 
equivalent to mean displacement in each motion trajectory). 

III. EXPERIMENTAL EVALUATION 
The evaluation used data acquired on a CMOS-based x-ray 

testbench (Fig. 1B).  The system geometry emulated the 
extremities CBCT prototype. The CMOS detector was a Dalsa 

 
Figure 2. Workflow of the motion compensation. The compensation is applied locally to a RoI where the motion can be assumed rigid. The motion trajectory is 
represented using a b-spline model and estimated by CMA-ES optimization of a non-convex cost function that maximizes image sharpness.  
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Xineos 3030 (Eindhoven, NL) with a pixel size of 0.1 mm and 
600 �m-thick CsI columnar scintillator. A 3kW, small focal spot 
(0.3 FS), rotating anode x-ray source (IMD RTM 37, Italy) was 
operated at 90 kV (+0.2 mm Cu), and 0.12 mAs per projection; 
720 projections were acquired over 360o. The bench included a 
linear translation stage that was synchronized with the rotation 
stage to simulate patient motion. Reconstruction voxel size was 
0.075 mm for image evaluation and 0.5 mm for motion 
estimation; FDK algorithm with Hann apodization and cutoff at 
the Nyquist frequency was used.  

A simulation study was performed to explore the performance 
of motion compensation as a function of number of spline knots 
N and regularization strength �. A cadaveric wrist was imaged 
on the testbench and reconstructed to obtain a static image. 
Motion contaminated projections were simulated by applying a 
projection-wise rigid transformation to the volume followed by 
a forward projection. Simulated motion trajectories involved 
translations in the transaxial (x-y) plane with amplitudes ranging 
from 0.25 mm to 10.0 mm. Each translation was performed as 
linear motion that began at 90o gantry rotation and finished at 
150o gantry rotation.  Motion was modelled with spline 
interpolation with 360 control points to obtain 
smooth trajectories. Motion compensation involved a maximum 
of 4000 iterations of CMA-ES applied to a 200x200x20 voxels 
RoI including 3 carpal bones (see Fig. 5). The optimization was 
considered converged for changes in the cost function smaller 
than 10-4. A restart with 4-fold increase in � was performed for 
cases for which convergence was not achieved. Maximum 
runtime was ~30 min if convergence was not reached earlier.  

Experimental evaluation involved an anthropomorphic hand 
phantom acquired on the testbench with motion implemented as 
a lateral translation of the linear stage with a slope of 1 mm per 
degree of rotation. A static volume (no motion) and scans with 
0.5, 1.0 and 10 mm amplitude motions were acquired    

The performance of motion compensation in the simulation 
and experimental studies was quantified using the structural 
similarity index (SSIM), with the static image as reference [14]: 

 (4) 

where  is the average attenuation and  �j is the variance of 
the attenuation values in image j. The index ref denotes the 
reference static image, MC denotes the motion compensated 
image, and �ref-MC is the covariance between the two images. The 
regularization terms c1 (= 10-4) and c2 (= 3x10-4) stabilize the 
measurement in regions of very low attenuation. The method was 
also applied to a motion contaminated patient knee scan obtained 
on the current generation FPD-based extremities CBCT. 

 

Figure 3. Normalized 
autofocus sharpness 
metrics as a function 
of average motion 
amplitude for an 
ensemble of fifty 
random realizations 
of motion. Gradient 
based metrics 
showed a lower 
number of local 
minima and 
monotonic increase 
with motion. 

IV. RESULTS 
The normalized value of the various image sharpness metrics 

is shown as a function of average motion amplitude in Fig. 3 (the 
metrics were normalized by subtracting their minimum value and 
dividing by maximum value so that 0 represents a perfectly 
focused image).An ideal sharpness metric for motion estimation 
should monotonically decrease towards a global minimum 
corresponding to a static image. At a fixed motion amplitude, 
narrower dispersion of the metric is preferred, as it indicates 
weaker local minima (the metric is consistent across motions 
with the same average displacement but different trajectories). 
Image variance is not monotonic, showing a strong local 
minimum at ~10 mm amplitude. Entropy is monotonically 
increasing for motion amplitudes of up to 10 mm, but decreases 
with increasing motion at larger amplitudes. This reflects the fact 
that images with significant motion blur are relatively uniform 
and thus exhibit small entropy. While successful motion 
compensation has been shown with entropy-based metrics [4], 
this particular objective may thus not be well suited for large 
motions. Both gradient-based metrics are monotonically 
increasing throughout the investigated range of motions. 
Gradient variance exhibits lower dispersion and was chosen for 
the studies presented here. 

 
Figure 4. SSIM as a function of number of knots in the b-spline motion model 
(N) and regularization strength (���for small (A), moderate (B) and large (C) 
motions. 
Fig. 4 shows the performance of motion compensation as a 

function of regularization strength � and number of knots in the 
motion model N. Only CMA-ES runs with no restart were 
included in this investigation. Strong regularization is preferred 
for small motion amplitudes, achieving almost perfect 
correspondence with the reference image (SSIM > 0.9). As 
motion amplitude increases, the value of ��yielding maximum 
SSIM decreases. Optimal � for 6 mm motion is 102-103x smaller 
than that for sub-mm motion. This is likely because 
large � encourages solutions that smooth out the large motions. 
The trend in the number of knots is weaker, with a combination 
of a low number of knots and small � yielding sub-optimal 
performance, which may involve solutions with oscillatory b-
spline motion patterns. For the 6 mm motion, combination of a 
large number of knots with moderate � (~103) resulted in slow 
convergence (not reached within the 4000 CMA-ES iterations), 
indicating the need for a restart. Fig. 5 shows a selection of image 
results from the simulation study in Fig 4. Motion-compensated 
images corresponding to parameters of the objective function 
yielding maximum SSIM are compared to uncompensated 
reconstructions and the reference static volume for 0.5 mm and 
10 mm motion. Significant reduction in motion-induced artifacts 
and recovery of trabecular detail are achieved for both small and 
large motions. The plot of maximum SSIM (obtained at 
“optimal” values of � and N) as a function of motion amplitude 
shows almost perfect structure recovery (SSIM > 0.95) for 
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motions <= 1 mm and significant improvement compared to no 
compensation for larger motions (~2x increase in SSIM). For 
motions > 5 mm, CMA-ES restart is essential for optimal results. 

Fig. 6 shows the results of benchtop experiments. Even for the 
relatively small 1 mm motion, significant deterioration in the 
visualization of the trabeculae is found (arrows). Motion 
compensation successfully recovers the trabecular structure, with 
30% improvement in SSIM, confirming the simulation results. 

Fig. 7 shows the application of the compensation algorithm to 
patient data from FPD-based extremities CBCT with artifacts 
due to insufficient immobilization. The scan was processed using 
the proposed method using a 9x9x1.2 cm RoI centered at the 
femoral head. Significant reduction of motion artifacts is 
apparent. This indicates that the motion found in an RoI can in 
some cases be applied outside of the RoI to yield partial 
correction of the artifacts throughout the volume. 

VI. CONCLUSION 
A purely image-based motion compensation framework for 

high resolution CBCT extremities imaging was presented and 
evaluated. The performance of the method as a function of the 
autofocus metric, regularization strength and motion model was 
investigated. The algorithm recovered trabecular structure and 
suppressed motion artifacts across a broad range of motion 
amplitudes. In particular, almost perfect correction was achieved 
for sub-mm motions representative of small, involuntary patient 
drift that cannot be controlled with immobilization. 
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Figure 5. Motion compensation in simulated data for small (0.5 mm) and large (10 mm) motion amplitudes using optimization parameters yielding best SSIM for 
a given motion amplitude. The performance of the method improves for smaller motion amplitudes, but recovery of the trabecular structure and significant reduction 
of artifacts is apparent in both cases. This is quantified by the plot of SSIM (computed against the reference static volume) as a function of motion amplitude. 
Compensation using CMA-ES without restart (circles) is compared to that with restart (triangles), showing the benefits of restart for cases with large motion 
amplitudes (>5 mm). The square in the static image marks the RoI used for motion estimation. 

 
Figure 6. Motion compensation in experimental testbench data with step motion generated by a linear translation of the volume during the acquisition. Motion-
induced artifacts (double contours) are reduced and details of the trabecular architecture are recovered after compensation (arrows).  

 
Figure 7. Motion compensation in patient data. 
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Abstract—  A  moving  blocker  based  strategy  has  shown
promising results for scatter correction in cone-beam computed
tomography (CBCT). Different parameters of the system design
affect its performance in scatter estimation and image
reconstruction accuracy. In this work, we evaluate the
performance in scatter estimation and image reconstruction
accuracy under various combinations of width and separation of
the  lead  strips  at  different  moving  speeds  by  Monte  Carlo
simulation. The scatter estimation error varied from 0.8% to
5.8% when the combinations of width and separation of the lead
strips  ranging  from 5  pixels  to  100  pixels  at  the  detector  plane.
CT number error in the reconstructed CBCT images can be
reduced to 24 HU, if we use strip width 10 pixels and gap width
30 pixels at a blocker moving speed over 15 pixels per projection.
The moving blocker system can achieve accurate reconstruction
if we use the optimized parameters.

I. INTRODUCTION

In recent years, cone-beam computed tomography (CBCT)
mounted on the gantry of the linear accelerator has become an
instrumental part of volumetric image guidance in radiation
therapy [1]. However, due to the broad beam geometry
utilized in such systems, the presence of scatter contamination
within the projection data will lead to reduction of image
quality by introducing image artifacts, reducing contrast, and
limiting CT number accuracy, especially for sites requiring
large eld of view (FOV).

Various strategies have been proposed for estimating the
scatter signal in projection images including analytical
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calculation, Monte Carlo (MC) simulation and beam blocker-
blocker-based techniques. In our previous study [2-3], we
proposed a scatter correction strategy based on a moving
blocker system and demonstrated its effectiveness. Scatter
was estimated by interpolating values in un-blocked regions
from the scatter signal in blocker regions. Instead of
the missing primary signal of the blocked region through
interpolation, only the primary signal in the unblocked regions
was used to reconstruct the CBCT image. This method can
simultaneously estimate scatter signal and reconstruct the
complete volume within the FOV from a single scanning.
method is not limited to full-fan scan geometry and small size
of FOV.

In this work, we systematically investigate how variations
in the design and speed of moving blocker affect imaging
performance. We evaluate the performance in scatter
estimation and image reconstruction accuracy under various
combinations of width and separation of the lead strips at
different moving speed. The present investigation involves
MC simulations of projection images of a pelvis phantom
using CBCT geometry at clinically realistic radiation doses.

II. MATERIALS AND METHODS

A. Monte Carlo simulation
Fig. 1 illustrates the design of lead strips and the geometric

setup of the moving blocker for CBCT imaging. The blocker
consists of equally spaced lead strips which are 3.2 mm in
thickness.  For our study, various combinations of strip width
and gap were investigated. The lead strips of the blocker are
aligned perpendicular to the gantry rotation axis z and moves
back and forth along the rotation axis z, as indicated in Fig.
1(c).

The MC simulation toolkit utilized in this study is
gDRR[4].  The accuracy of photon transport in this package
has been previously demonstrated by comparing simulation
results with those from EGSnrc, as well as indirectly by
comparing computed radiation dose with measurements [5].
The spectrum used in our study is 125kVp and the number of
photons is 5.0e+9.  Phantom was generated based on a pelvis
patients CT dataset.  The scan geometry is illustrated in Fig.1
(c). Projections were down sampled by a factor of 2 to yield a
size 512 512 with pixel size 0.8 mm 0.8  mm.  The  MC
simulated data used in this study were projection data with
lead strips of
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Fig. 1.  Illustration of the blocker and its location in an on-board imaging
system. (a) Anterior view of the blocker. (b) Cross section view of the
blocker.  (c) A blocker is inserted between the X-ray source and the imaging
object and it moves back and forth along the gantry rotation axis z during
CBCT acquisition.
width and the gap varying from 0.8 to 16 mm, corresponding
to 4 mm (5 pixels) to 80 mm (100 pixels)  where they were
projected onto the detector panel plane.

B. Residual interpolation technique
For one projection image, the scatter signal detected in the

blocked region was used to estimate the scatter component of
the unblocked region using cubic B-Spline interpolation [6]. In
order to study the penumbra effects of the strips, ray-tracing
technique was employed. Using different blockers, the regions
(2~4 pixels wide) adjacent to the edges of the strip were
excluded from the scatter estimation to avoid penumbra
effects.In the unblocked region, the estimated scatter signal Ses was
compared to the scatter signal Smc simulated  by  MC.  The
residual error is Smc - Ses. The relative error R(u,v, )  of log-
transformed projection signals introduced by scatter
estimation is:

( , , ) = log ( , , ) + ( , , ) ( , , )
log ( , , )

,
( , ) ,

where u, v denote the coordinates of the detector and denotes
the gantry angle, Imc0 is the incident x-ray intensity and Pmc is
the primary signal generated by MC simulation. The errors in
unblocked region were interpolated to blocked regions to
obtain the error map of scatter simulation within a projection.

In order to improve the efficiency of MC simulation,
projection data was simulated at sparse angles and then
interpolated to other projection angles. From Xu et al’s
study[7], when the simulated projection number becomes
larger than 15, further increasing this parameter value does not
help reduce the error significantly anymore. In this study, we
chose projection number 36 to obtain projections of sufficient
accuracy. The 36 projections were distributed evenly over a
360  arc. The 36 relative error map R(u,v, )
( =0 ,10 ,…350 ) were interpolated by angles to get 660 error
maps.Since the photon numbers were limited in MC simulation,
the primary logarithm-transformed projection data (i.e., line
integral) were simulated analytically. A total of 660 views
acquired over a 360  arc at a frame rate of 5.5 frames/s. The
MDCT of the pelvis phantom were considered as noise-free.

After the noise-free line integrals p(u,v, ) are calculated, the
noisy primary signal I’(u,v, ) is generated according to the
following noise model:
( , , ) = ( , , ) + (0, ),   (2)

where I0 is the incident x-ray intensity and  is the
electronic noise variance. And then, the log-transformed
projection measurements after scatter correction can be
expressed as:

( , , ) = log ( , , ) × ( , , ).                      (3)

C. Iterative image reconstruction based on total variation
In this study, a total variation (TV) based algebraic iterative

reconstruction (ART) algorithm is adopted to reconstruct the
CBCT image from the partially blocked projection data. The
algorithm is formulated as a constraint optimization (CO)
model under the framework of compressed sensing. Constraint
optimization incorporates the data fidelity and image
constrains, such as the regularity measure TV in this work.

D. Performance evaluation metrics: RMSE
To quantitatively evaluate the accuracy of the scatter

estimation, we rst computed the relative root mean squared
error of scatter (rRMSE) in unblocked regions of detector by
comparing the interpolated scatter to the Monte Carlo
simulated scatter:

( ) =
( , , ) ( , , )

( , , )( , ) ,            (4)

where  is the number of pixels in unblocked region.
Qualitative and quantitative comparisons were performed on

the CBCT reconstruction after scatter correction. The
reconstructed images were generated with a size of 256×256
×140 voxels, where the voxel size is 2.0274 mm × 2.0274 mm
×2.0274 mm. All of the reconstructed images were converted
Houns eld unit (HU) and compared qualitatively and
quantitatively. We used root mean square error (RMSE) of CT
number ( , , )of the reconstructed images of partially
blocked projections with scatter correction, as compared to the
CT number ( , , ) of the image reconstructed from
unblocked projections, the RMSE was calculated as:

= ( , , ) ( , , )( , ( )120=21 , (5)

where 100 slices were used for calculation and we selected the
pelvis area as the ROI for each slice, M is  the  number  of
voxels for calculation.

III. RESULTS

A. Scatter estimate error
    Fig.2 shows the Monte Carlo simulation results on scatter
estimation error of three angles, when different blockers were
applied between the X-ray source and imaging object. The
scatter estimation error in unblocked regions of detector was
quantified by rRMSE described in Eq.(4). Both the lead strips
width and the gap varying from 0.8 to 16 mm, corresponding
to 4 mm (5 pixels) to 80 mm (100 pixels) where they were
projected onto the detector panel plane.  The scatter estimation
error varied from 0.8% to 5.8% with simulated combinations
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Fig. 2. Scatter estimation error in the unblocked regions of detector plane, as
both strip width and gap width varied from 5 pixels to 100 pixels (as projected
on the detector plane).

of lead strip width and gap width. As seen from Fig. 2, scatter
estimation error increases as the gap width increases and the
strip width increases.

B. Reconstruction Results
    Fig. 3 shows one axial slice of the reconstruction images

of the pelvis phantom at a blocker moving speed of 20 pixels
per projection. Fig. 3(a) is showing CBCT reconstructed from
partially unblocked projections as a 10 pixel-blocked-10 pixel-
gap (B10G10) moving blocker was applied; the reconstruction
result is terrible (RMSE=201.9). The central part of the slice is
missing.  The reason is that the gap is too narrow (G10). Some
voxels in the object cannot be reconstructed successfully at
specific speed because of insufficient measurement data. Fig.
3(b) is the CBCT reconstructed from a B10G30 moving
blocker produced projection data, the result is good
(RMSE=23.6); Fig. 3(c) is from a B20G40 moving blocker
and Fig. 3(d) is from a B20G60 moving blocker, their results
are acceptable (RMSE=32.2, 32.8). It can be observed that the
CBCT image reconstructed from projections acquired with a
narrower-strip-wider-gap blocker has fewer artifacts. Wider
gap can bring more information for reconstruction, but it

Fig. 3 One axial slice of the pelvis CBCT images from projections with varied
blocker designs, blocker moving speed is 20 pixels per projection. Display
widow [-500, 1000] HU.

also caused accuracy decrease in scatter estimation. As can
been seen in Fig3 (c) and (d), strip width is the same and gap
width is different, but the reconstructed results are almost the
same. There should be a compromise between strip width and
gap width.
    Fig. 4 shows one axial slice of the reconstruction images of
the pelvis phantom of a B20G40 blocker at various moving
speed. If the moving speed is too slow (eg. 1 pixel per
projection), the reconstruction result is bad (RMSE=48.7). If
the speed is increased to 5 pixels per projection, the
reconstructed result is better (RMSE=36.6). When the speed is
above  10  pixels  per  projection,  the  RMSE  will  decrease  to
around 33; when the speed is above 20 pixels per projection,
the RMSE will decrease to 32 and come to stable.
    Fig.5  shows  the  CT  number  error  RMSE  in  the  CBCT
images reconstructed from partially unblocked projection
datasets. The partially unblocked projections were generated
by simulating the blocker motion at various speeds (from 1
pixel per projection to 30 pixels per projection) during CBCT
acquisition. Since scatter estimation error increases as the gap
increases and the strip width increases, and considering
making a 0.8 mm width lead strip (corresponding 5 pixels
blocked region width) is impractical, in these datasets, we only
investigated the scenario where the strip width is 10 pixels and
20 pixels, and the gap width varies from 5 pixels to 60 pixels.
As can be seen in Fig.5, for strip width 10 pixels, the RMSE is
almost below 40 except two scenarios which are gap width 10
pixels at the speed of 20 pixels per projection (RMSE= 201.9)
and gap width 20 pixels at speed of 30 pixels per projection
(RMSE= 164.7). For strip width 20 pixels, the RMSE is
almost below 70 except the scenario that gap width is 10
pixels at speed of 15 pixels per projection (RMSE= 88.1) and
at speed of 30 pixels per projection (RMSE= 436.8).  So we
should choose gap width bigger than 20 pixels and moving
speed over 15 pixels per projection to perform our scatter
correction method.
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Fig. 4 One axial slice of the pelvis CBCT images from projections with varied
moving speed, blocker design is strip width 20 pixels and gap width 40 pixels.
Display widow [-500, 1000] HU.

Fig. 5. CBCT image reconstruction error when different moving blockers
were applied. Simulations of the  blocker lead strip width is 10 pixels and 20
pixels, the gap width is from 5 pixels to 60 pixels, and the blocker moving
speed is from 1 pixel per projection to 30 pixels per projection. (For obvious
showing, we did not show the scenarios where RMSE is above 70).

IV. DISCUSSION AND CONCLUSION
     In this work, we optimized the geometry and speed of a
moving blocker system for CBCT scatter correction. Scatter
signal was simulated by Monte Carlo calculation with various
combinations of width and separation of the lead strips,
ranging from 5 pixels to 100 pixels at the detector plane.  The
scatter estimation error varies from 0.8% to 5.8% and
increases  as  the  gap  width  increases  and  the  strip  width
increases.In our simulation study, we considered the penumbra effects
introduced by lead strip thickness and blocker moving. For
different blocker moving speed, the number of pixels affected
is  different.  The  total  penumbra  in  one  strip  shadow  is  4
pixels, 6 pixels and 8 pixels for moving speed below 10 pixels,
10-20 pixels and 20-30 pixels per projection, respectively.

In this study, we found that if the gap is too narrow (G10
and G20), there will be a possibility of reconstruction failure
at some moving speeds. This is because a certain region of
projections may be blocked throughout the whole acquirement
procedure. And then, reconstruction failures occurred in
certain area of the image due to the lack of information. The
missing area might be recovered by more advanced
reconstruction algorithm with prior information. But at
present, we should use gap width bigger than 20 pixels
avoiding the reconstruction failure. On the other hand, In order
to guarantee the accuracy of scatter estimation, the strip width
should not be wider than 20 pixels. Also, we should consider
the feasibility in practice, so we did not investigate the
scenario  of  strip  width  of  5  pixels.  In  this  work,  we  just
investigated CBCT reconstruction with scatter correction in
the  condition  of  strip  width  of  10  pixels  and 20  pixels.   The
results  show  that  the  gap  width  should  be  large  enough  to
achieve acceptable reconstruction accuracy.  As can be seen in
Fig.5, if the strip width is 10 pixels and gap width is 30 pixels,
we can get an optimal result. The moving speed does not have
a very strong effect on reconstruction result if it is not too
slow. If the moving speed is over 15 pixels per projection, the
reconstruction results will change no more than 2 HU.
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Abstract—Prompt and reliable detection of acute intracranial 

hemorrhage (ICH) is critical to treatment of a number of 
neurological disorders. Cone-beam CT (CBCT) systems are 
potentially suitable for detecting ICH (contrast 40-80 HU, size 
down to 1 mm) at the point of care but face major challenges in 
image quality requirements. Statistical reconstruction 
demonstrates improved noise-resolution tradeoffs in CBCT head 
imaging, but its capability in improving image quality with 
respect to the task of ICH detection remains to be fully 
investigated. Moreover, statistical reconstruction typically 
exhibits nonuniform spatial resolution and noise characteristics, 
leading to spatially varying detectability of ICH for a 
conventional penalty. In this work, we propose a spatially 
varying penalty design that maximizes detectability of ICH at 
each location throughout the image. We leverage theoretical 
analysis of spatial resolution and noise for a penalized weighted 
least-squares (PWLS) estimator, and employ a task-based 
imaging performance descriptor in terms of detectability index 
using a nonprewhitening observer model. Performance 
prediction was validated using a 3D anthropomorphic head 
phantom. The proposed penalty achieved superior detectability 
throughout the head and improved detectability in regions 
adjacent to the skull base by ~10% compared to a conventional 
uniform penalty. PWLS reconstruction with the proposed 
penalty demonstrated excellent visualization of simulated ICH in 
different regions of the head and provides further support for 
development of dedicated CBCT head scanning at the 
point-of-care in the neuro ICU and OR. 

I. INTRODUCTION 

Intracranial hemorrhage (ICH) is associated with a variety 
of neurological disorders, including hemorrhagic stroke and 
traumatic brain injury [1]. Non-contrast-enhanced 
multi-detector CT (MDCT) is the current front-line modality 
for diagnosis of acute ICH with high sensitivity but is 
commonly only available in a dedicated radiology suite or 
emergency department. Compared to MDCT, cone-beam CT 
(CBCT) systems typically have smaller footprint, greater 
portability, and lower cost, and therefore are potentially more 
suitable for diagnosis of acute ICH at the point of care (e.g., 
neurological ICU, urgent care, ambulance, and sports and 
military theatres). However, current CBCT systems face 
major challenges in image quality required for detecting ICH 
(blood-to-brain contrast 40-80 HU, size down to 1 mm) [1]. 

Recent research aims to develop high-quality CBCT for 
detection of ICH using mobile C-arms or a dedicated head 
CBCT system designed specifically to provide optimal 
performance in ICH detection [2]. A high-fidelity artifact 
correction framework has also been proposed and 
demonstrates major reduction in artifacts in CBCT of the 
head, including scatter, beam hardening, and detector lag and 
glare [3]. Moreover, a statistical reconstruction method has 
been proposed to compute statistical weights that account for 
noise in the measurements following artifact corrections, 
demonstrating improved noise-resolution tradeoffs in CBCT 
of ICH compared to conventional filtered backprojection [4]. 
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This work addresses two important questions with respect 
to high-quality CBCT of ICH. First, statistical reconstruction 
tends to produce nonuniform spatial resolution and noise in 
the image. For example, Figure 1 shows an image 
reconstructed using penalized weighted least-squares (PWLS) 
as in [4], and the conspicuity of the same ICH lesion in various 
locations of the head is seen to depend strongly on the local 
spatial resolution and noise characteristics. Various methods 
have been developed to address this problem by designing a 
spatially varying penalty that encourages uniform spatial 
resolution or noise. For example, Fessler et al. designed a 
penalty that includes a spatially varying certainty term to 
encourage a uniform point spread function (PSF), providing 
uniform spatial resolution throughout the image [5]. A second 
important consideration is that imaging performance should 
be defined with respect to a specific task [6]. In the case of 
ICH detection, the task is to discriminate a low-contrast, 
mid-frequency lesion from a relatively uniform background. 
One way in which statistical reconstruction can be leveraged 
to maximize performance is to design a penalty that 
maximizes detectability index (d') [7] for a particular task. 
However, due to nonuniform spatial resolution and noise, a 
penalty designed to maximize detectability at one location 
may not necessarily maximize detectability at another. The 
two considerations described above are therefore intimately 
connected, and one may design a spatially varying penalty 
(analogous to the one in [5]) to maximize detectability. 

In this work, we propose a spatially varying penalty that 
optimizes detectability for ICH detection at all locations 
through a CBCT image of the head. Previous related work by 
Qi et al. optimized directional weights in a penalty to improve 
detectability for breast lesion detection at an unknown 
location in 3D PET [8]. Gang et al. optimized a parameter that 
weights the regularization term in 2D CT to maximize 
detectability at an unknown location for a few generic 
detection tasks [9]. This work builds on the method in [9] but 
differs in two aspects. First, this work introduces a 
comprehensive and general framework to design a spatially 
varying penalty for maximal detectability. Second, we extend 
the design from 2D CT in [9] to 3D CBCT and focus on 
designing a penalty for a specific task in head imaging. We 
first validate prediction of spatial resolution and noise 
characteristics at various locations in 3D, and we then define a 
3D detectability index that provides an objective function in 
penalty design. The performance of the proposed penalty is 
evaluated on a 3D anthropomorphic head phantom in 
comparison to a conventional penalty. 

Task-Based Regularization Design  
for Detection of Intracranial Hemorrhage in Cone-Beam CT  

H. Dang, J. W. Stayman, J. Xu, A. Sisniega, W. Zbijewski, X. Wang, D. H. Foos, N. Aygun,  
V. E. Koliatsos, and J. H. Siewerdsen 

 
Figure 1: Illustration of nonuniform spatial resolution and noise in 
a 3D image reconstructed by PWLS. The anthropomorphic head 
phantom containing simulated ICH was scanned on a FPD-CBCT 
test-bench at 24 mGy. Grayscale window: [-10, 110] HU. 
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II. METHODS 

A. Penalized Weighted Least-Squares Reconstruction 
We choose a PWLS reconstruction method previously 

developed for CBCT head imaging [4], whose forward model 
assumes mono-energetic x-rays and independent 
measurements as: 

� 	 
 �expy g �� �D A                              (1) 

where  denotes the mean measurements, μ is the image 
estimate, A is the linear projection operator (and AT is the 
linear backprojection operator), g are the 
measurement-dependent gains, and D is an operator that 
converts a vector into a diagonal matrix.  

The PWLS objective can be written as: 
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where l denotes line integrals derived from the measurements 
y, and W is a diagonal weighting matrix. The statistical 
weights in W are computed to account for noise in the 
measurements and noise following artifact corrections (if such 
corrections are present in the data processing) [4]. The 
regularization term in Eq. (2) penalizes differences between 
every voxel μj and its neighboring voxel μk by a penalty 
function  along with directional weights wjk, and is weighted 
by a scalar regularization parameter β. We refer to this penalty 
below as the "conventional penalty". 

To design a penalty that maximizes detectability, one can 
modify the regularization parameter, directional weights, 
and/or penalty function. In this work, we focus on designing a 
spatially varying β map while keeping the directional weights 
(wjk=1 for first-order neighbors) and penalty function 
(quadratic function) the same throughout the image. 
Optimization of the directional weights and penalty function 
for maximal detectability are subjects of future work. The 
proposed spatially varying penalty can be written as: 
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where  denotes the new regularization term. 
As a point of reference, we consider another form of 

spatially varying penalty derived by Fessler et al. [5] that 
encourages uniform spatial resolution (referred to below as the 
"uniform resolution penalty") and can be written as: 


 � 
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where κj represents the certainty of all rays that intersect the jth 
voxel and aij denotes the (i, j)th element of matrix A. 

B. Task-Based Performance Prediction 
Previous work [5] shows that if the spatially varying term is 

spatially smooth, its effects on image quality are essentially 
local. Thus, while β will be spatially dependent in the resulting 
penalty, in the design stage, we assume β values at other 
voxels are the same as the β value at the voxel of interest (i.e., 
assumes a conventional penalty). One can then derive 
analytical expressions of the local PSF and local covariance 
for the PWLS estimator in Eq. (2) using a first-order Taylor 
expansion and the Implicit Function Theorem as in [5]: 
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where F is the Fisher information matrix defined as 
, R is the Hessian of R(μ) in the PWLS objective 

(and is not dependent on the input image when a quadratic 
penalty function is used), ej is a unit vector specifying location 
in the image (with unity jth element and zero elsewhere). In 
real data when μtrue (truth image) and  (PWLS reconstruction 
of noiseless data) are not available, a “plug-in” method [5] can 
be used. 

Since the local PSF and covariance are evaluated in a 
relatively uniform region (brain), the matrix of local PSF and 
covariance can be approximated as circulant in a small 
region-of-interest (ROI). Their discrete Fourier transform are 
then the local modulation transfer function (MTF) and 
noise-power spectrum (NPS) within the ROI: 
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With predictions of local MTF and NPS, one may predict 
the task-based performance of the PWLS estimator in terms of 
detectability index  [7], which relates metrics of MTF and 
NPS to a spatial-frequency-dependent task function and an 
observer model. Many observer models can be formulated - in 
this work, the nonprewhitening (NPW) matched filter 
observer model. This model does not bias the results 
according to the characteristics of the observer and has 
demonstrated reasonable agreement with human observer 
performance for simple tasks in tomosynthesis and CBCT 
[10]. The detectability index with a NPW observer model can 
be written as: 
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The task function WTask in this work is defined as the 
difference of two Gaussian functions, representing a 
low-contrast, mid-frequency task such as ICH detection 
expressed as follows: 
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where C is the blood-to-brain contrast (0.011 mm-1), σ1 = 0.35 
mm-1, and σ2 = 0.25 mm-1 corresponding to discrimination of a 
characteristic feature length of ~2 mm, approximated using 
the average of four standard deviations of each Gaussian 
function in the spatial domain. 

C. Proposed Regularization Design Framework 
While the design goal is to maximize  at every location in 

the image, one may start with maximizing  at one location. 
The optimization problem can be written as: 


 �2ˆ argmax
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While directly solving Eq. (11) might be possible, we choose a 
simple scheme in this work to maximize  by evaluating  
for different β values with regular spacing and choosing the β 
that yields the maximum .  

Repeating the optimization at every voxel is 
computationally impractical for 3D CBCT. We accelerate the 
design process in two steps. First, we exploit the observation 
that the optimal β is slowly varying between neighboring 
voxels and therefore perform the optimization on a 25×25×25 
downsampled grid (internal to the cranium) and then 
interpolate β at intermediate voxels using radial basis 
functions. Second, since the local PSF reduces toward zero at 
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voxels sufficiently far from the impulse, one may divide the 
grid into K subgrids, and in each kth subgrid place Nk unity 
impulses in the input ek and predict for Nk locations 
simultaneously. The prediction accuracy is not affected 
provided that the impulses are far apart. This applies to the 
prediction of the local covariance as well. The combination of 
the downsampled grid and simultaneous prediction reduced 
the number of calculations needed from the number of voxels 
(e.g., ~5123 in 3D CBCT) to the number of subgrids. In this 
work, we placed impulses at 50 voxels apart, which divided 
the grid into 23=8 subgrids. A pseudocode outline of the 
design framework is shown in Algorithm 1.  

 
Algorithm 1: Spatially varying penalty design for maximum  

 
Input precomputed R 
for each subgrid k = 1 to K 
   Construct ek with Nk unity elements (uniform spacing) 
   Use Eq. (5-6) to predict local PSF and covariance for Nk locations 
   simultaneously 
   for each voxel j on the kth subgrid 
          Use Eq. (7-9) to compute MTF, NPS, and  at different β  
          Estimate β that maximizes  

   end for  
end for 
for each voxel not on the grid 
   Interpolate β based on the optimal β on the grid 
end for 
return a β map 

 

III. EXPERIMENTAL RESULTS 
We evaluated the proposed penalty in simulation studies 

using the 3D digital head phantom shown in Fig. 2(a-b). The 
digital phantom was created by performing a CT scan of a 
realistic physical head phantom at high dose and setting all 
soft tissues (including the brain) to a constant value (40 HU). 
The resulting phantom preserves realistic bone attenuation and 
exhibits no noise or artifact in soft tissue. A system geometry 
previously identified for a dedicated CBCT head scanner [2] 
was used, with a 100 cm source-to-detector distance, 55 cm 
source-to-axis distance, and 0.556 × 0.556 mm2 detector pixel 
sizes. Projections (N = 720) without noise and with Poisson 
noise were simulated over 360° using 2×105 photons per 
detector pixel. Images were reconstructed with 390×485×498 
voxels and 0.5×0.5×0.5 mm3 voxel sizes. Artifact corrections 
were not considered in this work. 

We first validated the prediction of 3D local MTF and NPS, 
including locations throughout the brain and adjacent to the 
cranium. Figure 2(c-d) shows the 3D local MTF and NPS at 
four locations denoted in Fig. 2 with a nominal β value for this 
dataset (106.4). In each plot, the left side shows the prediction 
from Eq. (5-8), and the right side shows the measurements 

from PWLS reconstructions. For prediction, we used 100 
iterations of the conjugate gradient (CG) algorithm in Eq. (5) 
for complete convergence of the local PSF, and we applied the 
CG algorithm twice in Eq. (6) to achieve convergence in the 
local covariance. For measurements, the local PSF was 
measured by subtracting two PWLS reconstructions with and 
without an impulse (no noise added), and local covariance was 
measured from a large ensemble (n = 100) of PWLS 
reconstructions with different noise realizations following the 
method in [9]. 100 iterations of separable quadratic surrogate 
updates [11] were performed to achieve a nearly converged 
PWLS image. A ROI size of 21×21×21 voxels was large 
enough to cover the main extent of the local PSF and 
covariance and was therefore used in DFT operations. For 
both MTF and NPS, good overall agreement can be seen 
between prediction and measurements at all four locations in 
both x-y plane and z direction. The spatial dependence of MTF 
and NPS can also be seen. For example, the MTF broadens 
and is less isotropic near the periphery, whereas the NPS is 
reduced at certain frequencies according to the magnitude of 
line integrals from location 1 to 4.  

To design a β that maximizes  at one location, we 
predicted the local MTF and NPS at different β values and 
computed  as a function of β. Figure 3(a) shows the 3D task 
function from Eq. (10). Figure 3(b) shows a calculation of d' 
as a function of β at the four locations in Fig. 2. At each 
location, the function  exhibited a concave shape and a 
clear optimum, suggesting the possibility of directly solving 
for β - for example, using gradient-based optimization. For 
each location, the  reduced at lower β (dominate d by high 
NPS) and higher β (dominated by over-smoothing). The 
optimal β is also seen to vary over an order of magnitude, 
suggesting the design of a spatially varying penalty. It is worth 
mentioning that we observed a lower level of agreement 
between prediction and measurement in the limit of very low β 
(~105.0), which is attributed to the high conditioning number 
of the matrices to be inverted in Eq. (5-6) and could potentially 
be solved by preconditioning. However, such disagreement is 

 
Figure 2: Validation of 3D MTF and NPS prediction. (a-b) 3D head phantom used in this work. Grayscale window: [0, 0.04] mm-1. (c-d) 
Predicted and measured 3D local MTF (c) and NPS (d) at location 1-4 denoted in Fig. 2. In each plot, the left half is prediction from Eq. 
(5-8), and the right half is measurements from PWLS reconstructions. Units are scalar for the 3D MTF and [(mm-1)2(mm)3] for the 3D NPS. 
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Figure 3: (1) A 3D task function for ICH detection. Grayscale 
window: [0, 3.3×10-4] mm-1 (b) Detectability index computed 
as a function of regularization parameter β at 4 locations 
denoted in Fig. 2. The optimal β were at . 
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not believed to affect the results, since those β values are much 
smaller than the range of interest about the optimal β value.  

Figure 4 shows the results for the proposed penalty in 
comparison to the (spatially uniform) conventional penalty 
and the (spatially varying) uniform resolution penalty. For the 
conventional penalty, a scalar β value of 106.4 was chosen to 
achieve the highest mean  in the head. For the uniform 
resolution penalty (shown simply as a point of reference as 
another form of spatially varying penalty), regularization was 
such as to encourage uniform PSF width of 0.95 mm (FWHM 
averaged over all radial directions). Fig. 4(f) shows the β map 
resulting for the proposed  optimization penalty, which is 
seen to follow a similar overall trend as the uniform resolution 
penalty: penalty strength is lower in regions of high 
attenuation near the interior skull base and is higher at the 
periphery near the cranium. Fig. 4 (b), (d), and (g) show the  
map from each penalty, each exhibiting strong spatial 
variation in  with highest value near the periphery and 
reduced performance in the interior of the cranial vault. Fig. 4 
(e) and (h) show the change in  (relative to the conventional 
penalty) achieved by the two spatially varying penalties. 
Compared to the conventional penalty, the uniform resolution 
penalty provides a 10% increase in  in the interior of the 
brain near the skull base but a slight (5%) reduction in  at 
the periphery adjacent to the cranium. This is somewhat 
expected, since the uniform resolution penalty was designed 
to achieve uniform spatial resolution (and not maximum 
detectability). Figure 4(h) shows that the proposed penalty 
improves  up to ~10% and preserves the highest  (i.e., 
does not reduce d') in comparison to the best conventional 
penalty. 

PWLS image reconstructions corresponding to each type of 
penalty are shown in Fig. 5. Three simulated 3D spherical ICH 

lesions of 2 mm diameter and 50 HU contrast were added to 
regions in the deep interior of the brain near the skull base and 
at the periphery adjacent to the cranium. The best 
conventional penalty exhibited good visualization of ICH 
adjacent to the cranium but yielded an over-smoothed image 
in the deep interior near the skull base. The uniform resolution 
penalty improved conspicuity of the lesion (particularly near 
the skull base) and achieved a more uniform appearance of 
spatial resolution in the image compared to the conventional 
penalty. The proposed d'-optimization penalty yielded 
improved visualization of ICH in both regions, particularly in 
the deep interior region near the skull base. 

IV. CONCLUSION 
Image reconstruction in a manner that specifically 

incorporates a formulation of the imaging task and optimizes 
penalty design with respect to local, task-based imaging 
performance presents a promising approach for "task-driven 
image reconstruction." For high-quality CBCT imaging of the 
head, this paper shows that the spatially varying penalty 
strength could be reliably predicted with respect to an ICH 
detection task, providing optimal detectability at each location 
throughout the 3D image. The proposed penalty demonstrated 
improved or equivalent visualization of ICH in PWLS images 
compared to a conventional penalty and supports the 
application of CBCT for ICH detection at the point of care in 
the ICU and/or operating theater. 
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Figure 5: Image reconstruction of a 3D spherical ICH lesion of 2 
mm diameter and 50 HU contrast. Grayscale: [-50, 130] HU. 
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Figure 4: Maps of penalty strength and detectability in ICH detection. (a-b) Scalar β and resulting d' distribution for the conventional PWLS 
penalty. (c-e) For the uniform resolution penalty: (c) product of certainty ( ) and a scalar β, (d) the resulting  distribution, and (e) 
relative change in  compared to the conventional penalty (f-h) For the proposed d'-optimization penalty: (f) the β map, (g) the resulting  
distribution, and (h) relative change in  from the “best” conventional penalty. 
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Abstract—2D-3D deformation has emerged as a new CBCT 

reconstruction technique through deforming a prior high-quality 
CT/CBCT image to the new on-board CBCT image, guided by 
limited-view projections. The accuracy of this intensity-based 
technique, however, is often limited in low-contrast image regions 
with subtle intensity differences. The solved deformation vector 
fields (DVFs) may also be biomechanically unrealistic. To address 
these problems, this study developed a biomechanical modeling 
guided CBCT reconstruction technique (Bio-recon), through 
combining the 2D-3D deformation with finite element analysis 
based biomechanical modeling of anatomical structures. The 
reconstruction accuracy of the Bio-recon technique was compared 
to that of the 2D-3D deformation technique using eleven lung 
cancer patients, both in the image domain and in the DVF domain 
through clinician tracked lung landmarks.    

I. INTRODUCTION 
BCT imaging has nowadays become the routine clinical 
practice for image-guided radiation therapy. However, 

frequent imaging for daily treatments introduces additional 
radiation dose to patients, increasing the risk of secondary 
cancers. In addition, the CBCT image quality is often impaired 
by increased scatter with less accurate Hounsfield units. 
Recently, a new CBCT reconstruction approach has been 
investigated, which reconstructs the new on-board CBCT 
through deforming a previously acquired high-quality 
CT/CBCT image [1-4]. The deformation of the 3D image is 
guided by the acquired 2D on-board projections (2D-3D 
deformation). With the high-quality image as prior information, 
the imaging dose can be substantially reduced by acquiring 
much fewer projections for reconstruction. The deformation 
approach also passes along the accurate Hounsfield units from 
the high-quality prior image to the reconstructed CBCT image, 
enabling more accurate dose calculation for radiation therapy 
[5]. 
      Currently the available 2D-3D deformation techniques are 
purely intensity-based, aiming to match the intensity maps 
between the acquired on-board projections and the simulated 
projections from the deformed CBCT images. This approach 
usually works well for high-contrast regions. However, its 
accuracy is often limited in low-contrast regions with subtle 
intensity differences. In addition, the solved deformation fields 
may not be biomechanically realistic, as the deformation fails 
to consider the elastic properties of anatomical structures. To 
address these problems, in this study we developed a 
biomechanical modeling guided CBCT reconstruction 
technique (Bio-recon), which combined the 2D-3D 
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deformation technique with finite element analysis based 
biomechanical modeling (FEM) [6-11] of anatomical 
structures. The reconstruction accuracy of the Bio-recon 
technique was evaluated using eleven lung patients and 
compared to that of the 2D-3D deformation technique.   

II. MATERIALS AND METHODS 
      In general, Bio-recon extracted the deformation fields 
generated by 2D-3D deformation at high-contrast structure 
boundaries as the boundary condition, and used this boundary 
condition to drive finite element analysis to optimize the 
deformation fields within the structure boundaries. The 
optimized deformation fields were then fed back into the 
2D-3D deformation as a new starting point for further 
optimization, which formed an iterative loop.  Details of the 
2D-3D deformation technique, the biomechanical modeling of 
lungs, and the whole work-flow of Bio-recon were introduced 
below: 

II.A. Inverse-consistent 2D-3D deformation technique  
 
      In common practices, the deformation fields were defined 
on the new CBCT image voxel grids and pointed back to the 
prior image. However, since the biomechanical modeling of 
structures was based on the prior image and the boundary 
condition was defined on the prior image, the inverse 
deformation fields defined on prior image voxel grids were also 
needed. To address this problem, in this study 
inverse-consistent [12] 2D-3D deformation was performed, 
which could be formulated as an optimization problem shown 
in Eq. 1 and Eq. 2: 
 

                                         (1)                   
 
                                                                           (2) 
 

 denotes the deformation vector field defined on the new 
CBCT image voxel grids.  denotes the inverse 
deformation vector field defined on the prior image voxel grids, 
of which the sign of values was opposite to that of   (Eq. 2). 

 denotes the high-quality prior image.  denotes the 
deformation operation.   denotes the projection matrix of the 
on-board projections  corresponding to the new CBCT image. 

 denotes the projection matrix of the simulated 
projections  corresponding to the prior image.  
computes the deformation energy [1], which is to regularize the 
smoothness of both  and .  denotes the 
weighting factor balancing the data fidelity term and the 
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deformation energy term. The symmetric terms in Eq. 1 were 
enforced to optimize the inverse-consistency of  , such that 
Eq. 2 will be able to hold. 

II.B. Biomechanical modeling of the lung  
 
      In this study the lung was modelled as an uncoupled 
hyper-elastic Mooney-Rivlin material, of which the accuracy 
was validated in previous publications [11, 13]. The uncoupled 
Mooney-Rivlin material can be described as: 

                                (3) 
 

 denotes the strain-energy.  and  denote the first and 
second invariants of the deviatoric right Cauchy-Green 
deformation tensor.  and  denote the corresponding 
material parameters for  and .  denotes the bulk modulus 
and  denotes the determinant of the deformation gradient 
tensor. In this study, we chose  and 

 as the material parameters [6, 8, 11]. 
      The lung biomechanical modeling can be described in three 
steps:  
      1. Perform lung segmentations. The lungs were segmented 
using the ITK-SNAP software [14]. By ITK-SNAP, an 
intensity threshold was first applied on the prior image to select 
the region of interest (ROI). An automatic segmentation based 
on the level-set method was subsequently performed within the 
ROI. The automatic segmentations were manually fine-tuned 
as the last step to correct the residual errors. 
      2. Based on the lung segmentation, tetrahedral meshes were 
built using the Iso2Mesh package [15]. In detail, first a coarse 
3D tetrahedral mesh was generated using Tetgen [16]. Then the 
mesh surface was extracted from the coarse mesh and 
underwent automatic check and repair. Laplacian smoothing 
was further applied to smooth the mesh surface. Based on the 
repaired and smoothed mesh surface, a new high-quality 
volumetric tetrahedral mesh was re-generated by Tetgen for 
FEM.  
      3. The boundary condition was defined as the deformation 
fields of the tetrahedral nodes on the mesh surface, which were 
extracted from the inverse deformation fields solved by 2D-3D 
deformation.  The biomechanical lung DVF was then derived 
through combining the uncoupled Mooney-Rivlin hyper-elastic 
material modeling, the tetrahedral mesh and the extracted 
boundary condition.  In this study, the FEBio package [17] was 
used to perform the final finite element analysis to solve the 
lung biomechanical DVF. 
      Note that the lung biomechanical DVF was defined on the 
nodes of the tetrahedral mesh. To convert the DVF defined on 
nodes to the DVF defined on the prior image voxel grids, the 
barycentric coordinates [18] of each prior image voxel were 
computed to find its corresponding tetrahedral element. Then 
the DVF of each voxel was calculated by weighting the DVFs 
of the four tetrahedral element nodes using the barycentric 
coordinates. 
      The whole work-flow of the Bio-recon technique was 
shown in Figure 1.  
 

 
Fig. 1: Flow-chart of the Bio-recon technique. 
 
II.C. Patient study and evaluation  
 
      Eleven patients were used to evaluate the efficacy of the 
Bio-recon technique, each with a 4D-CT set [8]. For each 
patient, ~80 anatomical landmarks were manually identified by 
a clinician for lung vascular and bronchial bifurcations, on both 
the end-expiration (EE) and end-inspiration (EI) 4D-CT phase 
images to track the lung motion. In total 872 landmarks were 
tracked for the eleven patients. For each patient, the 4D-CT EE 
phase was used as the prior CT image. The EI phase was used 
as the new image to simulate on-board projections for CBCT 
reconstruction. Different numbers of projections spreading 
across a full 360° scan angle were simulated, ranging from 5, 
10 to 20, to represent different angular sampling sparseness. 
      The reconstructed CBCT volumes were compared with the 
‘ground-truth’ 4D-CT EI volumes to evaluate the 
reconstruction accuracy via the root mean squared error 
(RMSE) metric. The solved DVFs by the Bio-recon technique, 
representing the deformation between the EE and EI phases, 
were also compared to the tracked landmark motion for 
accuracy evaluation. 
      For comprehensive evaluation, the reconstruction accuracy 
of the Bio-recon technique was also compared to that of the 
inverse-consistent 2D-3D deformation technique. Compared to 
Bio-recon, the 2D-3D deformation technique fed the DVF 
solved from the previous iteration directly into the next 
iteration as a new starting point, without performing the 
FEM-based biomechanical correction shown as steps 2-4 in the 
flow-chart of Fig. 1. 
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III. RESULTS 

 
Fig. 2: Work-flow of the lung biomechanical modeling. 
 
      As shown in Fig. 2, the tetrahedral mesh was generated 
from the lung segmentation. And the FEM DVF was derived 
based on the uncoupled Mooney-Rivlin hyper-elastic material 
model and the boundary conditions extracted from 2D-3D 
deformation-generated DVFs. The FEM DVF was color-coded 
with hotter regions indicating larger deformations. 

 
Fig. 3: Slice cuts of the ‘ground-truth’ 4D-CT EI image, the 
reconstructed CBCT image by the 2D-3D deformation technique, the 
reconstructed CBCT image by the Bio-recon technique, and the 
corresponding difference images between the ‘ground-truth’ and the 
reconstructed images. 10 projections were used for reconstruction.   
 
      Fig. 3 compares the reconstruction accuracy between the 
2D-3D deformation technique and the Bio-recon technique 
using difference images. As can be clearly seen, Bio-recon has 
substantially reduced the mismatches inside the lung. 
 
Table 1: RMSE results between the reconstructed images and the 
‘ground-truth’ 4D-CT EI phase images for each patient, based on 
different angular sampling sparseness (by different numbers of 
projections) and different reconstruction methods. ‘Original’ RMSE 
shows the RMSE between the prior image (4D-CT EE phase) and the 
‘ground-truth’ new image (4D-CT EI phase). 

Patients Original 
RMSE 

RMSE after CBCT Reconstruction 

2D-3D 
Deformation:  

5 proj 

Bio-recon:  
5 proj 

2D-3D 
Deformation:  

10 proj 

Bio-recon:  
10 proj 

2D-3D 
Deformation:  

20 proj 

Bio-recon:  
20 proj 

P01 15.32% 11.15% 11.19% 10.31% 9.62% 9.19% 8.60% 

P02 18.89% 13.60% 13.97% 13.55% 12.01% 10.07% 10.10% 

P03 14.11% 10.67% 9.55% 10.20% 8.52% 8.22% 7.76% 

P04 19.49% 15.87% 12.77% 14.06% 10.45% 9.46% 8.92% 

P05 20.07% 13.81% 13.69% 11.31% 11.11% 9.51% 9.25% 

P06 13.18% 9.21% 8.97% 8.63% 8.07% 7.14% 7.17% 

P07 18.24% 13.41% 11.23% 10.17% 9.17% 8.70% 7.89% 

P08 23.15% 16.06% 14.40% 15.59% 11.50% 9.95% 9.46% 

P09 18.52% 11.65% 11.62% 10.39% 10.50% 9.35% 9.51% 

P10 20.90% 17.02% 14.63% 15.76% 12.22% 12.06% 9.99% 

P11 19.64% 13.03% 12.94% 12.45% 11.07% 10.01% 9.34% 

Average 
± S.D. 

18.32 ± 
2.86% 

13.23 ± 
2.32% 

12.27 ± 
1.83% 

12.04 ± 
2.29% 

10.39 ± 
1.32% 

9.42 ± 
1.18% 

8.91 ± 
0.91% 

Table 2: (Average ± S.D.) Residual errors of DVF tracked landmark 
motion between the prior image and the reconstructed image for each 
patient, based on different angular sampling sparseness (by different 
numbers of projections) and different reconstruction methods. 
‘Landmark motion’ shows the (average ± S.D.) motion amplitude of 
landmarks manually tracked between the prior image (4D-CT EE 
phase) and the ‘ground-truth’ new image (4D-CT EI phase). 

Patients 
Landmark 

Motion 
(mm) 

Residual errors after CBCT reconstruction (mm) 

2D-3D 
Deformation: 

5 proj 

Bio-recon:  
5 proj 

2D-3D 
Deformation: 

10 proj 

Bio-recon:  
10 proj 

2D-3D 
Deformation:  

20 proj 

Bio-recon: 
20 proj 

P01 6.4 ± 3.1 5.5 ± 2.1 3.6 ± 1.9 5.5 ± 2.1 2.9 ± 1.6 5.4 ± 2.1 2.7 ± 1.4 

P02 6.2 ± 6.9 5.3 ± 5.6 3.9 ± 4.1 5.7 ± 6.1 3.4 ± 3.4 4.8 ± 5.1 3.0 ± 2.7 

P03 6.8 ± 3.8 5.6 ± 3.3 3.0 ± 1.9 5.9 ± 3.5 2.7 ± 1.6 4.8 ± 3.1 2.7 ± 1.5 

P04 6.3 ± 4.8 5.8 ± 4.3 3.7 ± 3.0 5.7 ± 4.2 3.2 ± 2.7 4.6 ± 3.2 2.9 ± 2.4 

P05 5.4 ± 2.7 4.6 ± 2.4 3.3 ± 1.9 4.3 ± 2.3 3.0 ± 1.7 3.7 ± 2.3 2.6 ± 1.5 

P06 6.2 ± 2.2 4.7 ± 1.4 2.8 ± 1.4 5.2 ± 1.6 2.8 ± 1.4 3.9 ± 1.6 2.7 ± 1.5 

P07 4.3 ± 3.2 4.0 ± 2.6 2.8 ± 1.7 3.6 ± 2.4 2.8 ± 1.8 3.5 ± 2.4 2.8 ± 2.0 

P08 6.1 ± 5.1 5.4 ± 4.3 3.4 ± 2.3 5.4 ± 4.4 3.0 ± 2.0 4.1 ± 3.6 2.8 ± 1.9 

P09 4.3 ± 2.6 3.4 ± 2.1 2.0 ± 1.4 3.2 ± 2.1 1.9 ± 1.3 2.8 ± 2.0 1.7 ± 1.2 

P10 8.3 ± 6.4 7.8 ± 5.8 4.9 ± 4.2 7.6 ± 5.6 4.2 ± 3.4 6.8 ± 4.9 3.7 ± 3.0 

P11 10.8 ± 7.8 8.1 ± 5.3 5.1 ± 3.8 8.6 ± 5.8 4.5 ± 3.2 7.8 ± 5.3 3.8 ± 2.7 

Average 
± S.D. 6.5 ± 5.1 5.5 ± 4.1 3.5 ± 2.9 5.6 ± 4.3 3.1 ± 2.4 4.8 ± 3.8 2.9 ± 2.1 

 
      Table 1 and Table 2 show the RMSE values and the residual 
errors of DVF tracked landmark motion, respectively. The 
Bio-recon technique offered better accuracy as compared to the 
2D-3D deformation technique, especially in Table 2. 

IV. DISCUSSION 
 
      Bio-recon has achieved substantial improvement as 
compared to the 2D-3D deformation technique, especially on 
the DVF accuracy. The results suggested that incorporating 
organ biomechanical modeling into reconstruction helped to 
achieve more realistic DVFs based on the material elastic 
properties, which could be viewed as additional constraints that 
helped the DVF optimization. Since FEM derived the 
biomechanical DVFs through considering each tetrahedral 
element in the organ mesh, it also helped to correct the 
erroneous DVFs in the low-contrast regions not well deformed 
by the intensity-based 2D-3D deformation technique. The 
corrected low-contrast regions in turn helped to improve the 
DVFs in the high-contrast regions through the iterative 
approach of Bio-recon, which generated better deformed 
images in both low-contrast and high-contrast regions as 
compared to the 2D-3D deformation technique (Fig. 3).  
      Another interesting observation is that using 20 projections 
for reconstruction, the superiority of the Bio-recon technique 
over the 2D-3D deformation technique on the RMSE values 
became less prominent (Table 1). However, the Bio-recon 
technique still enjoyed much better DVF accuracy as compared 
to the 2D-3D deformation technique (Table 2). It suggested that 
good RMSE values did not necessarily indicate high-quality 
deformation and reconstruction. The DVFs could be unrealistic, 
even with a high RMSE value, which would lead to substantial 
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errors if the solved DVFs were used for motion tracking or 
treatment dose accumulation in radiation therapy. 
      Constant elasticity parameters were used in this study for all 
the patients. Previous studies suggested that the elastic 
parameters were usually patient-specific, depending on the age, 
the disease type and the disease location [8]. Biomechanical 
modeling based on patient-specific elasticity parameters may 
further improve the reconstruction accuracy, which will be 
investigated in the future.  
      Currently the lung was modeled as an isotropic, 
homogeneous organ with the same elasticity parameters. In 
reality, the biomechanical parameters of the lung can vary 
between different lung lobes and between the lung and the 
tumor. The elasticity parameters are also different between the 
parenchyma, the lung vessels, and the lung bronchial trees. 
Though previous studies have validated the accuracy and 
efficacy of modeling the lung as a whole homogeneous organ 
[6, 8], further studies are warranted to investigate the potential 
benefits of exploring the lung heterogeneity [10] to further 
improve the reconstruction accuracy.   In addition, 
biomechanical modeling of other structures, including the spine, 
the ribs and the chest wall, may also help to further improve the 
reconstruction accuracy. 
      In this study, the accuracy of the developed Bio-recon 
technique was evaluated using eleven lung cancer patients. The 
Bio-recon technique is also promising for the liver CBCT 
reconstruction, of which the accuracy usually suffers from low 
soft-tissue contrasts inside the liver. Application of this 
technique to improve the reconstruction quality of liver CBCT 
is currently in progress.      
 

V. CONCLUSION 

      The Bio-recon technique substantially improved both the 
reconstructed image quality and the DVF accuracy, showing 
the benefit of incorporating material biomechanical properties 
into DVF optimization and image reconstruction.  
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I. INTRODUCTION

In computed tomography (CT) reconstruction the image
function to be reconstructed, f(x, y, z), is generally as-
sumed to be stationary during the acquisition. When this
assumption is violated motion artifacts become apparent in
the reconstructed images due to the inconsistency between
projections as the image function is really a function of
time as well, f(x, y, z, t). Motion compensation techniques
have been developed which make an estimate of the time
dependent changes and account for these changes in the
reconstruction. Several such approaches have been developed
in the literature. One specific implementation of a motion
estimation and correction algorithm is the SnapShot Freeze
(SSF) algorithm from GE Healthcare [1]. The SSF algorithm
uses three reconstructed image volumes as input: identifies
the coronary arteries, estimates the motion in the coronary
arteries and compensates for the motion near the coronary
arteries. In this work we present a straightforward method
which may be used in conjuction with a vessel specific
motion estimation and compensation approach. The aim of this
algorithm is to reduce the residual motion artifacts adjacent
to the cardiac chambers. These artifacts are caused by the
fact that the chambers (e.g. the left ventricle (LV)) may
deform rapidly during the acquisition. Since the contrast in
the LV is much greater than the surrounding myocardium these
inconsistencies can lead to false hyper-attenuation and hypo-
attenuation in the myocardium. The technique proposed here
aims to mitigate these errors by correcting for the change in
the contrast enhanced region throughout the scan. This method
is termed Motion Evoked Artifact Deconvolution (MEAD), as
this approach is analogous to a deconvolution operation. In the
case of cardiac imaging MEAD may be applied in combination
with targeted motion estimation and compensation processing
such that the images will have been corrected in both the
vessels and the myocardium. MEAD is also computationally
inexpensive compared with fully iterative techniques aimed at
solving the same problem.

II. METHODS

A. Algorithm Description

This algorithm has been developed in a general manner
and may apply to a variety of areas where motion artifacts
exist. Since the primary motivation of this work is for cardiac
imaging we use cardiac specific terminology below. However,
one may directly substitute the contrast filled myocardium

with any other image feature that generates artifacts in the
neighboring tissue due to significant differences in attenuation
values. The primary goal of this algorithm in this specific
context is to correct for the areas of false hyper-attenuation
and hypo-attenuation in the myocardium which are caused
by changes in the contrast throughout the acquisition time
window. In this section we provide a description of the
algorithm. We first begin by defining several variables that
will be used throughout the description. For simplicity the
dependent variables are suppressed.

• ΦN
- the phase corresponding to a given set of data, (i.e.

the center phase) of that data
• N - integer number, corresponds to the prescribed phase,

where (2 ·N − 1) total phases are used
• y - projection data
• ymeas - measured projection data, assumed to be pre-

processed
• f - image data
• F - Fourier transform of the image data
• R - Radon transform, more generally the forward x-ray

projection operator
• R−1 - inverse Radon transform, more generally CT re-

construction such as FBP (Filtered-BackProjection) type,
FBPD (Filtering the BackProjection of Differentiated
data) type or iterative reconstruction.

• FFT - Fast Fourier Transform
• IFFT - Inverse Fast Fourier Transform
• HT - Hard Thresholding operation
• LP - Low Pass filter
• con - contains only high contrast material such as iodi-

nated contrast and bone
• residual - the difference between the reconstruction incor-

porating changing contrast and the reconstruction of the
contrast at one phase

• mead - the final output image, (Motion Evoked Artifact
Deconvolution)

The general flow for the algorithm is depicted in Figures
1 and Figure 2. The assumption is that some contribution to
artifacts in the myocardium is caused due to inconsistencies
caused by the change of shape of the highly attenuating
chamber, which is directly adjacent to the myocardium. These
are the artifacts which this algorithm aims to address, and
artifacts such as beam hardening are outside the current scope.
This algorithm can be viewed simply as two steps: Step 1-
create a forward model to reproduce the artifacts due to motion
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of the chamber (Figure 1), Step 2- subtract the motion evoked
artifacts from the initial image (Figure 2). This process is
analogous to a deconvolution of the artifacts caused by the
motion of the contrast filled chamber.

We begin by explaining Step 1, where the forward model of
the motion artifacts is created. Here the term forward model
should not be confused with the forward projection operator;
rather, the forward motion model is the generation of an
image which simulates the motion artifacts. Starting from the
measured projection data multiple images are reconstructed at
different phases, assume here (2 · N − 1) total phases are
used, where the image fΦN

corresponds to the prescribed
image. After images are reconstructed at multiple phases a
hard thresholding operation is applied to the images such that
the only non-zero contributions in the image are above a given
HU (Hounsfield Unit) threshold. Thus after the thresholding
only bone, injected contrast and foriegn material such as
implanted metal will have non-zero values. A possible varation
not demonstrated here would be to use multiple thresholding
levels such that the values below a certain threshold would also
be included. For the purpose of this description the abreviation
(con) will be used here as in this case the thresholding is
performed with the aim of identifying the areas of high
contrast (con) relative to tissue and motion of these objects
can induce artifacts. A forward projection operation in the
native coordinates then may be used to estimate the projection
through the reconstruction at each phase. These projections
may then be combined using a smooth feathering weight for
the contributions from the basis images. Finally the image
may be reconstructed using a standard image reconstruction
algorithm such as the Parker weighted FBP [2] (Figures 1).
This image, f con

Φ1:Φ(2·N−1)
, will contain the motion artifacts

(hyper/hypo myocardial values) caused by inconsistencies in
the high contrast object throughout the scan. Given the known
relationship between projections and Fourier space we can also
formulate this method in frequency space. For parallel-beam
tomography the Fourier Slice Theorem provides a direct link
between projection space and Fourier space. In the case of
cardiac imaging using third generation geometry the mapping
will not be exact as the Fourier Slice Theorem assumes that
parallel projections are used in the acquisition. The difference
lies in the fact that there is a slight time shift between the
true parallel projection and the rebinned fan-beam projection.
However, since this is a fraction of the time of the scan we do
not believe this approximation will limit to the performance
of this technique. Since the Fourier transform is significantly
faster the forward projection in Figure 1 can be replaced
with FFT , the view angle based smooth weighting of the
projections is replaced with smoothing varying angular masks
that are multiplied by the FFT (where the angular masks
applied to neighboring basis images sum to unity), and the
FBP reconstruction is replaced with the IFFT .

After obtaining the forward motion model, f con
Φ1:Φ(2·N−1)

, we
turn to Step 2 where we subtract the motion evoked artifacts
from the original image. First the difference is taken between
the forward motion model and the high contrast only image

ymeas

R−1

fΦN
... ...fΦ1

HT

fΦ(2·N−1)

f con
ΦN

f con
Φ1

f con
Φ(2·N−1)

R (FFT )

F con
ΦN

F con
Φ1

F con
Φ(2·N−1)

F con
Φ1:Φ(2·N−1)

R−1 (IFFT )

f con
Φ1:Φ(2·N−1)

Fig. 1. Schematic diagram of the MEAD algorithm operating in Fourier
space, where the description of each step is given in the main text.

f con
ΦN

f con
Φ1:Φ(2·N−1)

fresidual
ΦN

- =

LP

f̃residual
ΦN

fΦN fmead
ΦN

- =

Fig. 2. The schematic operation to calculate the residual artifact image
fresidual
ΦN

and subtract a filtered version of it from the original image fΦN
.

corresponding to the prescribed phase. This result is referred
to here as fresidual

ΦN
and represents the artifacts evoked from

high contrast objects. In the case that N is much less than
the number of acquired views a low pass filter is applied to
the residual to ensure that high frequency artifacts are not
propagated to the final image. This choice is re-enforced by
the knowledge that these motion evoked artifacts are low in
frequency for clinically realistic motion of the high contrast
object.

This concludes the general description of the MEAD algo-
rithm. An additional step which is taken for the cardiac data
is to define a map in image space where SSF is performed.
The SSF map has smooth transitions between the regions
where SSF is applied and where no SSF corrections were
made. This mask is used such that the correction image,
f̃residual
ΦN

, is set to zero within the region where SSF has been
applied. In this manner the MEAD algorithm will not make
any contribution to the reconstruction of the coronary arteries.
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This behavior is desired as the SSF algorithm provides superior
vessel correction as a true motion estimation and compensation
algorithm is required for the coronary vessels.

Note, also that this algorithm may be applied in an iterative
manner where the MEAD algorithm is applied to each of the
input phases, and then the MEAD algorithm is applied again
using the output from the first round of MEAD processing.

B. Input Datasets

The initial evaluation of the algorithm is performed on
numerical phantoms and clinical scan data. The numerical
phantom was generated from the XCAT anatomical and mo-
tion mode [3] and the forward projections were generated with
Catsim[4]. The sample data presented here corresponds to a
heart rate of 55bpm. Clinical data was taken from a Lightspeed
VCT scanner with a gantry rotation period of 350ms. The
heart rate for the patient data presented here was in the range
of 78-80 bpm during the acquisition. The reconstructions for
the clinical data were centered on 75% RR. The simulation
data was performed with axial acquisitions with a gantry
rotation period of 280ms and the first clinical data were from
retrospectively gated helical scans. In Figure 3 we demonstrate
each of the intermediate steps needed to generate the forward
motion model for a given slice in a clinical data set (Step
1). After the forward motion model is computed it may be
used in order to subtract the motion evoked artifacts (Step 2).
For this same clinical case this procedure is demonstrated in
Figure 4. The results were not found to be highly dependent
on the threshold value used and a value of 200HU was used
for results presented here.

III. RESULTS

Numerical phantom results are shown in Figure 5 and
Figure 6. The images in Figure 5 correspond to an active
phase in the motion cycle ( 50% RR). The upper row are
the images before and after the MEAD processing and the
lower row are a subtraction from a reference image of the
static XCAT phantom. Since the phase is not exactly matched
the subtraction differences at the chamber boundaries are
expected, and one should focus on the myocardium region
in the subtraction images.

Several slices were chosen in uniform steps of 3.125mm
in a clinical data set in order to demonstrate the effect of
the MEAD processing on the reconstructed images. The first
set of images (Figure 7) was generated in slices where the
opacified chamber displayed significant motion. In addition
to the comparison of axial slices which are in the identical
location, we have included reformatted images from the AW
(Advantage Workstation) where other planes through the vol-
umes are displayed. These planes are oriented along the short
axis (Figure 8) of the heart rather than along the planes relative
to the scanner.

Finally, a demonstration of the possibility to perform mul-
tiple iterations of MEAD processing is presented. In this case
MEAD was called for each of the input phases, thus MEAD
was performed three times (i.e. the number of phases used) for

R−1

HT

FFT Comb

Fig. 3. The results of a slice from a clinical case processed with Step 1
of the MEAD algorithm, where the forward model of the motion artifacts is
generated. Note, that the format for this diagram matches that of Figure 1
where the notation was introduced.

- =

LP

- =

Fig. 4. The results of a slice from a clinical case processed with Step 2 of the
MEAD algorithm, where the residual from the forward model of the motion
artifacts is subtracted from the original. Note, that the format for this diagram
matches that of Figure 2.

iteration 1 and one time for the second iteration. The results
demonstrate that significant improvement is possible for the
second iteration of MEAD processing (Figure 9).

IV. CONCLUSIONS

An adjunct method was presented for vessel specific motion
estimation and compensation algorithms, which aims to repro-
duce motion artifacts in the myocardium and subtract these
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FBP MEAD 

|FBP-Static| |MEAD-Static| 

Fig. 5. Example images from the active motion phase of the XCAT phantom
data before and after MEAD (upper row) [-200 200] HU, and the subraction
from a static reference image (lower row) [0 50]HU.

11 

3 4 
5 

2 

XCAT ROIs 

Fig. 6. Measurement results of the regions of interest (ROIs) in the
myocardium for FBP and MEAD where the ROI locations are shown (upper
panel) and the values in the ROIs are plotted relative to the reference value
for the stationary phantom. The error bars correspond to the std deviation
within each ROI.

artifacts from the initial reconstruction. Results were presented
on phantom and clinical datasets.
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Fig. 7. Reconstruction results comparing the original image, the vessel
corrected SSF image and the SSF+MEAD correction image (HR=78-80 bpm).
[-300 300]HU

   SSF  

  SSF    SSF+MEAD  

  SSF+MEAD  

Fig. 8. Short axis reformats taken from a 3D workstation of approximately
the same slices comparing SSF and SSF+ MEAD corrections. [-300 300]HU

   SSF  SSF+MEAD 1 Iteration SSF+MEAD 2 Iterations 

Fig. 9. Reconstruction results demonstrating the feasability of multiple
iterations of MEAD processing. [-300 300]HU
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Truncation Artifact Reduction by Exploiting Data
Derivative and Image-TV Constraints in C-arm

CBCT
Dan Xia, David A. Langan, Stephen B. Solomon, Hao Lai,

Zheng Zhang, Buxin Chen, Emil Y. Sidky, and Xiaochuan Pan

Abstract—The C-arm imager is used increasingly as a cone-
beam computed tomography (CBCT) scanner in surgical and
interventional procedures to provide information about the
disease or tumor useful in guidance of its treatment. Analytic
algorithms such as the FDK algorithm are employed currently
for image reconstruction in C-arm CBCT imaging. However,
analytic algorithm reconstructions often suffer from artifacts as a
result of the presence of truncation, metal/high-contrast objects,
and other data degrading factors. Evidence exists suggesting that
optimization-based iterative algorithms may be more flexible in
dealing with the data degrading factors than analytic algorithms.
In this work, we have investigated optimization-based reconstruc-
tion from animal data collected with a clinical C-arm CBCT
scanner. In the reconstruction, we use a derivative data fidelity
term along with an image-total-variation (TV) constraint for
dealing effectively with data truncation. The results of the study
suggest that the optimization-based reconstruction with a data-
derivative fidelity term may yield images with reduced truncation
artifacts and enhanced low-contrast anatomy as compared to the
clinical FDK reconstruction.

I. INTRODUCTION

C-arm cone-beam computed tomography (CBCT) has been
shown to be of value in image-guidance interventional/surgical
procedures. For example, it has been used increasingly fre-
quently in the treatment and management of liver diseases
by yielding 3D spatial information of the diseases and and
their feeding arteries, thus aiding in treatment planning and
assisting interventional radiologists to navigate a catheter to
the disease sites for embolization procedures [1]. In current
clinical C-arm CBCT, analytic algorithms such as the FDK
or its variants are used for image reconstruction from data
are collected. The analytic algorithms require projection data
with densely sampled views, and they are susceptible to data
degrading factors such as data truncation, metal/high-contrast,
and cone-beam artifacts.

In recent years, there exists an increased level of interest in
optimization-based reconstructions, as evidence suggests that
they may be more flexible in dealing with the data degrading
factors, and in accommodating non-circular scanning config-
urations of practical interest, than analytic algorithms [2], [3].
In this work, we investigate optimization-based reconstruction

D. Xia, Z. Zhang, B. Chen, E. Y. Sidky, and X. Pan are with the Department
of Radiology, The University of Chicago, Chicago, IL 60637, USA.

D. A. Langan and H. Lai are with GE Global Research Center, Niskayuna,
NY 12309, USA.

S. B. Solomon is with Memorial Sloan Kettering Cancer Center, New York,
NY 10065, USA.

Figure 1. Picture of GE Innova 4100 Angiographic Imaging System used in
this work to acquire C-arm CBCT data.

from animal data collected with a clinical C-arm CBCT
scanner. In the reconstruction, the image is designed by an
optimization program in which a derivative data fidelity term
is added, along with an image-total-variation (TV) constraint,
for dealing effectively with data truncation. We apply a primal-
dual algorithm developed by Chambolle and Pock (referred
as to CP algorithm) to reconstruct the image by solving the
optimization problem [4]. Data containing truncation were
collected from a swine by use of the C-arm CBCT system. The
results of the study suggest that the optimization-based recon-
struction with a data-derivative fidelity term may yield images
with reduced truncation artifacts and enhanced low-contrast
anatomy as compared to the clinical FDK reconstruction.

II. MATERIALS AND METHODS

A. Data acquisition

A C-arm system (GE Healthcare, Innova 4100 Angiographic
Imaging System) as shown in Fig. 1 was used to acquire the C-
arm CBCT data. This system consists of an X-ray source and
a flat-panel detector, mounted onto the opposing ends of the
C-arm. The distances from X-ray source to the rotation center
and to the detector are 720 mm and 1165 mm, respectively.
A swine was scanned at Memorial Sloan Kettering Cancer
Center with clinical protocols, 148-view projection data over
an angular range of 200 degrees were acquired. Since the field
of view (FOV) of this C-arm CT system can not cover the
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whole transverse section of the scanned swine, the projection
data was truncated. Since the trajectory of the X-ray source
mounted on a C-arm gantry is in general not an ideal circular
trajectory due to mechanical flexion and other factors, a
geometric projection matrix representing the mapping between
detector and image spaces [5] was incorporated into the image
reconstructions to account for the realistic scanning geometry,
.

B. Optimization-based image reconstruction
1) Optimization-based reconstruction program: A process

of a C-arm CBCT imaging can be modeled by a linear discrete-
to-discrete model,

g = Hf , (1)

where vectors g and f denote the discrete model data and
image, and system matrix H describes cone-beam X-ray
transform. For the practical C-arm imaging, the actual C-
arm scanning geometry is taken into account by incorporating
the geometric projection matrix into the system matrix H.
the constrained optimization problem can be mathematically
described as: [6]

f∗ = argmin
f

DW (gm, Hf) s.t. ||f ||TV ≤ γ and fi ≥ 0,

(2)
where ||f ||TV denotes the image total variation (TV), which
is �1-norm of the gradient magnitude image, parameter γ >
0 is used to control the TV of the reconstructed image, the
weighted �2-norm data fidelity, defined as

Dw(gm, Hf) = ‖Fc(Hf − gm)‖22 , (3)

Fc = (1−c)Du+cI, I is the identity matrix, and Du depicts
an antisymmetric matrix representing a finite differencing
along the u-direction. When parameter c = 1, Dw becomes
the regular data-�2 norm given by

D�2(gm, Hf) = ‖(Hf − gm)‖22 . (4)

Parameter c controls the contributions of D�2 and Du to the
optimization program. In this work, the operator Du represents
a convolution with a 3 point kernel [−1, 0, 1]. Since the
operator Du de-emphasizes the low-frequency components of
the data, it may lower the sensitivity of the reconstruction to
low-frequency data artifacts due to the data truncation. On
the other hand, the second term, cI in Fc is introduced to
compensate for the potential loss of the reconstruction gray
level due to Du. It can be observed that parameters γ and
c play important roles in determination of the reconstruction
properties and the selection of these parameters, in general,
depends on the practical clinical tasks. Details about the
selection of parameters will be presented in the conference.

2) Reconstruction algorithms: The primal-dual algorithm
developed by Chambolle and Pock [7], [6] can be used to solve
convex optimization problems, including that in Eq. (2), for
image reconstruction in CT. In this work, we have tailored the
CP algorithm to reconstructing images from truncated C-arm
CBCT data. The details about the tailoring and implementation
of the algorithm will be presented at conference.

3) practical convergence conditions: The convergent con-
ditions for the CP algorithm include (a) the TV value and Dw

approach their respective constraint parameter values selected,
and (b) the conditional primal-dual (cPD) gap becomes zero.
However, these conditions cannot be achieved in practical
reconstructions because it would take infinite number of iter-
ations without a computer precision constraint. Therefore, in
this work we adopted practical convergence conditions which
will be discussed in detail at the conference.

III. RESULTS

Using the CP algorithm to solve the optimization program
defined in Eqs. (2) and (3), we have performed image recon-
structions from the swine data acquired with the C-arm CBCT
system. Images were reconstructed on a 3D array of 600 x
800 x 660 of cubic voxels of size 0.464 mm. It is important
to select appropriate program parameters c and γ for given
data, and we will report at the conference how the parameters
can be determined in a study. In the work, c and γ are
chosen to be 0.05 and 12000. With the practical convergence
conditions defined, we obtained the convergent reconstructions
and display them, along with the FDK reconstructions, in Fig.
1. In an attempt to demonstrate the effect of the data-derivative
fidelity term in the optimization program on the reduction of
data truncation, we have also conducted image reconstruction
by solving the optimization problem in Eq. (2) with c=1.0,
i.e., without the data-derivative fidelity term.

For a reference, we display in Fig. 2a FDK reconstructions
within a set of coronal, sagittal, and transverse slices of
the swine. It can be observed that the reconstructions suffer
from severe streak artifacts caused by data truncation and
other physical factors. In Fig. 2b, we display the convergent
reconstructions obtained by solving the optimization program
without the data-derivative fidelity term, i.e., c=1.0. While the
streak artifacts due to data truncation and other physical factors
are reduced in the reconstructions, some high and low intensive
(i.e., cupping) artifacts appear in the peripheral regions (or
around the FOV edge) in the reconstructions due to the lack of
correction for transverse truncations. On the other hand, with
the data-derivative fidelity term (i.e., c=0.05), the optimization-
based reconstructions shown in Fig. 2c minimize effectively
both types of artifacts observed in Figs. 2a and 2b. As such,
low-contrast soft-tissues may be distinguished better than other
reconstructions.

IV. CONCLUSIONS

In this work, we have investigated optimization-based recon-
struction from truncated swine data collected with a clinical
C-arm CBCT scanner. In the study, the image is specified by an
optimization program in which a derivative data fidelity term is
added, along with an image-total-variation (TV) constraint, for
dealing effectively with data truncation; and the CP algorithm
was tailored to reconstruct the image by solving the optimiza-
tion problem. Visual inspection of the reconstruction results
reveals that, with the appropriately designed optimization
program and algorithm, images can be obtained with quality
improved, in terms of streak artifact reduction and low contrast
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(a) (b) (c)

Figure 2. Reconstructed images of the swine within a set of coronal (row 1), sagittal (row 2), and transverse (row 3) slices obtained by use of the FDK
algorithm (a) and the CP algorithm with c=1.0 (b) and c=0.05 (c), respectively. The display window is [0.12, 0.28] cm−1.

enhancement, on those of the clinical FDK reconstruction.
The study may bear implications for an enhanced practical
utility of C-arm CBCT imaging in surgical and interventional
procedures.
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Reduction of beam hardening artifacts on real
C-Arm CT data using statistical polyenergetic

image reconstruction
Richard Bismark, Robert Frysch, Georg Rose

Institute for Telematics and Medical Engineering, University of Magdeburg, Germany

Abstract—This work aims for an implementation
of a three dimensional polyenergetic statistical re-
construction (PSR) technique by A. Elbakri and
J. A. Fessler [1] which can be used for real x-ray
computed tomography data from setups like C-Arm
CT. Prior knowledge of the x-ray spectrum and
the material composition of the object is generally
necessary, whereas a pre-segmentation of the object
into different materials is not. The well-known beam
hardening artifacts inside the reconstructed volume
(cupping, streaks and shadows) should not occur
since the algorithm applies a physical model of the x-
ray propagation through the reconstruction volume.
We assume that the object consists of a known num-
ber of materials. Furthermore, we assume one voxel
can only contain an overlap of at most two materials,
depending on its density value. The measurements
are performed on a pig cadaver head with a C-Arm
CT system. In case of a metal presence inside the
object, we achieved an increase in image quality
with a reduction of beam hardening artifacts. We
compared the PSR with a filtered-back projection
and a monoenergetic iterative reconstruction with a
preprocessed water correction for beam hardening.
Additionally, we investigated the impact of the de-
tector response function in the reconstruction. The
results are promising for clinical imaging with metal
implants or needles.

Index Terms—Beam hardening, C-Arm CT,
Cone beam CT, EM Algorithm, Flat panel detector,
Metal artifacts, Polychromatic statistical iterative
CT-Reconstruction

I. INTRODUCTION
X-ray computed tomography imaging is a widely

used technique, especially as diagnostic method in
clinical daily routine. The most common reconstruction
method is the filtered-back projection (FPB). The
FBP image suffers from well-known beam hardening
artifacts due to the nonlinear absorption process which
is not taken into account in the reconstruction method.
Another disadvantage of the FBP is its need for certain
scanning geometries such as circle trajectories. Statis-
tical methods can include arbitrary scanning trajecto-

ries, prior knowledge like object constrains and variance
properties.

The higher the energy of the photons, the lower the
attenuation. This causes an increase in mean energy of
a polyenergetic x-ray beam. Thus, the x-ray radiation
gets “harder” while propagating through an object.
As a consequence, the effective attenuation coefficient
of the medium decreases with the penetration depth
which is the main reason for the cupping artifact. Beam
hardening effects become even more important at the
edges between different material types and can lead to
streak and shadow artifacts in the reconstructed image.

Common methods to reduce beam hardening arti-
facts are based either on preprocessing of the measured
data, like a water correction [2], [3] or a post image
processing of the reconstructed image.

Another approach is based on dual energy CT. Two
different measurements of the same object with two
different x-ray spectra deliver two different energy de-
pendend reconstructions. This fact enables the splitting
of the attenuation coefficients into contributions of the
Compton effect and the photoelectric effect. The main
drawback is the need for two x-ray spectra which re-
sults in increased patient dose and measurement effort.

Theoretical background

Our proposed method is based on the iterative
polyenergetic statistical reconstruction (PSR) algo-
rithm by Elbakri et al [1], [4]. This method uses a phys-
ical model of the absorption process and incorporates it
into an expectation maximization approach. Therefore,
the statistical character of the radiation is incorporated
for means of noise reduction. That combines the prop-
erties of statistical weightings with the polyenergetic
characteristic of the measured intensities.

The algorithm monotonically decreases a penalized
likelihood cost function using quadratic surrogates and
Huber penalty regularization. With [. . .]+ denoting the
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non-negativity constraint, the update step of voxel j is
written as

ρj →
⎡
⎣ρj −

MN̂j + β ∂S
∂ρj

dj + β ∂2S
∂ρ2

j

⎤
⎦

+

. (1)

Here, β ∂S
∂ρj

and β ∂2S
∂ρ2

j
are terms of a regularization

(smoothness constraints) with an appropriate penalty
potential S(ρ) regarding only each ρj voxel’s nearest
neighbors. M is a scalar which is proportional to the
size of a used subset ξ of projections to update the
density ρj in a voxel j.

dj :=
∑

k

m2
k (Eeff)

∑
i

aijγiYi (2)

Equation 2 basically represents an iteration indepen-
dent back projection of the measured intensity Yi which
can be calculated once as a preprocessing step. γi =∑

j aij denotes the path length through the object.
The effective energy of the x-ray beam with an energy
spectrum X(E) is given by the centroid

Eeff =
´

E · X (E) dE´
X (E) dE

. (3)

N̂j contains a forward projection Ȳi of the current
volume ρj which is compared with the measured inten-
sities Yi and backprojected afterwards. The projection
model for the ith ray is the energy-dependent Lam-
bert–Beer law:

Ȳi =
ˆ

dE Ii (E) exp
{

−
∑

k

mk (E) sk
i (ρ)

}
. (4)

Thereby, sk
i (ρ) :=

∑
j ak

ijρj is a classical forward
projection of voxels consisting of material k. Ii (E) is a
blank scan containing the information of the initial x-
ray spectrum and the detector response. mk (E) is the
known energy dependence [5] of the kth material and
ak

ij = aijfk
j are the geometry factors combined with

the information which material the voxel consists of.
Elbakri et al [4] used the following choice:

fk
j =

{
1 voxel j belongs to the kth material
0 else

. (5)

N̂j can be written as

N̂j =
∑
i∈ξ

∑
k

ak
ij

(
1 − Yi

Ȳi

)
∂Ȳi

∂sk
i

. (6)

This type of polyenergetic reconstruction method
needs a presegmentation of the reconstructed volume.
In a follow up, the authors expanded the method

with a “Displacement Model” [4] which allows material
mixtures in voxels.

II. METHODS
We implemented a polychromatic ray-based forward

projector and a voxel-based TT-footprint backward
projector [6], [7] on GPU hardware with OpenCL
programming language. The spectrum is divided into
40 energy bins. Moreover, we assumed the object to
consist of water, bone and one specific material like
a known metal compound. Depending on its density,
the fraction fk

j = fk (ρj) of the materials in the jth
voxel is approximated continuously by cubic splines for
material compositions. Thus, the material is just iden-
tified by its density. Regarding the energy-dependent
attenuation, a natural choice of material components
is water (similar to tissue), bone and a known metal or
metal compound.

To reach faster convergence we applied an ordered
subsets technique with two projections (circa perpen-
dicular) per update. In contrast to Elbakri et al., Ȳi and
its gradient are calculated on-the-fly from the forward
projection sk

i , instead of interpolating precalculated
values. This means, the gradient is computed explicitly
by derivating (4).

We estimated the x-ray spectrum X (E) by Monte
Carlo simulations [8], taking into account the 12°
opening angle and Cu, Al prefiltering of the incident
x-rays. Furthermore, we used preprocessed projection
data which were normalized and processed only with a
scatter correction routine. Note that this means in par-
ticular that no water correction has been applied. We
incorporated a detector response function D (E) into
the forward projection (4) to model the measurement
characteristics more accurate.

I (E) = X (E) · D (E) (7)

The C-Arm system uses a CsI scintillator-based de-
tector. Responses of NaI(Tl), CsI(Tl) and CsI(Na)
detectors above 20keV behave qualitatively similar [9].
Since the used energy bins lie in the interval from 20
to 100 keV, we used the response functions of Roberts
et al [10].

Figure 1: The used x-ray spectrum in arbitrary units [8]
(left) and the detector response function [10] in arbitrary
units which is used for the PSR algorithm (right).
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III. RESULTS

The following reconstructed volumes are iterated 100
times over all projections covering 200° of a circular
short scan.

To achieve a result with properties similar to a
clinical application, we penetrated a head of a pig
cadaver with a needle consisting of nitinol (TiNi). The
head was scanned with an angular sampling of 248
over 200° and a detector with 616 × 480 pixel and a
resolution of 0.616 mm × 0.616 mm. The tube voltage
was set to 100 kV. We reconstructed the object on a
256 × 256 × 256 grid with an isotropic voxel size of
1 × 1 × 1 mm3. For the regularization penalty we used
a Huber loss function.

The monochromatic statistical reconstruction
(MSR) is basically the same routine as the implemented
PSR, but treats all voxels as water. The MSR routine
is initialized with a monoenergetic x-ray spectrum
X(E) = δ (E − E0). Additionally, we applied water
corrected projections which are also used for the
FBP reconstruction. Thus, the MSR algorithm is a
statistical but monoenergetic iterative reconstruction.
That makes the comparison more reliable and
illustrates the consistency of the physical model of the
implementation, since the results are similar to the
FBP.

We compared reconstructed volumes of different re-
construction methods in one specific axial slice. The
standard FBP image in figure 2a has stronger shadow
artifacts than the iterative MSR in figure 2b. Both
display a similar representation of the needle. The PSR
in figure 2c has less shadow artifacts and a sharper
needle reconstruction. The difference image in figure
2d shows the compensation of the shadow artifacts and
the difference of the determined density of the needle.

Using a constant detector response or an arbitrary
linear function, we state a decrease in image quality
(see figure 2e,2f) compared with 2c where the response
function by Roberts et al [10] was used. Figure 2b shows
the slice which is similar to the FBP.

The needle has a diameter of 2 mm. This is roughly
equivalent to the measured size of the needle diameter
in the PSR volume of about 3 voxels (see figure 4). We
can state that, only the PSR can achieve a sharp and
more accurate shaped needle.

A similar measurement was done with a 5 euro cent
coin which mainly consists of Steel (∼ 94%). The esti-
mated thickness and the diameter of the reconstructed
coin are equal to the true vaules of a 5 euro cent coin
with respect tolerance induced by the voxel size. The
shadow artifacts in figure 3 caused by the coin are
much stronger then the TiNi-needle induced shadows,

(a) An obtained slice
of the FBP recon-
struction of the C-
Arm CT.

(b) Treating all
voxels like water, use
of watercorrected
projections and
initialize with a
monoenergetic
x-ray spectrum
(MSR) results in
a reconstruction
similar to the FBP.

(c) The result of
the implemented
PSR algorithm
shows a thinner
reconstruction of the
needle.

(d) The difference
image of 2b and
2c shows the
compensation of the
streak artefacts.

(e) PSR with a lin-
ear detector response
function D(E).

(f) PSR with a
constant detector
response function
D(E).

Figure 2: Comparison of slices of reconstructed volumes of
the pig head based on different algorithms.

Figure 3: FBP and PSR of the 5 euro cent coin.

since the gray values and the corresponding density are
practically zero.

IV. DISCUSSION
The comparison between the FBP and the PSR

shows that the dark regions caused by metal arti-
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facts are reduced and the structure of the surrounding
volume is clearer. However, some less darker regions
remain probably caused by scatter effects as previously
observed by Elbakri and Fessler [4]. If we initialize the
reconstruction routine with a monochromatic spectrum
and treat all voxels as water, we observe beam hard-
ening artifacts similar to the FBP, as shown in the
comparision of figure 2a and figure 2b. The comparison
of MSR and PSR is more reliable since both reconstruc-
tion methods are statistical and iterative algorithms.

To investigate the remaining shadow artifacts, a
proper scattering simulation needs to be done. We plan
to implement such a scattering into simulated pro-
jection data and compare the resulting reconstruction
with scatter-free simulations.

Another remaining issue is the quantification of the
density values of the reconstructed bones and the
needle. The reconstructed needle has a density of
1.7 gcm−3 but nitinol has a density of 6.45 gcm−3 and
the bones are in the order of 1.20 . . . 1.45 gcm−3 instead
of 1.92 gcm−3.

It is observable that the non-linear detector response
of Roberts et al [10] can suppress the shadow artifacts
with the highest success. Hence, we can suppose that a
poor assumption about the detector response can cause
artifacts such as the non-linear beam hardening itself.
The detector response is particularly important in this
regions since the non-linearity occurs for high energies
(i.e. above 60 keV).

Better results may be accomplished if more informa-
tion about the measuring process is used. For example,
it is known that the product of time and current of
the x-ray tube adapts during the scan depending on
the absorption of the object. This product is linearly
proportional to the count of emitted x-ray photons (for
constant tube voltage) and may be considered in future
work.

Another approximation made is stating I (E) in (7)
to be independent of the detector pixel. A detailed mea-
surement of the incoming spectrum for each detector
pixel could help to achieve better results and could be
a proof for the used x-ray spectrum, which is estimated
via Monte Carlo simulations. Using spectra of Spek
Calc [8] without copper filtration leads to similarly
poor results as e.g. the usage of another response
function in figure 2e and figure 2f.

Conclusion
We present a cone-beam CT implementation of the

PSR routine of I. Elbakri and J. A. Fessler [4] for
the angiographic C-arm device, showing a clear image
quality improvement. Beam hardening artifacts can be

Figure 4: Contrast profile of figure 2b and figure 2c.

reduced while the surrounding tissue is less blurred.
The overall image quality is enhanced, so that the
algorithm can make clinical diagnosis more reliable. It
seems that the response function D(E) of the detector
system plays a key role and its properties need to be
known sufficiently.
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Abstract—The forward model of single scatter in the Positron
Emission Tomography for a detector system possessing an excel-
lent spectral resolution under idealized geometrical assumptions
is investigated. This model has the form of integral equations
describing a flux of photons emanating from the same anni-
hilation event and undergoing a single scattering at a certain
angle. The equations for single scatter calculation are derived
using the Single Scatter Simulation approximation. We show
that the three-dimensional slice-by-slice filtered backprojection
algorithm is applicable for scatter data inversion provided some
assumptions on the attenuation map are justified.

I. INTRODUCTION

The Compton scatter phenomenon is inherent of such
tomographic imaging modalities as the X-ray transmission
Computed Tomography (CT) [1], the Single Photon Emission
Tomography (SPECT) [2] and the Positron Emission Tomog-
raphy (PET) [3]. Many authors succesfully apply transmission
CT algoritms for the Compton scatter imaging systems both
with the external and the internal sources of radiation. It has
been shown that SPECT can be considered as Compounded
Conical Radon Transform [4], and PET as a perturbation of the
X-ray transform [5]. In this paper we focus on the analytical
aspects of deriving an idealized forward model of the Compton
single scatter in the PET.

Idealized models of image formation in tomography are
useful instruments for exploring the potentials and limits of
reconstructive ability of data acquired in an imaging modality
of interest. Usually having the form of an integral transform or
differential equation, the idealized model is expected to answer
the principal questions: whether the available noiseless data
are sufficient to restore an object under investigation, to what
extent the objects frequencies are recoverable, etc. In the case
when an explicit inversion formula is not available, a discrete
version of the idealized forward operator can be combined
with algebraic iterative methods to answer these questions.

As compared to idealized models, there is comprehensive
Monte Carlo (MC) statistical simulation in much more wide
use. The MC modeling is able to take into account every
technical detail of photon transport and detection phenomena
and therefore there is a demand for computer resources.
The MC statistical simulation (as well as physical phantom
studies) are the ‘gold standard’ for verification of scatter
modelling. Reference [3] states: “Nevertheless, the complexity

and computing requirements of Monte Carlo simulation led
to the development of analytical simulation tools based on
simplifying approximations to improve speed of operation”.
Those analytical simulation tools are known as Single Scatter
Simulation (SSS) and they have been proven to be fast and
efficient in modeling the main scatter features together with
discreteness of detectors and many other factors [6]. While
the SSS model estimates a scatter flux detected within finite
detector elements for a range of energies, the idealized model
provides a sample value of a scatter for a given energy and
detected at a given point of detector. That is, in the idealized
model the detector system has an excellent energy resolution
and the size of each detector element approaches zero. It is
assumed that detectors count all incoming single scattered
photons of a certain energy, or equivalently, the photons
scattered once under a certain angle.

II. METHODS

The integral model of PET using primary photons [5] oper-
ates with internal sources of isotope activity f(x, y, z) within
a functionalizing medical object described by the known linear
attenuation map μ(x, y, z) and a pair of detectors A and B:

PAB = exp

⎡⎣− B∫
A

μ(x′, y′, z′)dl′

⎤⎦ B∫
A

f(x, y, z)dl, (1)

where dl, dl′ are the elements of integration along AB.
Equation (1) factorizes integrals over the activity f and the
attenuation μ, thus reducing the problem to a classical X-
ray CT provided that the data PAB undergoes attenuation
correction. Then the data can be treated as integrals of f
along the lines of response, which are thought to be trajectories
of propagation of primary (unscattered) photons with energy
E = 511 keV. The support of the attenuation map μ is a
domain D(μ), and the support of the activity function f is
a domain D(f) ⊂ D(μ) of unknown structure. The PET
problem consists in reconstruction of the activity f and its
support D(f) exploiting data PAB , recorded by a multitude
of detectors (A,B) positioned around the object. A physical
feature of PET is basically a huge amount of photon pairs
(u, v), collinearly traveling in opposite directions from the
annihilation point C, where positron resulting from isotope
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Fig. 1. (a) Primary photons (u, v) of energy E = 511 keV, originating from
annihilation point C ∈ D(f). (b) Single Compton scatter happens in point
S ∈ D(μ), v′ is a photon v with energy E′, scattering with angle θ. The P
is geometrically potential point for scatter with angle θ, however it is out of
domain μ (P /∈ D(μ), μ(P ) = 0), therefore does not contribute to the B.

decay meets some of free electons of the media μ (Figure 1
(a)). In addition to primary photons, there are the ones v′ with
energies E′ < E that undergo the Compton scatter (Figure 1
(b)), and the energies are connected to the scattering angle θ
by the Compton relation: E′ = E/(2− cos θ).

A. Single Scatter Simulation Approximation

The Single Scatter Simulation (SSS) technique [6] estimates
the expected single scatter coincidence rate in the detector pair
(A,B) as an integral over the total scatter volume V = D(μ):

SAB
V =

∫∫∫
V

dV
σASσBS

4π|AS|2|BS|2
μ

σC

∂σC

∂Ω
(εA IA + εB IB),

(2)
where

IA = e
−(

S∫
A

μdl+
B∫
S

μ′dl)
S∫

A

fdl, IB = e
−(

S∫
A

μ′dl+
B∫
S

μdl)
B∫

S

fdl.

(3)
Here, σAS and σBS are geometrical cross-sections of the
detectors A and B, f is the emitter activity, μ = μ(E, S) is the
linear attenuation coefficient depending on the photon energy
E and the scatter point S, εA = εASε

′
BS and εB = ε′AS εBS

are related to the detection efficiency for the detectors A and
B, ∂σC

∂Ω is the differential cross-section. Primed and unprimed
quantities are evaluated at the scattered and unscattered pho-
ton’s energy, respectively.

Equation (2) is symmetric in terms of A and B so that
primary photons are recorded both at A and B. We try to
modify formula (2) within idealized assumptions on excellent
energy resolution of pointwise detectors. Therefore a one-sided
version of (2) is investigated, where only one detector A is
tuned to counting the primary photons. In this case, we can
set IB = 0 in (3). Let us denote, omitting other dependencies,

Qf, μ(x, y, z) ≡
μ

σC

∂σC

∂Ω
εA e

−(
S∫
A

μdl+
B∫
S

μ′dl)
S∫

A

fdl, (4)

θ

μ(ψ,ϕ,  )r
θ

*
ψ

ϕ

Σθ

f(      ,r)ψ,ϕ

y

z

x

A B
Cxy

ASB

C
S

V

Fig. 2. A 3D geometric model of single scattering. Circular detectors are
centered at the points A and B; S is a scattering point with the polar
coordinates (ψ, ϕ, |AS|) and the scatter angle θ; Cxy is a projection of
C onto the plane xAy; C is an annihilation event. The surface Σθ is a
loci of points S of scatter under the angle θ and the spherical coordinates
(ψ, ϕ, |AS|), �ABS = θ − ϕ.

where (x, y, z) are Cartesian coordinates of the scatter point
S. Thus, we transform equation (2) to the more compact form

SAB
V =

∫∫∫
V

dV

(
σASσBS

4π|AS|2|BS|2

)
Qf, μ(x, y, z). (5)

This equation is a starting point for derivation both of total
and sample Compton scatters at a certain angle.

B. Geometrical Model of the Compton Single Scatter

The SSS approximation is sufficiently generic to deal with
the scatter volume V (or, equivalently, an integration domain,
or a support of the attenuation map μ) of an arbitrary shape.
However, for the purposes of this research, a precise boundary
of the V (and the limits in volume integral (5)) should be
explicitly specified as well as a system of coordinates needs
to be chosen. The following basic geometrical observations
are useful in analytical single scatter modeling.

Let us assume that the detectors A and B are small disks
of radius δ � 1. It is easily seen (Figure 2) that all the scatter
points S (with some scattering energy E′, or scattering angle
θ) are located on an equi-scatter surface (denoted as Σθ) of
the football-shape rotation body (denoted as Vθ) generated by
the arcs ÃSB with the detectors A and B fixed. The arcs are
parts of the circles with diameter d = |AB|/sin θ.

Let us assume that the detector B records the photons
scattered under the scattering angles θ such that θ ≤ T, for
some thresholding angle T ≤ π/2. We find it useful to exploit
the spherical coordinates (ψ, ϕ, r) with the origin at the point
A for describing the total scatter volume VT and the equiscatter
surface Σθ:

VT = {(ψ, ϕ, r)|ψ ∈ [0, 2π), φ ∈ [0, T ], r ∈ [0, |AS|], }
Σθ = {(ψ, ϕ, r)|ψ ∈ [0, 2π), φ ∈ [0, θ], r = |AS|}.

(6)

Let us recall the Law of Sines for $ABS

|AS|/ sin(θ − ϕ) = |BS|/ sin(ϕ) = d. (7)

It can be shown that

|AS| = |AB| sin(θ − ϕ)

sin θ
, |BS| = |AB| sinϕ

sin θ
. (8)
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The term
∫ S

A fdl is of multiple use in the scatter calculations.
For any scatter point S, it is expressed as follows

S∫
A

fdl =

|AS|∫
0

f(ψ, ϕ, r)dr =

|AB| sin(θ−ϕ)
sin θ∫

0

f(ψ, ϕ, r)dr. (9)

The idealized model for the total scatter (parameterized by the
threshold T and denoted as SAB

T ) will be developed using the
SSS integral (5) calculated at points within the small detectors
A and B, and then averaged over (A,B) disks area as follows

SAB
T = lim

δ→0

1

(π δ2

4 )
2

∫
A

dA

∫
B

dB

∫∫∫
VT

dVT

×
(

σASσBS

4π|AS|2|BS|2

)
Qf, μ(x, y, z).

(10)

The geometrical cross-sections of A and B incident to the rays
AS and SB are respectively

σAS ≈ (πδ2/4) cosϕ, σBS ≈ (πδ2/4) cos(θ − ϕ). (11)

Substituting (11) into (10), we estimate the total single scatter
in the following form

SAB
T =

∫∫∫
VT

dVT

(
cosϕ cos(θ − ϕ)

4π|AS|2|BS|2

)
Qf, μ(x, y, z). (12)

We change the rectangular variables (x, y, z) in (12) for other
(spherical-like) curvilinear coordinates (ψ, ϕ, θ), where ψ, ϕ
are the spherical coordinates and θ ∈ [0, T ] is the scattering
angle (while the distance |AB| is fixed), as follows

x = X(ψ, ϕ, θ) = |AS| sinϕ cosψ,

y = Y (ψ, ϕ, θ) = |AS| sinϕ sinψ,

z = Z(ψ, ϕ, θ) = |AS| cosϕ.
(13)

For changing variables in (12), we calculate the elementary
volume

dVT = dxdydz = |J |dψdϕdθ, (14)

where J is the Jacobian matrix

J =

⎡⎣ ∂X/∂ψ ∂X/∂ϕ ∂X/∂θ
∂Y /∂ψ ∂Y /∂ϕ ∂Y /∂θ
∂Z/∂ψ ∂Z/∂ϕ ∂Z/∂θ

⎤⎦ (15)

and |J | is its determinant. Due to (8), we have

|J | = |AB|3 sin2(ϕ) sin2(θ − ϕ)

sin4(θ)
=
|AS|2|SB|2
|AB| , (16)

and (12) becomes

SAB
T =

∫∫∫
VT

dψdϕdθ |J | cosϕ cos(θ − ϕ)

4π|AS|2|BS|2 Qf, μ(ψ, ϕ, θ)

=

2π∫
0

dψ

T∫
0

dθ

θ∫
0

dϕ
cosϕ cos(θ − ϕ)

4π|AB| Qf, μ(ψ, ϕ, θ).

(17)

Finally, we derive the total scatter equation under further
idealized assumptions εA ≡ 1 in the following integral form:

SAB
T =

T∫
0

dθ

θ∫
0

dϕ
cosϕ cos(ϕ− θ)

4π|AB|

2π∫
0

dψ
μ(ψ, ϕ, |AS|)

σC

× ∂σC

∂Ω
e
−
(

S∫
A

μdl+
B∫
S

μ′dl

) |AS|∫
0

f(ψ, ϕ, r)dr.

(18)
Let us represent equation (18) in the form

SAB
T =

T∫
0

ξAB
θ dθ, (19)

where the integrand

ξAB
θ =

θ∫
0

dϕ
cosϕ cos(ϕ− θ)

4π|AB|

2π∫
0

dψ
μ(ψ, ϕ, |AS|)

σC

× ∂σC

∂Ω
e
−
(

S∫
A

μdl+
B∫
S

μ′dl

) |AS|∫
0

f(ψ, ϕ, r)dr

(20)

is a sample value of the scatter. Here θ and E′ are fixed,
therefore the factor 1

σC

dσC

dΩ in (20) is a scalar and for brevity
can be omitted without loss of generality .

C. Slice-by-slice Convolution Blurring Model

An essential simplification can be achieved assuming μ =
const. Then equation (20) can be written down in the cylin-
drical coordinates (ψ, ρ, z) after some algebra as follows

ξAB
θ =

μ

4π|AB|

|AB|∫
0

dz

Rθ(z)∫
0

dρ
z(z cos θ + ρ sin θ)

ρ(z2 + ρ2)3/2

× e
− |AB|μ√

z2+ρ2
(z+ρ tan(θ/2))

2π∫
0

dψf(ψ, ρ, z),

(21)

where radius of the circular section of Vθ with the coordinate
z is

Rθ(z) =

√
a2 − (z − a)2 sin2 θ − a cos θ

sin θ
, a ≡ |AB|

2
. (22)

Multiplying equation (21) by 1 ≡ ρ/ρ and denoting the kernel

hθ(ρ, z) ≡
μ

4π|AB|
z(z cos θ + ρ sin θ)

ρ2(z2 + ρ2)3/2
e
− |AB|μ(z+ρ tan(θ/2))√

z2+ρ2 ,

(23)
we can reduce (21) to

ξAB
θ =

|AB|∫
0

dz

2π∫
0

dψ

Rθ(z)∫
0

hθ(ρ, z)f(ψ, ρ, z)ρdρ. (24)

It follows from this representation that the inner double inte-
gral

∫ 2π

0 dψ
∫ Rθ(z)

0 hθ(ρ, z)f(ψ, ρ, z)ρdρ in (24) is a value of
the convolution of the function f section by the plane parallel
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to xOy with the coordinate z, and the radially symmetric
kernel hθ(ρ, z) with a circular support of radius Rθ(z). The
outer integral

∫ |AB|
0

dz represents the X-ray transform of
the slice-by-slice blurred version of the activity function f
along the lines parallel to the direction z. This slice-by-slice
distance-dependent blurring model of the projection formation
is known in Transmission Electron Microscopy and it is proven
to be invertible [7] provided full data are available. The
reconstruction technique derived was named as the Defocus-
gradient Corrected Backprojection (DGCBP) algorithm. Thus,
we have reduced the simplified Compton scatter model to the
already developed reconstruction algorithm. This algorithm
was numerically tested [7] by simulating different types of
noise based on the principles proposed by Baxter et al. [8].
Theoretical study of the noise propagation properties of the
scatter forward transform (20) is a subject of the future
research.

Let us introduce the Fourier transform pairs: F (k1, k2, k3)
= F3

{
f(x, y, z)

}
, Hθ(k1, k2, z) = F2

{
hθ(ρ, z)

}
, and Pα,β

θ

= F2{ξα,βθ }. Here ξα,βθ is a scatter projection in the direction
specified by the unit vector parameterized by the spherical
angles (α, β) ∈ S2. The scatter projection ξα,βθ is a collection
of the scatter forward transform (20) samples ξAB

θ , where the
points A and B belong to the lines that constitute a bundle of
parallell lines in the direction (α, β). The DGCBP algorithm
consists of the following steps.

Step 1. Deconvolution of the projection Pα,β
θ with the

Tikhonov regularized inverse filter and stacking the results
along z for all directions (α, β) ∈ S2:

bα,βθ (x, y, z) = F−1
2

{ Pα,β
θ (k1, k2)Hθ(k1, k2, z)

Hθ(k1, k2, z)2 + λ(k21 + k22)

}
. (25)

Step 2. Generation of the integral image cθ(x, y, z) as
summation of the backprojections bα,βθ over all the projection
directions (α, β) ∈ S2:

cθ(x, y, z) =

∫∫
S2

bα,βθ (x, y, z)∂α∂β. (26)

Step 3. Ramp-filtering in the Fourier domain of the integral
image Cθ(k1, k2, k3) = F3

{
cθ(x, y, z)

}
:

F (k1, k2, k3) ≈ Cθ(k1, k2, k3)×
√
k21 + k22 + k23 . (27)

III. SIMULATION STUDY

The numerical experiments were performed using a nu-
merical test phantom of 2563 size. It consists of 7 and 11
spheres serving as a support of the activity function f ≡ 1
immersed into a larger sphere filled with water with the linear
attenuation coefficient μ = 0.096cm−1 (Figure 3 (a)). Images
of three central sections are shown in Figure 3 (b) of the test
object (the upper row), and of the reconstruction (the bottom
row) from 1, 000 scatter projections randomly oriented over
S2. Projections of 256 × 256 size each beeing numerically
generated with a scattering angle θ = 30◦ using formula (20).
The regularization parameter λ = 0.01 of the Tikhonov filter
is used in the DGCBP algorithm, Step 1, equation (25).

(a) (b)

Fig. 3. (a) The 3D view of a test object with 7 and 11 spheres of the unit
activity immersed into the imaginable sphere filled with water and digitized
into an image of 2563 size. (b) Images of three central sections of the test
object (the upper row), and the DGCBP reconstruction (the bottom row) from
1, 000 randomly chosen scatter projections.

IV. CONCLUSION

The closely related integral transforms (18) and (20) de-
scribing the total and sample single scatter projection forma-
tion have been derived from the classical SSS approximation
(2). The single scatter image formation includes integration
of the emitter activity f over a bundle of compound cones
with a common vertex at the point A. Those cone integrals
are weighted by the linear attenuation μ and some geometrical
factors. We can conclude therefore that the integral transforms
obtained belong to the family of the Compounded Conical
Radon Transforms [4]. With some improvements in the de-
tector energy resolution, the energy-selected PET could be a
source of the new opportunities.
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Abstract—Treatment planning for proton therapy is 
based on estimation of the proton stopping power ratio 
(SPR) which is used for range determination. In this study 
we propose a new parametrization of SPR for dual energy 
CT (DECT). The parametrization is compared to two oth-
er DECT methods for estimation of SPR. Further, the 
robustness of the parametrization towards tissue varia-
tions and towards noise is investigated. It is found that the 
root-mean-square error of this new SPR parametrization 
is lower than for the other SPR estimation methods we 
have compared to, and the new SPR parametrization is 
also more robust against elemental weight fraction changes 
of human tissues and against CT noise. 
 

Keywords— CT noise, dual energy CT, proton stopping 
power ratio, proton therapy, robustness. 
 

I. INTRODUCTION 
REATMENT planning with protons relies on correct 
and robust calculation of stopping power ratio (SPR) 

relative to water, since SPR is used for calculating the 
range of protons in human tissue. The main advantage of 
proton therapy is the well-defined range of protons. 
However, currently the largest source of range uncertain-
ty is the SPR estimation which therefore gives the main 
contribution to the employed range and treatment mar-
gins in treatment planning of proton therapy [1]. As 
large treatment margins will diminish the advantage of 
proton therapy, it is thus desirable to be able to reduce 
the SPR uncertainty and thereby the margins. 

The current state-of-art method for estimating SPR for 
proton therapy planning is the so-called “stoichiometric 
method” proposed by Schneider et al. in 1996 [2]. This 
method is based on conventional single energy CT. A 
piecewise linear fit based on a list of reference human 
tissues is used to determine the estimated SPR from the 
CT numbers (measured in Hounsfield Unit, HU) in the 
CT image. 

 
* Vicki Trier Taasti: victaa@rm.dk 
1 Aarhus University Hospital, Department of Oncology, Aarhus, 

Denmark. 
2 Aarhus University Hospital, Department of Clinical Engineering 

and Department of Radiology, Aarhus, Denmark. 

SPR can be estimated using an approximation of the 
Bethe formula, see [2]: 

 .       (1) 

Here  is the electron density of the target material 
relative to water,  is the mass of the electron and  is 
the velocity of the proton projectile relative to the speed 
of light, c. I and Iw are the mean excitation energies of 
the target material and water, respectively. For a given 
initial kinetic energy of the projectile, the two unknowns 
in eq. (1) are  and ln(I). 

It has been shown that SPR can be estimated more ac-
curately using dual energy CT (DECT) than with the 
stoichiometric method [1,3]. A number of calibration 
methods for estimating SPR from DECT images have 
been developed [1,3-6]. These methods all estimate  
and ln(I) separately, and from these values the estimate 
for SPR is calculated from eq. (1). Further, the DECT 
methods presented so far do not estimate ln(I) directly, 
but rather they estimate the effective atomic number, 
Zeff, for the target material, which can be seen as a 
weighted average of the atomic numbers for the constit-
uent elements [1,3,5-6]. Zeff is then used to estimate ln(I) 
from a fitted expression based on a list of reference hu-
man tissues [3]. The most recent DECT method was 
presented by Han et al. [4]. Here, ln(I) was estimated 
directly from the measured CT numbers in the low and 
high energy CT. 

In this study we propose a new parametrization meth-
od for estimating SPR based directly on the CT numbers 
in the two DECT images, avoiding a prior estimation of 

and ln(I), and thereby obviating the need for a Zeff 
estimation. This new SPR parametrization is thus a one-
step process in contrast to the other mentioned DECT 
methods, which are two- or three-step processes. There-
fore in the new SPR parametrization there is only one 
source of deviations, where in the other methods each 
step in the estimation process introduces an additional 
source of deviations for the final SPR estimate. 

In this study we also investigate the robustness of the 
new SPR parametrization with respect to changes in 
density and elemental composition of human tissues and 
with respect to noise in the CT images. 

A robust method for calculation of proton 
stopping power ratio using dual energy CT 

Vicki T. Taasti*1, Jørgen B. B. Petersen1, Jesper Thygesen2, Ludvig P. Muren1, Cai Grau1 and 
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II. METHOD AND MATERIAL 
We propose to estimate the SPR from DECT using a 

parametrization of the reduced CT numbers: 

 ,                (2) 
where j represents either the low (j=L) or the high (j=H) 
energy CT spectrum, and  is the CT number. Our pro-
posed SPR parametrization has two different expressions 
depending on the tissue type it is used for. We have di-
vided the tissues into two categories, soft tissues and 
bone tissues, based on their CT numbers in the low en-
ergy CT spectrum,  (we have chosen the CT number 
in the low energy image since this gives the largest sepa-
ration between the soft and bone tissues, whereby the 
probability of a wrong assignment is minimized). Tis-
sues with  HU are assigned to the soft tissue 
group and tissues with  HU are assigned to the 
bone tissue group. With this tissue separation, we pro-
pose a SPR parametrization of the following form,  

 
 

(3a) 

 

 

(3b) 

 To find the two set of parameters, , in eq. (3) we 
used the list of 34 reference human tissues with known 
density and elemental weight fractions given in table 1 
in [3]. From the density and elemental weight fractions 
of the reference human tissues their theoretical SPR was 
calculated by eq. (1). 
 To calculate uL/H for the reference tissues, the method 
described by Landry et al. [7] was used,  
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Here Zi, Ai and wi are the atomic number, the atomic 
weight and the elemental weight fraction of the i’te ele-
ment in the compound, respectively.  is the mass densi-
ty of the compound and the subscript “w” in the denom-
inator refers to water. The superscript “cal” (an abbrevia-
tion for “calculated”) is used to indicate that these re-
duced CT numbers are not measured. 

The two parameters k1 and k2 characterize the CT en-
ergy spectrum and they are determined by making cali-
bration CT scans of materials with known elemental 
composition. For the calibration CT scans we used a 
Gammex 467 electron density calibration phantom 
(Gammex, Middleton, WI) with thirteen different insert 
materials of tissue equivalent electron density. The phan-
tom was CT scanned with a Dual Source CT scanner 
(SOMATOM Definition Flash, Siemens Healthcare, 

Forchheim, Germany). Image acquisition was carried out 
in dual energy mode, with a tube voltage pair of 
80/140Sn kVp (Sn: 0.4 mm extra tin prefiltration) and a 
CT dose index of . 

The two parameters, k1,j and k2,j, were then found by 
minimizing the difference of eq. (2) and (4) for the insert 
materials. 
 We have compared our results for the SPR parametri-
zation to two other DECT, one three-step method and 
one two-step method. For the three-step method we 
chose the method presented by Hansen et al. [1], and for 
the two-step method we chose the method presented by 
Han et al. [4]. The latter is a two-material decomposition 
method, where each tissue is assumed to be decomposa-
ble into either water and polystyrene (soft tissues) or 
water and a 23% aqueous solution of CaCl2 (bone tis-
sues). We made a slight change to this method since we 
used a separation point of   instead of 

 as suggested in [4], i.e. tissues with  were 
assigned to the soft tissue group and tissues with 

 were assigned to the bone tissue group. 

A. Test of robustness towards tissue variations 
To test the robustness of the parametrization we 

changed the reference tissues and calculated their new 
SPR estimates based on the fit performed for the stand-
ard reference tissues. We used the same scheme for mak-
ing changes to the reference tissues as applied by Yang 
et al. [3], i.e. we made the assumption that the density 
and the elemental weight fractions could be altered inde-
pendently. So we either rescaled the density or changed 
the elemental weight fractions in the reference tissue. 
For both types of changes we made variations in the 
range . 

Fig. 1.  Plot of the relative deviations for SPR for each stand-
ard reference tissue used in the fitting procedures for the three 
SPR estimation methods. Soft tissues are plotted to the left of 
the vertical line and bone tissues to the right. 
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For density changes, we did a rescaling, so the new 
density was given as . The density 
changes were applied on all 34 reference tissues.  

When changing the elemental composition, the ele-
mental weight fractions of two elements was changed 
together to ensure the sum of the elemental weight frac-
tions was always equal to one. This way the elemental 
weight fraction changes were performed by: 

 and , where wa,b are the two elemental 
weight fractions to be changed. We only changed the 
major elemental components in the tissues, which are 
oxygen and carbon for all the tissues, together with hy-
drogen for soft tissues and calcium for bone tissues.  

For each change, the theoretical SPRs for the refer-
ence tissues were recalculated and new SPR estimates 
were made. 

B. Test of robustness towards noise in the CT images 
CT images are always influenced by noise. CT num-

bers for homogenous material will therefore not be con-
stant over all pixels covering the material. To investigate 
the impact of CT noise on the SPR estimates from the 
new SPR parametrization we added noise to the calcu-
lated CT numbers for the reference human tissues. The 
noise values were sampled from a normal distribution 
with a mean of zero and a standard deviation corre-
sponding to the standard deviations for the CT numbers 
for the Gammex inserts. Since the DECT images of the 
Gammex phantom were acquired at clinical dose values 
(21 mGy) the noise level was clinically realistic.  

We calculated the water equivalent range error which 
the noise would result in over 10 cm of the reference 
tissues. We assumed a pixel size of 1 mm, giving 100 
pixels through the 10 cm. A new random noise value 
was added in each pixel and the SPR estimates for each 
pixel were calculated. The water equivalent range error 
was then calculated as 
 

    (5) 

We reran this calculation 10,000 times and used the 
mean value for  as our estimate of the water equiva-
lent range error over 10 cm of a reference tissue. 

When applying noise, the SPR estimates for Hansen’s 
method and for Han’s method could get complex, there-
fore we had to make minor changes to these methods to 
avoid this problem. 

III. RESULTS 
Applying the new SPR parametrization on the stand-

ard reference tissues gave a root-mean-square error 
(RMSE) of 0.12%, compared to a RMSE of 0.76% for 
Hansen’s method and 0.23% for Han’s method. In fig. 1 
it is seen that the main improvement is in bone tissues, 
where the RMSE for the SPR parametrization was 
0.05%, compared to 0.20% and 0.22% for Hansen’s 
method and for Han’s method, respectively.  
A. Test of robustness towards tissue variations 

In fig. 2 the results for three out of the six tissue varia-
tions are shown. Changing the density, the RMSE in-
creased using the SPR parametrization, but the RMSE 
did not change for the two other methods, as is seen in 
fig. 2(a). 

For changes to the elemental weight fractions of hy-
drogen and carbon (fig. 2(b)) the RMSE increased faster 

 
(a) 

 
(b) 

 
(c) 

Fig. 2.  Root-mean-square errors for each step of change in
the tissue variations. (a) Changing the density. (b) Changing
the elemental weight fraction of hydrogen and carbon in soft
tissues. (c) Changing the elemental weight fraction of calci-
um and oxygen in bone tissues. 
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for the SPR parametrization than for the other methods, 
but as the RMSE of the standard tissues was lowest for 
the SPR parametrization, the RMSEs for the non-
standard tissues were comparable to the other methods. 
The results for the H-O change were similar. 

The RMSEs for the change in the calcium and oxygen 
content were significantly lower for the SPR parametri-
zation than for the two other methods, as is seen in fig. 
2(c). Similar results were obtained for the change of Ca 
and C. For changes of the carbon and oxygen content 
none of the methods gave any RMSE increases. 

B. Test of robustness towards noise in the CT images 
The root-mean-square (RMS) and the maximum for 

the water equivalent range errors for the 34 reference 
human tissues are listed in table I. From the table it is 
seen that the SPR parametrization resulted in the lowest 
errors. These errors were the mean of the errors calculat-
ed in the 10,000 calculations. The standard deviations 
for the errors over the 10,000 calculation were nearly the 
same for all three methods and for all tissues. Lung tis-
sue had a relatively high standard deviation using the 
SPR parametrization. However, the mean error plus one 
standard deviation was still lower than the mean error 
for lung tissue using Hansen’s method. 

IV. DISCUSSION 
The proposed parametrization for SPR has a lower 

RMSE than the two other DECT methods for SPR esti-
mation. The RMSEs for the SPR estimates for the stand-
ard reference tissues are, however, not clinically realistic 
since they were calculated for the tissues which the 
methods were fitted for and further the CT numbers were 
noise-free. The RMSEs found here are therefore lower 
bounds. But as the three methods were tested under the 
same conditions the SPR parametrization can still be 
assumed to perform the best. 

The new SPR parametrization is also more robust 
against variations in the elemental composition of hu-
man tissues as can be seen from fig. 2. For density 
changes the SPR parametrization is though less stable 
than the two other methods, but still the density must 

change by 4% before the RMSE for the SPR parametri-
zation is no longer the lowest. Such high density change 
might not be clinically realistic. Therefore the SPR par-
ametrization can be seen as robust towards tissue varia-
tions. This will lead to an increased robustness of the 
SPR calculation for proton therapy planning. 

The main advantage of the SPR parametrization is 
nevertheless the increased robustness towards noise in 
the CT images. Applying noise to the calculated CT 
numbers the SPR parametrization gave the lowest errors 
for the water equivalent ranges through 10 cm of tissue.  

Lowering the deviations for the SPR is an important 
step towards obtaining the full potential of proton thera-
py. Today range uncertainty margins are usually set 
around 3.5% of the range + 1 mm [8]. For deep seated 
tumors, this will result in substantial uncertainty margins 
and large volumes of normal tissue will be irradiated to 
high doses. If the range uncertainty can be reduced, 
smaller treatment margins can be applied in proton 
treatment planning, and when less normal tissue is being 
exposed to high doses the risk of side effects will be 
reduced. Using the SPR parametrization can bring us 
one step closer to achieving this goal. 
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TABLE I 
ROOT-MEAN-SQUARE (RMS) AND MAXIMUM (MAX.) FOR THE MEAN OF THE  
10,000 CALCULATIONS OF THE WATER EQUIVALENT RANGE ERRORS 
THROUGH 10 CM OF A REFERENCE HUMAN TISSUE, WHEN APPLYING NOISE TO 
THE CALCULATED CT NUMBERS. THE RESULTS ARE GIVEN IN MM. IN 
PARENTHESES THE RMS AND THE MAX. OF THE STANDARD DEVIATION (STD.) 
OVER THE 10,000 CALCULATIONS ARE STATED, THESE RESULTS ARE ALSO 
GIVEN IN MM. 

 

Method RMS (STD.) Max. (STD.) 
 

SPR parametrization 
 

0.16 (0.59) 
 

0.40 (1.71) 
Hansen’s method 1.12 (0.63) 2.13 (0.79) 

Han’s method 0.71 (0.54) 1.09 (0.61) 
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Dual-energy CT spectra optimization
for proton treatment planning

Gloria Vilches-Freixas, Jean Michel Létang, Nicolas Ducros and Simon Rit

Abstract—The purpose of this study was to determine the
optimal dual-energy spectra for the treatment planning of proton
therapy. We have evaluated the effect of various voltages and tin
filtration combinations on the relative electron density (RED)
map accuracy and precision. The RED is directly related to
the stopping-power (SP) map and thus to the accuracy of the
proton range estimation. An acquisition setup representing a
medium-size body irradiation was evaluated. For all spectra
combinations, virtual CT projections of the Gammex 467
tissue characterization phantom were simulated with realistic
energy-integrating detector response model. Two situations were
simulated: an ideal case without noise (infinite dose) and a
realistic situation with a Poisson noise corresponding to a 20 mGy
central dose. To derive the RED maps from dual-energy imaging,
the projection-based basis material decomposition method
proposed by Alvarez and Macovski (1976) was implemented. It
was observed that the energy separation between the incident
spectra had little influence on the RED accuracy but a strong
influence on the precision. Different optimal ranges of low and
high energy tube voltages and additional tin thicknesses that
maximize the overall accuracy and the precision of RED maps
were found. However, when studying each phantom material
separately, a large variability of the optimal spectra was observed.
An emphasis on the materials present in the anatomical region
of interest must be made during the optimization process of the
dual-energy spectra.

I. INTRODUCTION

Dual energy computed tomography (DECT) imaging
consists in recording two sets of acquisitions of an object at
different X-ray voltages. By combining these images, either
in the projection domain (prior to image reconstruction)
or in the image domain (after image reconstruction), one
can characterize the patient tissues. Relative electron density
(RED) and effective atomic number (Zeff ) are quantities
commonly used for material segmentation in radiotherapy
applications that can be estimated from DECT. In the proton
therapy context, the range of protons in patients is determined
from the stopping power ratio (SPR) of tissues relative to water
along the beam path. SPR can be derived from RED and Zeff

maps and the Bethe-Bloch equation [1], or by establishing
a polyline curve (RED, SPR/RED) through calibration [2].
There are different commercial strategies to perform DECT
such as dual-source, fast kV-switching and dual-layer scanners.
For all techniques, the choice of the low energy (LE) and the
high energy (HE) spectra influences the imaging output. The
performance of dual-energy imaging is commonly evaluated
in terms of contrast-to-noise ratio (CNR) or signal-to-noise

Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1206,
INSA-Lyon, Université Lyon 1, Centre Léon Bérard, Lyon, France (e-mail:
simon.rit@creatis.insa-lyon.fr).

ratio (SNR). In this work, we focus on finding an optimal
combination of voltages and source filtration to maximize the
figure of merit specific to proton therapy dose calculations:
the accuracy and the precision of the extracted RED maps.

II. MATERIALS AND METHODS

A. Phantom

The 33-cm diameter Gammex RMI 467 (Gammex,
Middleton, WI) tissue characterization phantom was used
to represent a medium-size body. Sixteen inserts mimicking
human tissue attenuation properties positioned as described in
Figure 1 with mass densities ranging from 0.3 to 1.82 g/cm3

and known chemical compositions were considered. The
index-to-material mapping and the reference RED values are
provided in Figure 1. For each insert, the electron density
relative to water was estimated by:

REDm =

ρm
∑
i

ωi

(
Z

A

)
i

ρW

(
Z

A

)
W

(1)

where the index m refers to the insert material and the label
W to water. ρ is the mass density, ωi is the fraction by weight
of the ith element and Z/A is the ratio of number of electrons
per molecular weight.
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ID Materials RED
0 Water 1.000
1 CB2-50% CaCO3 1.470
2 BR12 Breast 0.957
3 SB3 Cortical Bone 1.693

4, 15 AP6 Adipose 0.922
5, 14 LV1 Liver 1.069

6 BRN-SR2 Brain 1.046
7, 12 Water Solid 0.990
8, 9 LN300 Lungs 0.292
10 LN450 Lungs 0.438
11 CB2-30% CaCO3 1.285
13 IB3 Inner Bone 1.092
16 B200 Bone Mineral 1.102

Fig. 1: Left: Gammex 467 phantom. Right: Insert ID, material
name and reference RED values.

B. X-ray spectra

SpekCalc [3] was used to generate the X-ray spectra from
60 kV to 140 kV with 2 kV steps, 10◦ anode angle, 2.5 mm
Al (required minimum filtration according to the NCRPM [4])
and 1000 mm air filtration. Each spectrum was filtered with
tin (Sn) thicknesses [5] ranging from 0 to 2.5 mm at 0.1 mm
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increments. For the LE acquisitions, the tube voltage was
varied from 60 kV to 90 kV, whereas for the HE acquisitions
it was varied from 80 kV to 140 kV. No tin filtration was
considered for the LE acquisitions, only the 2.5 mm Al
inherent filtration to maximize the energy gap.

C. Image simulation

Combining voltages and tin thicknesses, a total of 12896
sets of CT projection data were simulated with and without
noise. Virtual CT acquisitions of the Imaging Ring (IR)
X-ray system (MedPhoton, Salzburg, Austria) were carried
out by means of deterministic simulations in Gate [6]
with realistic energy-integrating detector response model.
Scatter-free fan-beam of 807 pixels of 1 mm acquired
with 360 projections were considered. The source-to-center
distance was 626 mm and the source-to-detector distance was
1026 mm. For the realistic scenario, realistic Poisson noise
was applied to the projections to deliver a central dose of
10 mGy with each voltage and filtration combination, and
thus a total central dose of 20 mGy with the dual-energy
acquisition. In a previous work [7], we observed that the dose
balance between energy levels was not critical for material
decomposition with dual-energy imaging. For this reason, the
same dose at the center was considered for the low and the
high energy acquisitions.

1) Detector response: The detector response was generated
using Monte Carlo simulations. The flat panel detector of the
IR was modeled in Gate as a stack of layers of different
material according to the manufacturer’s description. The
response of the detector was obtained by measuring the energy
deposit in the scintillator layer with monoenergetic pencil
beams of energies ranging from 1 to 140 keV [8]. The
energy-dependent detector response used in this study is shown
in Figure 2 .

Fig. 2: Energy-dependent detector response.

2) Dose - Number of photons: For each imaging setup the
number of primaries per simulation, Nprim, required to deliver
a central dose, Dc, of 10 mGy was determined analytically
assuming an homogeneous water medium:

Nprim =
Dc Abeam∫

E

S(E) e−μW(E) R

(
μen(E)

ρ

)
W

E dE

(2)

where Abeam is the area covered by the beam at the isocenter,
S is the energy-dependent incident spectrum, (μen/ρ)W
and μW are the energy-dependent mass energy absorption
coefficient and the linear attenuation coefficient of water taken
from the NIST database [9], and R is the radius of the
phantom.

3) Energy gap: For each X-ray spectra pair the incident
energy gap, ΔE, was calculated as the separation between the
average energies of the incident spectra:

ΔE =

∫ E2

0

S(E) E dE −
∫ E1

0

S(E) E dE (3)

where E1 and E2 are the maximum energies of the LE and
the HE spectra, respectively.

D. Decomposition method
The two-material decomposition method proposed by

Alvarez and Macovski (1976) [10] was implemented in the
projection domain. The key idea is that the attenuation
coefficient of the scanned object, μ(x, E), can be expressed as
a linear combination of two energy-dependent basis functions
of two materials with energy-independent coefficients.
Water (W) and compact bone (B) were chosen as basis
materials. Their respective energy-dependent mass attenuation
coefficients, (μ/ρ), were the basis functions and their mass
densities, ρ, the coefficients:

μ(x, E) = ρW(x)

(
μ

ρ

)
W

(E) + ρB(x)

(
μ

ρ

)
B

(E) (4)

Two sinograms of the same object are available in DECT by
performing an acquisition with LE and HE spectra. A system
of two equations can then be determined for each projection
angle:

ILE(ρW, ρB) =

∫
E

SLE(E) D(E) exp

(
−
∫
L

μ(xl) dl

)
dE

(5)

IHE(ρW, ρB) =

∫
E

SHE(E) D(E) exp

(
−
∫
L

μ(xl) dl

)
dE

(6)
where L is the line-segment between the source and a detector
pixel, ILE and IHE are the measured intensities, SLE and
SHE are the weights of the polychromatic photon spectra,
and D(E) the detector response. Instead of solving this
system numerically, the unknowns can be obtained by direct
approximation with a power series of the logarithm of ILE
and IHE [11] through a calibration procedure. A fourth degree
polynomial with twelve terms was used to solve this system of
equations. Image reconstructions of water and compact bone
mass densities were performed using filtered backprojection
on a 380×380×1 grid with 1×1×1 mm3 voxels size, i.e.,
in the central slice only. On a pixel-by-pixel basis, the RED
image was derived from the total mass density image ρ and
Equation 1:

ρ(x) = ρW(x) + ρB(x) (7)(
Z

A

)
=

ρW
ρ

(
Z

A

)
W

+
ρB
ρ

(
Z

A

)
B

(8)
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E. Figures of merit

For each (LE, HE, mm Sn) tuple, the estimated RED
image was compared to the ground-truth values. The relative
accuracy and precision were calculated in a region-of-interest
(ROI) of 3/4 the size of the insert. The absolute accuracy and
the precision of the RED averaged over all inserts were also
computed. First, the reconstructed RED images without noise
were used to determine the optimal voltages and filtration
that maximizes the overall accuracy. Then, the RED images
acquired in a realistic imaging setup, in the presence of
noise, were investigated. Finally, the optimal energy spectra
for a representative tissue of each insert group was studied
separately.

III. RESULTS AND DISCUSSION

For both the ideal and the realistic situations, a relative
electron density image per (LE, HE, mm Sn) tuple was
obtained after decomposition and reconstruction. In total,
12896 tuples were investigated. The reconstructed RED
images were compared to the ground-truth values and, for
each image, the following quantities were extracted: accuracy
and precision averaged over the sixteen phantom inserts, and
accuracy and precision for each phantom insert separately.
From among these data, a tuple of values that maximizes the
overall accuracy was selected: (78 kV LE, 94 kV HE, 0.1 mm
Sn). From this point, a sensitivity analysis of the accuracy and
the precision as a function of the low voltage, the high voltage
and the additional filtration was done. Orthogonal slices for
both the ideal scenario and the noisy situation are shown in
Figure 3. The last row of Figure 3, which corresponds to the
overall precision of the realistic situation, shows that the worst
precision is achieved at those ranges where the accuracy is
maximized.

For the realistic scenario, the overall accuracy and precision
were plotted against the incident energy gap, as shown in
Figure 4. The overall accuracy was not strongly dependent
on the spectra separation, whereas the overall precision
asymptotically approached a 4.7% level with increasing energy
gap. This level of precision was achieved from an energy gap
of 60 keV. A zero precision was expected for the simulations
without noise. Nevertheless, due to the voxelized phantom
geometry with a sub-optimal resolution, interpolation errors of
the 3D reconstruction process affected the overall precision.
A constant value of 2.6% was estimated for all RED images
without noise which is included in the noisy simulations of
Figure 3 and 4.

The SPR map estimated from the RED image would then
be used to compute the proton range in the patient. Even
though the presence of noise in the SPR image is a concern,
the noise is likely to be averaged along the voxels of the
beam path and, thus, the final impact on the proton range
should not be dramatic. On the other hand, accuracy errors
will add up along the beam path and the error in the range
will be more significant. For this reason, maximizing the
accuracy seems more appropriate. Moreover, the 20 mGy
central dose value considered in this study is very low and,
increasing the imaging dose would improve the precision.

Fig. 3: Overall RED accuracy and precision as a function of the
LE, HE and tin filtration. From top to bottom: overall accuracy
for the ideal situation (no noise), overall accuracy (middle) and
overall precision (bottom) for the realistic acquisition. From
left to right: LE-HE plot at 0.1 mm Sn, LE-mm Sn plot at HE:
94 kV, HE-mm Sn plot at LE: 78 kV. Colorbars indicate the
percentage error and the relative uncertainty for the accuracy
and the precision, respectively.

Fig. 4: Overall RED accuracy and precision as a function of
the incident energy gap for the realistic acquisition scenario.
Dashed red lines indicate the 0.5% accuracy level (left) and
the 4.7% precision level (right).

Another approach to reduce image noise is to make use
of regularized reconstruction algorithms instead of filtered
backprojection for image reconstruction.

The accuracy and the precision of each phantom insert
relative to the (78 kV LE, 94 kV HE, 0.1 mm Sn) tuple are
shown in Figure 5. Low density tissues (lungs LN300 and
LN450) show the worst precision. In terms of accuracy, all
inserts fall within the ±1% error range.

Then, we studied whether the optimal spectra determined
in terms of the overall accuracy corresponded to the optimal
spectra for each insert group. One representative insert per
tissue group was selected: LN450(10) for the low (RED<0.5),
AP6(15) for the medium (0.5<RED<1.2) and CB2-50(1) for
the high (RED>1.2) density. From the (78 kV LE, 94 kV HE,
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Fig. 5: RED accuracy and precision results for each insert of
the Gammex 467 phantom (78 kV, 94 kV, 0.1 mm Sn) for the
20 mGy acquisition.

0.1 mm Sn) point, orthogonal slices were plot to study the
dependence of the inserts accuracy with the low voltage, the
high voltage and the additional filtration. Due to the limited
space, only those plots relative to the ideal situation are shown
in Figure 6. However, these plots mask the increased presence
of noise in the low density inserts. Low and medium density
inserts are more sensitive to the energy spectra than high
density inserts. The optimal spectra selected by means of the
overall accuracy seems adequate for low and medium density
inserts. According to these plots, for high density tissues it is
preferable to have high LE, medium HE and high filtration.

IV. CONCLUSION

An extensive study of the impact of the dual-energy
spectra on the relative electron density accuracy and precision
was done. An ideal situation without noise and a realistic
acquisition with a total dose of 20 mGy were considered.
The optimal range of low and high energy tube voltages
and additional tin thicknesses in terms of accuracy and
precision were not the same. The precision was improved
with increasing energy separation between the incident spectra,
whereas the accuracy showed little dependence. According
to these results, a material selective spectra optimization is
advisable when performing dual-energy imaging of different
human regions for proton treatment planning. Moreover, it
would be interesting to reproduce the same study considering
a large-size patient.
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Fig. 6: From top to bottom, RED accuracy results as a function
of the LE, HE and tin filtration for the insert: LN450, AP6
and CB2-50. From left to right: LE-HE plot at 0.1 mm Sn,
LE-mm Sn plot at HE: 94 kV, HE-mm Sn plot at LE: 78 kV.
The colorbar indicates the percentage error for the accuracy.
Data corresponding to the ideal situation, without noise.
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Fan-Beam Reconstruction Under Motion and Data Truncation:
Comparing Analytic and Iterative Approaches

Jan Hoskovec, Fabien Momey, Rolf Clackdoyle, Laurent Desbat and Simon Rit

Abstract—In this paper, we compare analytic and iterative fan-beam

reconstruction approaches when the object undergoes some rigid motion

during the scan, and in the situation of truncated projections. Based

on our recent work presenting an exact analytic reconstruction method

for this problem, we are able to predict the field of theoretically

reconstructible points for our method. The object motion is handled by

using a reference frame attached to the object, which therefore appears

static while the source trajectory undergoes a non-circular “virtual”

motion. We implemented the iterative reconstruction as the convex

minimization of a data-fidelity term under non-negativity constraint and

regularization to solve this static problem with virtual source trajectory.

We compared the reconstructed field of view for the two methods on

2D fan-beam Shepp-Logan phantom simulations. Our results show that

both methods validate the predicted reconstructible zone and correlate

well in terms of reconstruction quality. The iterative reconstruction also

demonstrates that in certain cases it is possible to recover structures

beyond the strict analytic frontier of reconstructibilty.

Index Terms—Tomography, Region-Of-Interest Tomography, Dynamic

Tomography.

I. INTRODUCTION

In [1], we reported on a method for performing exact analytic
2D fan-beam reconstruction when the object of interest has under-
gone a perfectly known rigid translation during the circular scan,
also involving data truncation. Rigid object motion transforms the
circular source trajectory into a virtual one which can involve data
truncation. The method exploits the data redundancy from the 2π
source trajectory to extend the field of reconstructible points where
Differentiated Back-Projection with Hilbert filtering (DBP-H) [5] can
be performed. The algorithm was tested in a proof-of-concept study
on Shepp-Logan phantom simulations with several motion cases and
detector sizes.

In this paper, we compare the results given by our analytic
algorithm with an iterative reconstruction approach, particularly in
terms of the predicted field of reconstructible points. Our results
from Shepp-Logan phantom simulations show a very good match
regarding the almost perfectly reconstructed zone of the phantom, and
highlight possibilities for the iterative method to reconstruct beyond
the predicted field of view.

II. MATERIALS AND METHODS

A. Geometry

Our work takes place in the context of 2D fan-beam reconstruction
from a circular scan around the object. The geometry is illustrated

This work was supported by the DROITE project (Dynamic ROI tomog-
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Fig. 1. The fan-beam projection geometry. The source is at �vβ and the trajec-
tory radius is R. A measured ray in the fan-beam geometry is parametrized
by (α, β). Also shown are the equivalent parameters (s, θ) expressing the
same ray in the parallel projection geometry.

in Fig.1. Fan-beam projections of a density function f(	x) can be
written as:

p(α, β) =

∫ ∞

−∞
f(	vβ − t	αβ)dt (1)

with β the polar angle of the source from the vertical axis and
	vβ = R	β = R(− sinβ, cosβ)T the source position. The fan angle is
denoted α and 	αβ = (− sin (α+ β), cos (α+ β))T is the direction
of the ray emanating from the source. The angular conventions taken
here are illustrated Fig. 1.

Fan-beam data p(α, β) can be related to equivalent parallel-beam
projections p̄(s, θ) via the following change of variables:

θ = α+ β − π

2
(2)

s = R sinα, (3)

therefore
p(α, β) = p̄(R sinα, α+ β − π

2
). (4)

B. DBP-H Formula

We summarize here our analytical reconstruction method, which
was presented in [1]. This method belongs to the DBP-H fam-
ily, sometimes called simply DBP, or BPF, for Backprojection-
Filtration. More specifically, the DBP-H algorithm used here is of
the “backproject first” approach [9], which begins by performing two
backprojections of the unprocessed sinogram data onto the target
pixel grid. Then, via a simple sum of partial derivatives of each
weighted backprojection, we obtain the same Hilbert image of the
object of interest as if we had performed a differentiation along the
flat detector before backprojecting.

The general DBP-H reconstruction formula is given by

Hφf(	x) =
−1
2π

bφ(	x) =
−1
2π

∫ φ+π

φ

∂

∂s
p̄(s, θ)

∣∣∣
s=
x·
θ

dθ. (5)
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where Hφf denotes a 1D Hilbert transform along the vector 	φ =
(cosφ, sinφ)T . With the “backproject first” approach, we obtain
bφ(	x) by the following relation (see [1] or [9] for full derivation):

bφ(	x) =
∂

∂x

∫ φ+π

φ

p̄(	x · 	θ, θ)(− sin θ)dθ (6)

+
∂

∂y

∫ φ+π

φ

p̄(	x · 	θ, θ)(cos θ)dθ

where 	θ = (− sin θ, cos θ)T .

1) Handling motion and truncation for DPB-H reconstruction:
The “backproject first” DBP-H algorithm is useful in the context of
motion-compensated reconstruction, since all motion corrections can
be included before the sinogram data is processed in any manner.
Our algorithm from [1] does just that when it rearranges motion
contaminated full-scan fan-beam data into an equivalent, static,
parallel-beam geometry.

When the object undergoes a (rigid) translation, the sinogram data
may become truncated (when part of the object “leaves” the scanner’s
field-of-view during the scan). Since a rigid displacement of the
object (described by a vector 	dβ parametrized by the gantry angle)
is equivalent to a deformation of the X-Ray source trajectory by
subtracting the same vector from its physical path, static truncation
(due to limited detector width) and dynamic truncation (induced by
object motion) can be handled as the same problem.

Observing the virtual trajectory 	vβ − 	dβ , we recall that with the
DBP-H methods, we can compute a Hilbert image of a point if it is
observable from a large enough segment of the (here, virtual) trajec-
tory [5][6][8]. Such a point becomes theoretically reconstructible via
(5). We refer to this type of point as a Hilbert point.

Taking advantage of the data redundancy inherent to a full scan,
our algorithm can also recover points for which such a segment of the
virtual trajectory is not available, but where data from the opposite
side of the scan can fill in the gap. See [1] for details.

In practice, to reconstruct the object, we also need to be able to
invert the Hilbert transform of the points we obtain. With a small a
priori about the image support, we can invert Hilbert points using
the finite-support Hilbert transform inversion formula from [3] on all
line segments of Hilbert points which cross the entire object support.
This condition also influences the choice of the angle φ.

C. Iterative reconstruction method for truncated projections and a
virtual trajectory

Our iterative reconstruction algorithm looks for the static image f
which minimizes the least squares criterion - the data-fidelity term -
under a non-negativity constraint, with a regularization term:

f+ = argmin
f≥0

{∥∥∥Rβ · f − pβ
∥∥∥2

2
+ μJprior(f)

}
, (7)

where pβ = {pβk |k = 1 . . . Nβ} stands for the set of Nβ fan-beam
projections, and Rβ is the model of fan-beam projections along the
virtual (perturbed) source trajectory at the virtual angular positions
{βk|k = 1 . . . Nβ}.

The data-fidelity term ensures consistency of the model with
the data. A non-negativity constraint is added as the object to be
reconstructed is known to have positive values. The term Jprior

accounts for prior information. The constraint and the regularizer
are necessary for the reconstruction algorithm to effectively converge
to a relevant solution, avoiding artifacts amplifications and noise.
The hyperparameter μ controls the tradeoff between data fitting and
regularization.

We chose an edge-preserving smoothness regularizer expressed as
a relaxed total variation (TV) prior [7]:

Jprior(f) =
∑
i

√
‖∇i · f‖22 + ε2 , (8)

with ε > 0 the relaxation parameter and ∇i a finite difference
operator approximating the spatial gradient at position i.

The minimization of (7) was carried out by the VMLM algorithm
[4], a limited memory quasi-Newton method, for which we have
added the handling of the non-negativity constraint.

III. SIMULATIONS AND RECONSTRUCTIONS
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Fig. 2. Top left: Representation of motion 1. Bottom left: Representation
of motion 2. Top right and bottom right: virtual trajectory, static FOV and
regions of Hilbert points (in black) obtained respectively with the motions 1
and 2.

We simulated the projection data of an off-centered slice of the 3D
Shepp-Logan phantom [2] for two cases of rigid motion of the phan-
tom. Each case corresponded to a sequence of constant-velocity trans-
lations of the phantom during a circular scan of radius R = 360 mm
with a flat detector at 480 mm from the source. Motion 1 consisted of
translations that occurred only during scan intervals β ∈ [70◦, 90◦]∪
[159◦, 185◦] ∪ [240◦, 270◦], which were respectively translations by
vectors R(−0.05,−0.02)T , R(0.08, 0.02)T , R(0.05,−0.04)T . Mo-
tion 2 consisted of a single translation, occurring during the scan
interval β ∈ [45◦, 315◦], by the vector R(0.5, 0)T . The rigid motions,
as well as the equivalent (“virtual”) source trajectories, are illustrated
in Fig.2.

In this study the motion was assumed to be perfectly known,
so was the corresponding virtual trajectory. For both methods, we
reconstructed an image of 510× 510 pixels with a sampling rate of
1 mm in both directions.

The analytic method proceeds by first introducing a map of Hilbert
points. Its comparison with the a priori known phantom support helps
to identify convenient Hilbert filtering directions. Once the direction
is chosen, the corresponding Hilbert images are generated, and finite
Hilbert inversion carried out along Hilbert lines. More details can be
found in [1].
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a) b)

c) d)

Fig. 3. Reconstructions of simulated cases motion 1 (first column) and
motion 2 (second column) with the iterative reconstruction method. (a-b)
Reconstruction without non-negativity constraint and without regularization.
(c-d) Reconstruction with non-negativity constraint and without regularization.

For the iterative reconstruction, the value of ε was chosen to be
10−3, i.e. 1/10 of the minimum contrast value of the Shepp-Logan
phantom. Therefore structures with contrast larger than this value
would be preserved in the image, and smoothed otherwise. The
hyperparameter μ was carefully tuned “by hand” until a satisfactory
reconstruction quality was reached. A suitable value found was
μ = 103. The quality of the iterative reconstruction strongly depends
on the degree of regularization. In general, a low value of μ or no
regularization causes errors due to reprojection model approximations
and noise amplification. Therefore, it is essential to regularize the
solution, and preliminary results tended to verify this claim, as
illustrated in Fig. 3 compared to Fig. 4(f)(g). Furthermore, we
observed in our reconstructions a dramatic effect of the non-negativity
constraint appeared to drive the algorithm to “put the information in
the right zones”, see Fig. 3(c)(d) compared to Fig. 3(a)(b).

Fig. 4 shows the reconstructions obtained with both methods. Fig. 5
displays horizontal profiles taken across two different horizontal lines
through the phantom.

The analytic reconstructions were accurate in the predicted regions.
We recall that the method proposed is mathematically correct for
the intersection of the region of Hilbert points with all lines that
traverse the (known) support of the object without contracting a non-
Hilbert point. For motion 2, a set of Hilbert points not satisfying
this condition was easily identified and corresponds to the bright
white region of Fig. 4(e). For the reconstructions of motion 1 with
horizontal filtering (φ = 0), the profiles in Fig. 5 indicate excellent
quantitative reconstruction in the predicted regions (Fig. 4(c)). For
reconstructions with an oblique filtering directions (Fig. 4(d)(e))
however, there seemed to be at times a small positive bias related
to the difficulties of choosing the right constant for the finite Hilbert
inversion, visible as faint light bands along the filtering direction.

For the iterative reconstruction, we immediately note that the
effective reconstruction zone stretches beyond the boundary between
the theoretically reconstructible and non reconstructible points, even
though the error is higher in the zone of uncertainties (cf. Fig. 4(h)(i)
and Fig. 5). This behavior is probably due to these regions suffering

e)

f) g)

h)

d)

i)

c)

b)

Fig. 4. Reconstructions of simulated cases motion 1 (first column) and
motion 2 (second column) with both the analytic and iterative reconstructions
methods. (a-b) Predicted FOV of reconstructible points. (c-e) Reconstruction
with the analytic DBP-H method. (c) and (d) both correspond to motion
1, using different values of φ. (f-g) Iterative reconstruction. (h-i) Absolute
value of the difference’s map between ground truth image and iterative
reconstruction, superimposed with the predicted FOV (in cyan).

only small amounts of missing data that prevent an analytic solution.
The iterative algorithm was able to recover some structures. We note
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a) b)

c) d)

(a-b)

(c-d)

truth
iterative
analytic

Fig. 5. Profiles taken in the reconstructions of Fig. 4. (a-c) motion 1. (b-d)
motion 2. Note that the vertical scale for (a) and (b) is magnified by nearly
2.5 times compared to the one for (c) and (d).

that the regularization played a strong role here because Fig. 3 showed
poor recovery of the iterative algorithm in exactly the “non-Hilbert
point” areas of the object. In general, the quality of such extrapola-
tions is strongly object-dependent, and some lines of response can
bring more information than others if the structures are oriented in
suitable directions. We also notice from the profiles of Fig. 5 that
injecting regularization causes some bias in the recovered values of
the finer structures even in the areas identified as reconstructible. This
can be mitigated by decreasing the value of the hyperparameter μ, but
at the cost of increasing the variance of reconstruction errors as seen
in Fig. 3. Hence the regularization in our experiments showed the
usual trade-off between bias and variance of the solution. However,
there is no indication in the “non-reconstructible” region which
features are correct and which are incorrect. Although, in Fig. 4(g),
the large black ellipsoid on the right is correctly recovered, the small
white ellipsoid at the bottom is completely missing.

IV. DISCUSSION AND CONCLUSION

The results of our simulations show good coherence of the re-
constructible regions predicted by the analytic method and the part
of the image where the reconstruction by the iterative method was
quantitatively successful. The iterative method, however, manages to
recover certain features outside that region in a way which is still
readable, although great care must be taken with interpreting such
features in the non-reconstructible zone.

Our results also showed that the regularization and non-negativity
constraint were essential for the iterative reconstruction to produce a
good trade-off between bias and variance.

The analytic method’s potential was constrained by the need to
have Hilbert points aligned on a segment crossing the object support
entirely in order to be able to recover that part of the image. Im-
plementing an iterative one-sided Hilbert transform inversion method
alongside the analytic backprojection could lead to a reconstruction
method where the whole reconstructible region is recovered.

REFERENCES

[1] J. Hoskovec, R. Clackdoyle, L. Desbat and S. Rit. Exact fan-beam recon-
struction with arbitrary object translations and truncated projections. To
appear in: IEEE Trans. Nucl. Sci., 2016.

[2] A.C. Kak and M. Slaney. Principles of Computerized Tomographic
Imaging. Piscataway, NJ, 1988.

[3] S.G. Michlin and A.H. Armstrong. Integral equations and their appli-
cations to certain problems in mechanics, mathematical physics and
technology. London, 1957.

[4] J. Nocedal. Updating quasi-Newton matrices with limited storage. Math-
ematics of computation, vol. 35, no. 151, pp. 773-782, 1980.

[5] F. Noo, R. Clackdoyle, and J.D. Pack. A two-step Hilbert transform
method for 2D image reconstruction. Phys. Med. Biol., vol. 49, no. 17,
p. 3903, 2004.

[6] J.D. Pack, F. Noo, and R. Clackdoyle. Cone-beam reconstruction using
the backprojection of locally filtered projections. IEEE Trans. Med. Imag.,
vol. 24, no. 1, pp. 70–85, 2005.

[7] L.I. Rudin, S. Osher and E. Fatemi. Nonlinear total variation based noise
removal algorithms. Physica D: Nonlinear Phenomena, vol. 60, no. 1, pp.
259-268, 1992.

[8] D. Xia, E. Sidky, L. Yu, Y. Zou, and X. Pan. Exact ROI image
reconstruction with perturbed source trajectories in C-arm CT. Nuclear
Science Symp. Conf. Rec., vol. 4. IEEE, 2005, pp. 4–pp.

[9] G.L. Zeng. Image reconstruction via the finite Hilbert transform of
the derivative of the backprojection. Med. Phys., vol. 34, no. 7, pp.
2837–2843, 2007.

The 4th International Conference on Image Formation in X-Ray Computed Tomography

592



The 4th International Conference on Image Formation in X-Ray Computed Tomography

Author List

A

Abascal, Juan F. P. J. . . . . . . . . . . . . . . . . . . . . . . 491
Abella, Mónica . . . . . . . . . . . . . . 323, 423, 475, 491
Achenbach, Stephan . . . . . . . . . . . . . . . . . . . . . . . . 89
Ahmad, Moiz . . . . . . . . . . . . . . . . . . . . . . . . 105, 479
Aichert, André . . . . . . . . . . . . . . . . . . . . . . . . . 89, 259
Albrecht, Frederic . . . . . . . . . . . . . . . . . . . . . . . . . 375
Alessio, Adam M. . . . . . . . . . . . . . . . . . . . . 201, 347
Allmendinger, Thomas . . . . . . . . . . . . . . . . . . . . 185
Allner, Sebastian . . . . . . . . . . . . . . . . . . . . . 129, 515
Althoff, Daniel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Anxionnat, René . . . . . . . . . . . . . . . . . . . . . . . . . . 435
Arrowood, Lloyd F. . . . . . . . . . . . . . . . . . . . . . . . 197
Ashikaga, Hiroshi . . . . . . . . . . . . . . . . . . . . . . . . . 189
Auweter, Sigrid D. . . . . . . . . . . . . . . . . . . . . . . . . 359
Aygün, Nafi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557

B

Badali, D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
Baek, Jongduk . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Bai, Mei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Bai, Ti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Ballach, Frederic . . . . . . . . . . . . . . . . . . . . . 217, 335
Banjak, Hussein . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
Bao, Cuiping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Barber, Rina Foygel . . . . . . . . . . . . . . . . . . . . . . . . 37
Barber, William C. . . . . . . . . . . . . . . . . . . . . . . . . 499
Baumbach, Tilo . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
Beaty, John . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
Bech, Martin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
Beckers, Detlef . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
Behiels, Gert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Berger, Marie-Odile . . . . . . . . . . . . . . . . . . . . . . . 435
Berger, Martin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
Bergner, Frank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Bernard, Guillaume . . . . . . . . . . . . . . . . . . . . . . . 205
Bhatia, Navnina . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Bier, Bastian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
Bindschadler, Michael D. . . . . . . . . . . . . . . . . . . 201
Bingham, Philip . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Birnbacher, Lorenz . . . . . . . . . . . . . . . . . . . . . . . . 233
Bismark, Richard . . . . . . . . . . . . . . . . . . . . . . . . . . 573
Bloch, Isabelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
Bochud, François . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Bouman, Charles . . . . . . . . . . . . . . . . . . . . . . . . . . 471
Brönnimann, Christian . . . . . . . . . . . . . . . . . . . . . 33
Bracard, Serge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

Bravin, Alberto . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
Breckon, Toby P. . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Brehm, Marcus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
Breininger, Katharina . . . . . . . . . . . . . . . . . . . . . . 259
Brendel, Bernhard . . . . . . . . . . . . . . . . . . . . . . 41, 367
Brown, Kevin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Bruder, Herbert . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Brunelle, Corinne B.. . . . . . . . . . . . . . . . . . . . . . . 225
Bungo, Michael . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Buzug, Thorsten M. . . . . . . . . . . . . . . . . . . . . . . . 145

C

Cant, Jeroen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Cao, Qian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549
Cao, Xu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181, 249
Carretero, Jesus . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
Champley, Kyle . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Chan, Heang-Ping . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Chang, Yongjin . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
Chang, Zhiqian . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
Chen, Buxin . . . . . . . . . . . . . . . . . . . . . . . . . 101, 569
Chen, Marcus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Chen, Xi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
Cho, Jang Hwan . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
Cho, Sanghoon . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Cho, Seungryong . . . . . . . . . . . . 133, 141, 153, 411
Cho, Seungryoung. . . . . . . . . . . . . . . . . . . . . . . . . 503
Choi, Jang-Hwan . . . . . . . . . . . . . . . . . 105, 383, 479
Christensen, Soren . . . . . . . . . . . . . . . . . . . . . . . . 253
Christoph, Ralf . . . . . . . . . . . . . . . . . . . . . . . 217, 335
Cierniak, Robert. . . . . . . . . . . . . . . . . . . . . . . . . . . 511
Ciuffo, Luisa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Clackdoyle, Rolf . . . . . . . . . . . . . . . . . . . . . 431, 589
Coan, Paolo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
Coban, Sophia B. . . . . . . . . . . . . . . . . . . . . . . . . . . 279
Cohen, Adam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
Cohen, Alan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Costin, Marius . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

D

Dadivanyan, Natalia . . . . . . . . . . . . . . . . . . . . . . . 257
Daigle, Louis-Frederic . . . . . . . . . . . . . . . . . . . . . 225
Dang, H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
Danielsson, Mats . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Davis, Andrew M. . . . . . . . . . . . . . . . . . . . . 351, 415
De Coppi, Paolo . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
De Man, Bruno. . . . . . . . . . . . . . . 73, 157, 229, 347

593



The 4th International Conference on Image Formation in X-Ray Computed Tomography

de Molina, Claudia . . . . . . . . . . . . . . . 323, 475, 491
Delmas, Charlotte . . . . . . . . . . . . . . . . . . . . . . . . . 435
Deng, Huipeng . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
Des Roches, Mathieu . . . . . . . . . . . . . . . . . . . . . . 225
Desbat, Laurent . . . . . . . . . . . . . . . . . . . . . . 431, 589
Desco, Manuel . . . . . . . . . . . . . . 323, 423, 475, 491
Després, Philippe . . . . . . . . . . . . . . . . . . . . . 169, 225
Diemoz, Paul Claude . . . . . . . . . . . . . . . . . . . . . . 363
Ding, Huanjun . . . . . . . . . . . . . . . . . . . . . . . . . 81, 499
Ding, Qiaoqiao . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
Dittmann, Jonas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Divel, Sarah E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
Dremel, Kilian . . . . . . . . . . . . . . . . . . . . . . . . . 69, 137
Ducros, Nicolas . . . . . . . . . . . . . . . . . . . . . . . . 49, 585
Dunnmon, Jared . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

E

Edic, Peter M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527
Edyvean, Sue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Eickelberg, Oliver . . . . . . . . . . . . . . . . . . . . . . . . . 359
Endrizzi, Marco . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
Epple, Michael . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

F

Fahrig, Rebecca . . . . . . . . 105, 383, 403, 451, 479
Fan, Yu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Farago, Tomas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
Fehringer, Andreas . . . . . . . . . . . . . . . 129, 367, 515
Feng, Dake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
Feng, Peng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Fessler, Jeffrey A. . . . . . . . . . . . . 21, 275, 399, 537
Fiederle, Michael . . . . . . . . . . . . . . . . . . . . . . . . . . 375
Fieselmann, Andreas . . . . . . . . . . . . . . . . . . . . . . 241
Fishman, Elliot K. . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Flohr, Thomas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Foos, D. H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
Fournier, Clarisse . . . . . . . . . . . . . . . . . . . . . . . . . 523
Francus, Pierre . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Frenkel, Michael . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Fristot, Vincent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Frysch, Robert . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
Fu, Lin . . . . . . . . . . . . . . . . . . . . . . . . . . 229, 347, 395
Fuld, Matthew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Fulton, Roger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Fung, George S. K. . . . . . . . . . . . . . . . . . . . . . 53, 189
Funk, T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443

G

Gang, Grace J. . . . . . . . . . . . . . . . . . . . . . . . . . 29, 407
Gao, Hao . . . . . . . . . . . . . . . . 57, 81, 245, 299, 483
Gao, Hewei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
Gao, Yu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
García Blas, Javier . . . . . . . . . . . . . . . . . . . 323, 423
García, Inés . . . . . . . . . . . . . . . . . . . . . . . . . . 323, 423
García-Santos, Alba . . . . . . . . . . . . . . . . . . . . . . . 323

Gibmeier, Jens . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
Gilat-Schmidt, Taly . . . . . . . . . . . . . . . . . . . . . . . . 37
Gong, Shutao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
Götz, Detlev J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
Grau, Cai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581
Gregor, Jens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Grönberg, Fredrik . . . . . . . . . . . . . . . . . . . . . . . . . 283
Guillamet, Ronan . . . . . . . . . . . . . . . . . . . . . . . . . 271
Guo, Minghao. . . . . . . . . . . . . . . . . . . . . . . . 299, 483
Guo, Shuxu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Guo, Zhipeng . . . . . . . . . . . . . . . . . . . . . . . . 181, 249
Gusenbauer, Christian . . . . . . . . . . . . . . . . . . . . . 371

H

Ha, Sungsoo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
Ha, Wooseok . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Haase, Viktor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Hagen, Charlotte Klara . . . . . . . . . . . . . . . . . . . . 363
Hahn, Juliane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Hammer, Michael . . . . . . . . . . . . . . . . . . . . 217, 335
Han, Pei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Han, Xiao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
Han, Yo Seob . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
Hansen, David C. . . . . . . . . . . . . . . . . . . . . . . . . . 581
Hansen, Per C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
He, Peng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Hehn, Lorenz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Hein, Ilmar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
Hellbach, Katharina . . . . . . . . . . . . . . . . . . . . . . . 359
Henzler, Thomas . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Herzen, Julia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Hinshaw, Waldo . . . . . . . . . . . . . . . . . . . . . . 105, 451
Hoskovec, Jan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
Houzet, Dominique . . . . . . . . . . . . . . . . . . . . . . . . 205
Hsieh, Scott S. . . . . . . . . . . . . . . . . . . . . . . . 387, 443
Huang, Xiaolin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Huang, Yixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Hunger, Stefan . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

I

Ihme, Matthias . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
Iwanczyk, Jan S. . . . . . . . . . . . . . . . . . . . . . . . . . . 499

J

Jang, Seokhwan . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
Jia, Xun. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
Jiang, Shanghai . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Jin, Xin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Jin, Yannan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527
Jørgensen, Jakob S. . . . . . . . . . . . . . . . . . . . . . . . . 279
Jud, Christoph . . . . . . . . . . . . . . . . . . . . 25, 331, 355

K

Kachelrieß, Marc . . . . . . . . 93, 185, 217, 335, 383
Kaftandjian, Valérie . . . . . . . . . . . . . . . . . . . . . . . 271

594



The 4th International Conference on Image Formation in X-Ray Computed Tomography

Kallman, Jeff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Kappler, Steffen . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
Karellas, Andrew . . . . . . . . . . . . . . . . . . . . . . . . . . 291
Kastner, Johann . . . . . . . . . . . . . . . . . . . . . . 177, 371
Katsevich, Alexander . . . . . . . . . . . . . . . . . . . . . . 193
Kawamoto, Satomi . . . . . . . . . . . . . . . . . . . . . . 29, 53
Kazantsev, Ivan . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
Kerrien, Erwan . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
Kim, Daecheon . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Kim, Ho Kyung . . . . . . . . . . . . . . . . . . . . . . 133, 411
Kim, Jung-Ha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Kim, Mina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
Kim, Seung Ho. . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Kim, Seungeon. . . . . . . . . . . . . . . . . . . . . . . 439, 519
Kinahan, Paul E. . . . . . . . . . . . . . . . . . . . . . . . . . . 347
Kingston, Andrew . . . . . . . . . . . . . . . . . . . . . . . . . 495
Klotz, Ernst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Koberstein-Schwarz, Benno. . . . . . . . . . . . . . . . 419
Koehler, Thomas . . . . . . . . . . . . . . . . . . . . . . . 41, 359
Koenig, Thomas . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
Köhler, Thomas . . . . . . . . . . . . . . . . . . . . . . 259, 367
Koliatsos, Vassilis E. . . . . . . . . . . . . . . . . . . . . . . 557
Konate, Souleymane . . . . . . . . . . . . . . . . . . . . . . . 291
Köster, Niko . . . . . . . . . . . . . . . . . . . . . . . . . 105, 479
Krenkel, Martin . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
Kreuer, Sascha . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
Krings, Gregor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
Kunka, Danays . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

L

Létang, Jean Michel . . . . . . . . . . . . . . . . . . 221, 585
La Rivière, Patrick J. . . . . . . . . . . . . . . . . . . . . . . 201
Ladjal, Saïd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
Lai, Hao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569
Langan, David A. . . . . . . . . . . . . . . . . . . . . . . . . . 569
Lansberg, Maarten G. . . . . . . . . . . . . . . . . . . . . . 253
Lasser, Tobias . . . . . . . . . . . . . . . . . . . . . 25, 331, 355
Latham, Shane . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
Lauritsch, Günter . . . . . . . . . . . . . . . . . . . . . 149, 545
Lee, Hoyeon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Lee, Minji . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
Lee, Okkyun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
Lee, Tzu-Cheng . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
Lehmann, Mathias. . . . . . . . . . . . . . . . . . . . . . . . . 415
Leinweber, Carsten . . . . . . . . . . . . . . . . . . . 217, 335
Lesaint, Jérôme . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
Levinson, Reuven . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Lexa, Michael . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
Li, Bin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
Li, Heyi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
Li, Thomas Heyang . . . . . . . . . . . . . . . . . . . . . . . 495
Liang, Jimin . . . . . . . . . . . . . . . . . . . . . . . . . 181, 249
Liang, Zhengrong . . . . . . . . . . . . . . . . . . . . . . . . . 113
Lionheart, William R. B. . . . . . . . . . . . . . . . . . . . 279

Liu, Hongyan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Liu, Jiulong . . . . . . . . . . . . . . . . . . . . . . . . 57, 81, 245
Liu, Rui . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121, 229
Liu, Yan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101, 533
Long, Bernard. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Long, Yong . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65, 399
Low, Daniel A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Lu, Hongbing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Lu, Yanye . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
Lv, Gaoqi . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181, 249
Lyu, Qingwen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553

M

Ma, Jianhua . . . . . . . . . . . . . . . . . . . . . . . . . . 113, 295
Madhav, Priti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
Magshoudlou, Panagiotis . . . . . . . . . . . . . . . . . . 363
Maier, Andreas 89, 105, 149, 259, 383, 403, 451,

479, 545
Maier, Joscha . . . . . . . . . . . . . . . . . . . . . . . . 217, 335
Maisenbacher, Jens . . . . . . . . . . . . . . . . . . . . . . . . 541
Malakhov, Nail . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
Mao, Tingyu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
Martínez, Cristóbal . . . . . . . . . . . . . . . . . . . . . . . . 475
Martinez, Álvaro . . . . . . . . . . . . . . . . . . . . . . . . . . 323
Martz Jr., Harry E.. . . . . . . . . . . . . . . . . . . . . . . . . 531
Mascolo-Fortin, Julia . . . . . . . . . . . . . . . . . . . . . . 169
Matenine, Dmitri . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Mathews, Aswin John . . . . . . . . . . . . . . . . . . . . . . 29
McGaffin, Madison G. . . . . . . . . . . . . . . . . 275, 537
Mechlem, Korbinian . . . . . . . . . . . . . . . . . . . . . . . 129
Meinel, Felix G. . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
Meng, Jing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Meyer, Pascal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
Miller, Eric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Modgil, Dimple . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Mohr, Jürgen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
Molina, Claudia . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
Molloi, Sabee . . . . . . . . . . . . . . . . . . . . . . . . . . 81, 499
Momey, Fabien. . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
Monnin, Pascal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Moore, Teri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Moore, William . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Mou, Xuanqin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Mouton, Andre . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Mueller, Klaus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
Müller, Kerstin . . . . . . . . . . . . . . . . . . . 105, 383, 479
Müller, Tobias. . . . . . . . . . . . . . . . . . . . . . . . 217, 335
Munro, Peter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
Muren, Ludvig P. . . . . . . . . . . . . . . . . . . . . . . . . . . 581
Myers, Glenn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495

N

Nakanishi, Satoru . . . . . . . . . . . . . . . . . . . . 263, 455
Nam, Haewon . . . . . . . . . . . . . . . . . . . . . . . . 125, 483
Nett, Brian E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565

595



The 4th International Conference on Image Formation in X-Ray Computed Tomography

Niu, Tianye . . . . . . . . . . . . . . . . . . . . . . . 65, 343, 391
Noo, Frédéric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
Notargiacomo, Thibault . . . . . . . . . . . . . . . . . . . 205
Noël, Peter B. . . . . . . . . . . 129, 233, 359, 367, 515
Nuyts, Johan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Næs-Ulseth, Eirik . . . . . . . . . . . . . . . . . . . . . . . . . 499

O

Olivo, Alessandro . . . . . . . . . . . . . . . . . . . . . . . . . 363
Olsen, Ulrik L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
Ouyang, Luo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553

P

Pack, Jed D.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
Pal, Debashish . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
Pan, Xiaochuan 37, 101, 287, 315, 351, 415, 487,

569
Park, Miran . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
Paysan, Pascal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
Pelc, Norbert J. . . . . . . . . . 253, 327, 387, 451, 467
Pelizzari, Charles . . . . . . . . . . . . . . . . . 351, 415, 487
Persson, Mats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
Petersen, Jørgen B. B. . . . . . . . . . . . . . . . . . . . . . 581
Peyrin, Françoise . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Pfeiffer, Franz . 25, 129, 233, 331, 355, 359, 367,

515, 541
Pisana, Francesco . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Polo, Ramón . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
Polster, Christoph . . . . . . . . . . . . . . . . . . . . . . . . . 339
Popa, Emil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
Popescu, Lucretiu M. . . . . . . . . . . . . . . . . . . . . . . 447
Poulsen, Henning F. . . . . . . . . . . . . . . . . . . . . . . . 577
Prade, Friedrich . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
Pung, Leland . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

R

Ra, Jong Beom . . . . . . . . . . . . . . . . . . . . . . . 439, 519
Racine, Damien . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Rajbhandary, Paurakh L. . . . . . . . . . . . . . . . . . . . 327
Ramani, Sathish . . . . . . . . . . . . . . . . . . . . . . . . 73, 395
Rebuffel, Veronique . . . . . . . . . . . . . . . . . . . . . . . 523
Reiter, Michael . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Reitz, Silke . . . . . . . . . . . . . . . . . . . . . . . . . . 105, 479
Ren, Pinghong . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Reshef, Aymeric . . . . . . . . . . . . . . . . . . . . . . . . . . 427
Riddell, Cyril . . . . . . . . . . . . . . . . . . . . . . . . 427, 435
Rigie, David S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Rit, Simon . . . . . . . . . . . . . . . . . . . 49, 431, 585, 589
Ritschl, Ludwig . . . . . . . . . . . . . . . . . . . . . . 241, 383
Rose, Georg. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
Rose, Sean D. . . . . . . . . . . . . . . . . . . . . . . . . 287, 315
Ruhlandt, Aike . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
Rui, Xue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527

S

Salditt, Tim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

Sampson, Richard . . . . . . . . . . . . . . . . . . . . . . . . . 275
Sanchez, Adrian A. . . . . . . . . . . . . . . . . . . . 287, 315
Sauer, Ken . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
Sawall, Stefan . . . . . . . . . . . . . . . . . . . . . . . . 217, 335
Schaff, Florian . . . . . . . . . . . . . . . . . . . . . . . . . 25, 331
Schegerer, Alexander . . . . . . . . . . . . . . . . . . . . . . . 77
Schmidt, Bernhard . . . . . . . . . . . . . . . . . . . . . . . . . 93
Schmidt, T. G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
Schock, Jonathan . . . . . . . . . . . . . . . . . . . . . . . . . . 515
Schönberg, Stefan . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Schöndube, Harald . . . . . . . . . . . . . . . . . . . . . . . . 379
Segars, W. Paul . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
Seghers, Dieters . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
Senck, Sascha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
Serrano, Estefania . . . . . . . . . . . . . . . . . . . . 323, 423
Seyyedi, Saeed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
Shang, Junliang . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Sharma, Yash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
Sheng, Ke. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
Sheppard, Adrian . . . . . . . . . . . . . . . . . . . . . . . . . . 495
Shi, Linxi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
Shrestha, Suman . . . . . . . . . . . . . . . . . . . . . . . . . . 291
Shunhavanich, Picha . . . . . . . . . . . . . . . . . . . . . . 467
Sidky, Emil Y. . . 37, 101, 287, 315, 415, 487, 569
Siewerdsen, Jeffrey H. . . . 29, 407, 463, 549, 557
Sijbers, Jan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Sisniega, Alejandro . . . . . . . . . . . . . . . . . . . 549, 557
Sixou, Bruno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Sjölin, Martin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Smith, Jerel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Solomon, Stephen B. . . . . . . . . . . . . . . . . . . . . . . 569
Soloviev, Serge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Spahn, Martin . . . . . . . . . . . . . . . . . . . . . . . . 105, 479
Srivastava, Somesh . . . . . . . . . . . . . . . . . . . . . . . . 471
Stayman, J. Webster . . . . . 29, 407, 463, 549, 557
Stierstorfer, Karl . . . . . . . . . . . . . . . . . . . . . . . 53, 185
Stille, Maik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Stoschus, Henning. . . . . . . . . . . . . . . . . . . . 217, 335
Sun, Tao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

T

Taasti, Vicki T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581
Taguchi, Katsuyuki . . . . . . . . . . . . . . . . 53, 189, 339
Tang, Qiulin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
Tang, Xiangyang . . . . . . . . . . . . . . . . . . . . . . . . . . 343
Tapfer, Arne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
Taubmann, Oliver . . . . . . . . . . . . . . . . . . . . 149, 545
Tehrani, Joubin Nasehi . . . . . . . . . . . . . . . . . . . . 561
Thomas, David . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Thompson, Richard . . . . . . . . . . . . . . . . . . . . . . . 101
Thompson, William M. . . . . . . . . . . . . . . . . . . . . 319
Thygesen, Jesper . . . . . . . . . . . . . . . . . . . . . . . . . . 581
Tian, Jie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Tilley II, Steven . . . . . . . . . . . . . . . . . . . . . . . . 29, 463

596



The 4th International Conference on Image Formation in X-Ray Computed Tomography

Tisseur, David . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Top, Philip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Tracey, Brian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Trapp, Michael . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Trimborn, Barbara . . . . . . . . . . . . . . . . . . . . . . . . . 375
Trousset, Yves . . . . . . . . . . . . . . . . . . . . . . . 427, 435
Trueb, P. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Tsui, Benjamin M. W. . . . . . . . . . . . . . . . . . . . . . . 53

U

Unberath, Mathias . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Unser, Michael . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503

V

Varslot, Trond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
Vassholz, Malte . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
Vedantham, Srinivasan . . . . . . . . . . . . . . . . . . . . 291
Velroyen, Astrid . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
Verdun, Francis R.. . . . . . . . . . . . . . . . . . . . . . . . . . 77
Verger, Loick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
Vienne, Caroline . . . . . . . . . . . . . . . . . . . . . . . . . . 271
Viermetz, Manuel . . . . . . . . . . . . . . . . . . . . . . . . . 233
Vijayaraghavan, Gopal R. . . . . . . . . . . . . . . . . . . 291
Vilches-Freixas, Gloria . . . . . . . . . . . . . . . . . . . . 585
Viry, Anaïs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Vittoria, Fabio Alessio . . . . . . . . . . . . . . . . . . . . . 363
Volk, Thomas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
von Teuffenbach, Maximilian . . . . . . . . . . . . . . 367

W

Wang, Ge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Wang, Jianxun . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Wang, Jing . . . . . . . . . . . . . . . . . . 295, 391, 553, 561
Wang, Miaoshi . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Wang, Wenli . . . . . . . . . . . . . . . . . . . . . . 85, 263, 267
Wang, Wenying . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Wang, Xin . . . . . . . . . . . . . . . . . . . . . . . . . . . 395, 557
Ward, John Paul . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
Wawrzyniak, Gregor. . . . . . . . . . . . . . . . . . . . . . . 499
Wei, Biao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Wenisch, Thomas F. . . . . . . . . . . . . . . . . . . . . . . . 275
Wessel, Jan C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
Wi, Sunhee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Wieczorek, Matthias . . . . . . . . . . . . . . . 25, 331, 355
Willner, Marian . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Wintermark, Max . . . . . . . . . . . . . . . . . . . . . . . . . 253
Withers, Philip J. . . . . . . . . . . . . . . . . . . . . . . . . . . 279
Wu, Meng . . . . . . . . . . . . . . . . . . . . . . . . . . . 403, 451
Wu, Mingye . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Wu, Pengwei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

X

Xia, Dan . . . . . . . . . . . . . . . . . . . . . . . . . 415, 487, 569
Xia, Yan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403, 451
Xie, Huiqiao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

Xie, Yaoqin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
Xing, Yuxiang. . . . . . . . . . . . . . . . . . . . . . . . 173, 237
Xiong, Lei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Xu, J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
Xu, Wei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459

Y

Yan, Hao. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165, 553
Yang, Meili . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Yaroshenko, Andre . . . . . . . . . . . . . . . . . . . . . . . . 359
Ye, Jong Chul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
Yıldırım, Ali Önder . . . . . . . . . . . . . . . . . . . . . . . 359
Yin, Zhye . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Yorkston, John . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549
Youn, Hanbean . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Yu, Hengyong . . . . . . . . . . . . . . . . . . . . 121, 165, 229
Yu, Zhou. . . . . . . . . . . . . . . . . . . . 101, 263, 455, 533
Yuan, Yaoshen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

Z

Zabler, Simon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Zambon, P. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Zamir, Anna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
Zbijewski, Wojciech . . . . . . . . . . 29, 463, 549, 557
Zeng, Gengsheng L. . . . . . . . . . . . . . . . . . . . . 85, 267
Zhang, Hao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Zhang, Junying . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Zhang, Ruoqiao . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
Zhang, Xiaoqun . . . . . . . . . . . . . . . . . . . . 57, 81, 399
Zhang, Xue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Zhang, Yanbo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Zhang, You . . . . . . . . . . . . . . . . . . . . . . 295, 553, 561
Zhang, Yuanke . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Zhang, Zheng . . . . . . . . . . . . . . . 101, 415, 487, 569
Zhao,Hongkai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Zheng, Jiabei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Zheng, Junzheng . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Zhou, Liuyuan . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Zhu, Shouping . . . . . . . . . . . . . . . . . . . . . . . 181, 249
Zhu, Xucheng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Zhuang, Jingwen . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Zuber, Marcus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

597


